Hydrodynamic limits for directed traps and systems of independent RWRE

Jonathon Peterson

Purdue University Department of Mathematics

Joint work with Milton Jara

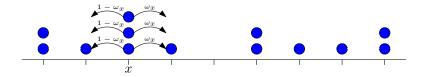
April 2, 2015

Environment $\omega = {\omega_x}_{x \in \mathbb{Z}}$ i.i.d.

Random walk particles $\{X^{x,j}\}_{x \in \mathbb{Z}, j \ge 1}$

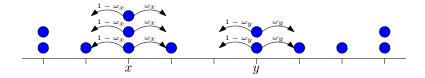
Environment $\omega = {\omega_x }_{x \in \mathbb{Z}}$ i.i.d.

Random walk particles $\{X^{x,j}\}_{x \in \mathbb{Z}, j \ge 1}$



Environment $\omega = {\omega_x }_{x \in \mathbb{Z}}$ i.i.d.

Random walk particles $\{X^{x,j}\}_{x \in \mathbb{Z}, j \ge 1}$

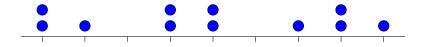


Environment $\omega = {\omega_x}_{x \in \mathbb{Z}}$ i.i.d.

Random walk particles $\{X^{x,j}\}_{x \in \mathbb{Z}, j \geq 1}$

Environment $\omega = {\omega_x}_{x \in \mathbb{Z}}$ i.i.d.

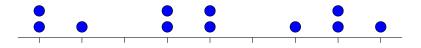
Random walk particles $\{X^{x,j}\}_{x \in \mathbb{Z}, j \ge 1}$



Environment $\omega = \{\omega_x\}_{x \in \mathbb{Z}}$ i.i.d.

Random walk particles $\{X^{x,j}_{\cdot}\}_{x\in\mathbb{Z},j\geq 1}$

• independently evolve in common environment ω .



Configuration of particles

- ▶ Initial configuration: $\eta_0 = {\eta_0(x)}_{x \in \mathbb{Z}}$.
- $\eta_n(x) = \#$ (particles at x after n steps).

Hydrodynamic limit - asymmetric SRW

$$\omega_x \equiv p \neq 1/2$$

$$\mathbf{v} := \lim_{n \to \infty} \frac{X_n}{n} = 2p - 1$$

• •

Hydrodynamic limit - asymmetric SRW

$$\omega_x \equiv p \neq 1/2$$
 $\mathbf{v} := \lim_{n \to \infty} \frac{x_n}{n} = 2p - 1$

Hydrodynamic Limit (Asymmetric SRW)

If $\{\eta_0^n\}_{n\geq 1}$ is a sequence of initial configurations such that

$$\lim_{n\to\infty}\frac{1}{n}\sum_{x\in\mathbb{Z}}\eta_0^n(x)\phi(x/n)=\int u(x)\phi(x)\,dx,\quad\forall\phi\in\mathcal{C}_0,$$

then for any $t \ge 0$,

$$\lim_{n\to\infty}\frac{1}{n}\sum_{x\in\mathbb{Z}}\eta_{tn}^n(x)\phi(x/n)=\int u(x-\mathrm{v}t)\phi(x)\,dx,\quad\forall\phi\in\mathcal{C}_0,$$

Note: scale time and space by *n*

Understanding the hydrodynamic limit

$$\lim_{n\to\infty}\frac{1}{n}\sum_{x\in\mathbb{Z}}\eta_{tn}^n(x)\phi(x/n)=\int u(x-\mathrm{v}t)\phi(x)\,dx,\quad\forall\phi\in\mathcal{C}_0,$$

 (Asymptotic) empirical density of particles Initial u(x) dx Time tn u(x - vt) dx.

Understanding the hydrodynamic limit

$$\lim_{n\to\infty}\frac{1}{n}\sum_{x\in\mathbb{Z}}\eta_{tn}^n(x)\phi(x/n)=\int u(x-\mathrm{v}t)\phi(x)\,dx,\quad\forall\phi\in\mathcal{C}_0,$$

- (Asymptotic) empirical density of particles Initial u(x) dx Time tn u(x - vt) dx.
- Example of initial configurations

$$\eta_0^n \sim \bigotimes_{x \in \mathbb{Z}} \mathsf{Poisson}(u(x/n)).$$

Understanding the hydrodynamic limit

$$\lim_{n\to\infty}\frac{1}{n}\sum_{x\in\mathbb{Z}}\eta_{tn}^n(x)\phi(x/n)=\int u(x-\mathrm{v}t)\phi(x)\,dx,\quad\forall\phi\in\mathcal{C}_0,$$

- (Asymptotic) empirical density of particles Initial u(x) dx Time tn u(x - vt) dx.
- Example of initial configurations

$$\eta_0^n \sim \bigotimes_{x \in \mathbb{Z}} \mathsf{Poisson}(u(x/n)).$$

• u(t, x) = u(x - vt) solves the PDE

$$\begin{cases} \frac{\partial}{\partial t}u(t,x) = -\mathbf{v}\frac{\partial}{\partial x}u(t,x)\\ u(0,x) \equiv u(x) \end{cases}$$

Hydrodynamic limit - symmetric SRW

$$\{t\mapsto X_{tn^2}/n\} \Longrightarrow$$
 Brownian Motion

$$(\omega_x \equiv p = 1/2)$$

Hydrodynamic Limit (Symmetric SRW)

If $\{\eta_0^n\}_{n\geq 1}$ is a sequence of initial configurations such that

$$\lim_{n\to\infty}\frac{1}{n}\sum_{x\in\mathbb{Z}}\eta_0^n(x)\phi(x/n)=\int u(x)\phi(x)\,dx,\quad\forall\phi\in\mathcal{C}_0,$$

then

$$\lim_{n\to\infty}\frac{1}{n}\sum_{x\in\mathbb{Z}}\eta_{tn^2}^n(x)\phi(x/n)=\int u(t,x)\phi(x)\,dx,\quad\forall\phi\in\mathcal{C}_0,\ t>0,$$

where u(t, x) is a solution to the heat equation

$$\frac{\partial}{\partial t}u(t,x)=\frac{1}{2}\frac{\partial^2}{\partial x^2}u(t,x) \qquad u(0,x)\equiv u(x).$$

RWRE basics - Recurrence/Transience and Speed

$$\rho_{\mathbf{X}} = \frac{1 - \omega_{\mathbf{X}}}{\omega_{\mathbf{X}}}, \qquad \mathbf{X} \in \mathbb{Z}.$$

Theorem (Solomon '75)

O Recurrence/transience is determined by $E[\log \rho_0]$.

$$\blacktriangleright \mathbb{P}(X_n \to \infty) = 1 \iff E[\log \rho_0] < 0.$$

$$\blacktriangleright \mathbb{P}(X_n \to -\infty) = 1 \iff E[\log \rho_0] > 0.$$

$$\blacktriangleright \mathbb{P}(X_n \text{ is recurrent}) = 1 \iff E[\log \rho_0] = 0.$$

RWRE basics - Recurrence/Transience and Speed

$$\rho_{\mathbf{x}} = \frac{1 - \omega_{\mathbf{x}}}{\omega_{\mathbf{x}}}, \qquad \mathbf{x} \in \mathbb{Z}.$$

Theorem (Solomon '75)

Proof Recurrence/transience is determined by $E[\log \rho_0]$.

$$\mathbb{P}(X_n \to \infty) = 1 \iff E[\log \rho_0] < 0.$$

$$\mathbb{P}(X_n \to -\infty) = 1 \iff E[\log \rho_0] > 0.$$

$$\blacktriangleright \mathbb{P}(X_n \text{ is recurrent}) = 1 \iff E[\log \rho_0] = 0.$$

2 If $E[\log \rho_0] < 0$, then

$$\lim_{n\to\infty}\frac{X_n}{n}=\mathbf{v}:=\begin{cases}\frac{1-E[\rho_0]}{1+E[\rho_0]} & \text{if } E[\rho_0]<1\\ 0 & \text{if } E[\rho_0]\geq 1, \end{cases} \qquad \mathbb{P}\text{-a.s.}$$

RWRE basics - Limiting distributions

Scaling parameter $\kappa > 0$ defined by

$$E[\rho_0^\kappa] = 1.$$

Theorem (Kesten, Kozlov, Spitzer '75)

Assuming $E[\log \rho_0] < 0$ and some other technical assumptions

$$\kappa \in (0, 1) \qquad \lim_{n \to \infty} \mathbb{P}\left(\frac{X_n}{n^{\kappa}} \le x\right) = 1 - L_{\kappa}(x^{-1/\kappa})$$

$$\kappa \in (1, 2) \qquad \lim_{n \to \infty} \mathbb{P}\left(\frac{X_n - nv}{n^{1/\kappa}} \le x\right) = 1 - L_{\kappa}(-x)$$

$$\kappa > 2 \qquad \lim_{n \to \infty} \mathbb{P}\left(\frac{X_n - nv}{a\sqrt{n}} \le x\right) = \Phi(x)$$

RWRE basics - Quenched vs. Annealed

Quenched law P_{ω} - environment ω fixed. **Averaged law** \mathbb{P} - averaged over all environments.

 $\mathbb{P}(\cdot) = E[P_{\omega}(\cdot)]$

RWRE basics - Quenched vs. Annealed

Quenched law P_{ω} - environment ω fixed. **Averaged law** \mathbb{P} - averaged over all environments.

 $\mathbb{P}(\cdot) = E[P_{\omega}(\cdot)]$

Theorem (Goldsheid '07, P. '08, P. and Zeitouni '08)

If κ > 2 then

$$\lim_{n\to\infty} P_{\omega}\left(\frac{X_n-n\mathrm{v}+Z_n(\omega)}{b\sqrt{n}}\leq x\right)=\Phi(x),\quad \textit{P-a.s.}$$

RWRE basics - Quenched vs. Annealed

Quenched law P_{ω} - environment ω fixed. **Averaged law** \mathbb{P} - averaged over all environments.

 $\mathbb{P}(\cdot) = E[P_{\omega}(\cdot)]$

Theorem (Goldsheid '07, P. '08, P. and Zeitouni '08)

If κ > 2 then

$$\lim_{n\to\infty} P_{\omega}\left(\frac{X_n-n\mathrm{v}+Z_n(\omega)}{b\sqrt{n}}\leq x\right)=\Phi(x),\quad P\text{-a.s.}$$

If κ ∈ (0,2), then for P-a.e. environment ω there is no quenched limiting distribution.

If
$$\kappa \in (0, 1)$$
 $\lim_{n \to \infty} P_\omega \left(\frac{X_n}{n^{\kappa}} \le x \right)$ does not converge.

Theorem (P. '10)

Assume that $E[\log \rho_0] < 0$ and $\kappa > 1$. If $\{\eta_0^n\}_{n \ge 1}$ is a sequence of initial configurations such that

$$\lim_{n\to\infty}\frac{1}{n}\sum_{x\in\mathbb{Z}}\eta_0^n(x)\phi(x/n)=\int u(x)\phi(x)\,dx,\quad\forall\phi\in\mathcal{C}_0,$$

then for any $t \ge 0$,

$$\lim_{n\to\infty}\frac{1}{n}\sum_{x\in\mathbb{Z}}\eta_{tn}^n(x)\phi(x/n)=\int u(x-\mathrm{v}t)\phi(x)\,dx,\quad\forall\phi\in\mathcal{C}_0,$$

Admissible initial conditions

$$\lim_{n\to\infty}\frac{1}{n}\sum_{x\in\mathbb{Z}}\eta_0^n(x)\phi(x/n)=\int u(x)\phi(x)\,dx,\quad\forall\phi\in\mathcal{C}_0,$$

►
$$\eta_0^n \sim \bigotimes_{x \in \mathbb{Z}} \text{Poisson}(u(x/n)).$$

Admissible initial conditions

$$\lim_{n\to\infty}\frac{1}{n}\sum_{x\in\mathbb{Z}}\eta_0^n(x)\phi(x/n)=\int u(x)\phi(x)\,dx,\quad\forall\phi\in\mathcal{C}_0,$$

$$\eta_0^n \sim \bigotimes_{x \in \mathbb{Z}} \text{Poisson}(u(x/n)).$$

$$\eta_0^n \sim \bigotimes_{x \in \mathbb{Z}} \text{Poisson}(u(x/n)g_\omega(x)), \quad (\text{locally stationary})$$

$$q_n(x) = E^x \left[\sum_{x \in \mathbb{Z}} \mathbf{1}_{\{x,y,y\}}\right] = (1 + a_y)(1 + a_{yy} + a_{yy} + a_{yy} + a_{yy})$$

$$g_{\omega}(x) = E_{\omega}^{x} \left[\sum_{n=0}^{\infty} \mathbf{1}_{\{X_{n}=x\}} \right] = (1 + \rho_{x}) (1 + \rho_{x+1} + \rho_{x+1}\rho_{x+2} + \cdots)$$

Admissible initial conditions

$$\lim_{n\to\infty}\frac{1}{n}\sum_{x\in\mathbb{Z}}\eta_0^n(x)\phi(x/n)=\int u(x)\phi(x)\,dx,\quad\forall\phi\in\mathcal{C}_0,$$

$$\eta_0^n \sim \bigotimes_{x \in \mathbb{Z}} \operatorname{Poisson}(u(x/n)).$$

$$\eta_0^n \sim \bigotimes_{x \in \mathbb{Z}} \operatorname{Poisson}(u(x/n)g_\omega(x)), \quad \text{(locally stationary)}$$

$$g_\omega(x) = E_\omega^x \left[\sum_{n=0}^\infty \mathbf{1}_{\{X_n = x\}}\right] = (1 + \rho_x)(1 + \rho_{x+1} + \rho_{x+1}\rho_{x+2} + \cdots)$$

Note:
$$E[g_{\omega}(x)] < \infty \iff E[\rho_0] < 1 \iff \kappa > 1$$

Question What hydrodynamic limit to expect when $\kappa \in (0, 1)$?

Scaling: scale time by $n^{1/\kappa}$ and space by *n*.

Question What hydrodynamic limit to expect when $\kappa \in (0, 1)$?

- Scaling: scale time by $n^{1/\kappa}$ and space by *n*.
- What PDE will govern the hydrodynamic limit.

Question What hydrodynamic limit to expect when $\kappa \in (0, 1)$?

- Scaling: scale time by $n^{1/\kappa}$ and space by *n*.
- What PDE will govern the hydrodynamic limit.
- No stationary distributions with finite density.

$$f \quad \eta_0 \sim \bigotimes_{x \in \mathbb{Z}} \mathsf{Poisson}(g_\omega(x)) \quad \text{then} \quad \mathbb{E}[\eta_0(x)] = E_P[g_\omega(x)] = \infty.$$

Question What hydrodynamic limit to expect when $\kappa \in (0, 1)$?

- Scaling: scale time by $n^{1/\kappa}$ and space by *n*.
- What PDE will govern the hydrodynamic limit.
- No stationary distributions with finite density.

$$\mathsf{f} \quad \eta_0 \sim \bigotimes_{x \in \mathbb{Z}} \mathsf{Poisson}(g_\omega(x)) \quad \mathsf{then} \quad \mathbb{E}[\eta_0(x)] = \mathcal{E}_{\mathcal{P}}[g_\omega(x)] = \infty.$$

Locally stationary initial configurations are not "smooth." If η₀ⁿ ∼ ⊗_{x∈ℤ} Poisson(u(x/n)g_ω(x))

$$\frac{1}{n^{1/\kappa}}\sum_{x\in\mathbb{Z}}\eta_0^n(x)\phi(x/n) \implies \int u(x)\phi(x)\,\sigma(dx), \quad \forall \phi\in\mathcal{C}_0,$$

where σ is a κ -stable subordinator.

I

Theorem (Jara and P. '14)

Assume that $E[\log \rho_0] < 0$ and $\kappa \in (0, 1)$ (+ technical conditions). If $u \in C_0$ and $\eta_0^n \sim \bigotimes_{x \in \mathbb{Z}} Poisson(u(x/n)g_\omega(x))$, then for any $t \ge 0$

$$\frac{1}{n^{1/\kappa}}\sum_{x\in\mathbb{Z}}\eta_{tn^{1/\kappa}}^n(x)\phi(x/n) \implies \int u(t,x)\phi(x)\,\sigma(dx), \quad \forall \phi\in\mathcal{C}_0,$$

where σ is a κ -stable subordinator and u(t, x) satisfies

$$\begin{cases} u(0,x) \equiv u(x) \\ \frac{\partial}{\partial t}u(t,x) = -\frac{d}{d\sigma}u(t,x) \quad \forall t > 0. \end{cases}$$

Interpreting the PDE

$$\begin{cases} u(0,x) \equiv u(x) \\ \frac{\partial}{\partial t}u(t,x) = -\frac{d}{d\sigma}u(t,x) \quad \forall t > 0. \end{cases}$$

For any point x where $\sigma(x)$ is discontinuous,

$$\frac{\partial}{\partial t}u(t,x) = -\lim_{h\to 0}\frac{u(t,x+h)-u(t,x)}{\sigma(x+h)-\sigma(x)}.$$

Interpreting the PDE

$$\begin{cases} u(0,x) \equiv u(x) \\ \frac{\partial}{\partial t}u(t,x) = -\frac{d}{d\sigma}u(t,x) \quad \forall t > 0. \end{cases}$$

For any point x where $\sigma(x)$ is discontinuous,

$$\frac{\partial}{\partial t}u(t,x) = -\lim_{h\to 0}\frac{u(t,x+h)-u(t,x)}{\sigma(x+h)-\sigma(x)}$$

• If u(x) is of bounded variation, then also

$$u(t,b) - u(t,a) = -\int_{(a,b]} \frac{\partial}{\partial t} u(t,x) \sigma(dx) \qquad \forall t > 0.$$

Related Results

Systems of independent particles in a random environment

RW on random conductances (Faggionato, Jara, Landim '09)

$$\frac{\partial}{\partial t}u(t,x)=\frac{\partial}{\partial x}\frac{d}{d\sigma}u(t,x)$$

Related Results

Systems of independent particles in a random environment

RW on random conductances (Faggionato, Jara, Landim '09)

$$\frac{\partial}{\partial t}u(t,x)=\frac{\partial}{\partial x}\frac{d}{d\sigma}u(t,x)$$

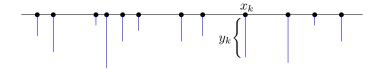
1-dim Bouchaud trap model (Jara, Landim, Teixeira '11)

$$\frac{\partial}{\partial t}u(t,x)=\frac{d}{d\sigma}\frac{\partial}{\partial x}u(t,x)$$

Directed Trap Process

Trap environment $W = \sum_k \delta_{(x_k, y_k)}$.

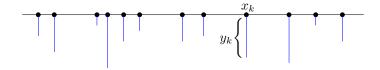
- x_k spatial location of trap
- \triangleright y_k "depth" of the trap



Directed Trap Process

Trap environment $W = \sum_k \delta_{(x_k, y_k)}$.

- x_k spatial location of trap
- ► y_k "depth" of the trap



Directed trap process $Z_W(t)$

- Stays at x_k for $Exp(1/y_k)$
- then jumps to the "next" trap to the right.

Directed Traps and RWRE

Theorem (P. and Samorodnitsky '12)

If $E[\log \rho_0] < 0$ and $\kappa \in (0, 1)$, then

$$P_{\omega}\left(rac{X_{tn}}{n^{\kappa}}\leq x
ight) \implies P_{W}\left(Z_{W}(t)\leq x
ight),$$

where *W* is a Poisson point process($\lambda y^{-\kappa-1} dx dy$).

Directed Traps and RWRE

Theorem (P. and Samorodnitsky '12)

If $E[\log \rho_0] < 0$ and $\kappa \in (0, 1)$, then

$$P_{\omega}\left(rac{X_{tn}}{n^{\kappa}}\leq x
ight) \implies P_{W}\left(Z_{W}(t)\leq x
ight),$$

where *W* is a Poisson point process($\lambda y^{-\kappa-1} dx dy$).

Idea of proof:

• Implicit "trapping structure" in ω : $\mathfrak{B} = \mathfrak{B}(\omega) = \sum_{k} \delta_{(\nu_k,\beta_k)}$.

Directed Traps and RWRE

Theorem (P. and Samorodnitsky '12)

If $E[\log \rho_0] < 0$ and $\kappa \in (0, 1)$, then

$$P_{\omega}\left(rac{X_{tn}}{n^{\kappa}}\leq x
ight) \implies P_{W}\left(Z_{W}(t)\leq x
ight),$$

where *W* is a Poisson point process($\lambda y^{-\kappa-1} dx dy$).

Idea of proof:

- Implicit "trapping structure" in ω : $\mathfrak{B} = \mathfrak{B}(\omega) = \sum_k \delta_{(\nu_k,\beta_k)}$.
- ► Rescaled trap environments $W_n = \sum_k \delta_{(\frac{\nu_k}{n}, \frac{\beta_k}{n^{1/\kappa}})}$ converge *in distribution* to *W*.

Directed Traps and RWRE

Theorem (P. and Samorodnitsky '12)

If $E[\log \rho_0] < 0$ and $\kappa \in (0, 1)$, then

$$P_{\omega}\left(rac{X_{tn}}{n^{\kappa}}\leq x
ight) \implies P_{W}\left(Z_{W}(t)\leq x
ight),$$

where *W* is a Poisson point process($\lambda y^{-\kappa-1} dx dy$).

Idea of proof:

- Implicit "trapping structure" in ω : $\mathfrak{B} = \mathfrak{B}(\omega) = \sum_k \delta_{(\nu_k,\beta_k)}$.
- ► Rescaled trap environments $W_n = \sum_k \delta_{(\frac{\nu_k}{n}, \frac{\beta_k}{n^{1/\kappa}})}$ converge *in distribution* to *W*.
- Couple random walk X_n with directed trap process $Z_{W_n}(t)$.

- T = trap environments where $Z_W(t)$ is well defined.
- $\mathcal{T}' = \text{trap environments with traps dense in } \mathbb{R}.$

 \mathcal{T} = trap environments where $Z_W(t)$ is well defined. \mathcal{T}' = trap environments with traps dense in \mathbb{R} .

Assumptions

• Sequence
$$W_n = \sum_k \delta_{(x_k^n, y_k^n)} \in \mathcal{T}$$
.

 \mathcal{T} = trap environments where $Z_W(t)$ is well defined. \mathcal{T}' = trap environments with traps dense in \mathbb{R} .

Assumptions

• Sequence
$$W_n = \sum_k \delta_{(x_k^n, y_k^n)} \in \mathcal{T}$$
.

• $W_n \to W \in \mathcal{T}'$ (vague convergence)

 \mathcal{T} = trap environments where $Z_W(t)$ is well defined. \mathcal{T}' = trap environments with traps dense in \mathbb{R} .

Assumptions

- Sequence $W_n = \sum_k \delta_{(x_k^n, y_k^n)} \in \mathcal{T}$.
- $\blacktriangleright \hspace{0.1 cm} W_n \rightarrow W \in \mathcal{T}' \hspace{1cm} (\text{vague convergence})$
- ▶ initial configurations: $\{\eta_0^n(x_k^n)\}_k$ product Poisson with

 $\eta_0^n(x_k^n) \sim \text{Poisson}(a_n y_k^n u(x_k^n)).$

for some $a_n \to \infty$.

Theorem (Jara and P. '14)

Under the previous assumptions, for any t > 0 and $\phi \in C_0$,

$$\lim_{n \to \infty} \frac{1}{a_n} \sum_k \eta_t^n(x_k^n) \phi(x_k^n) = \int u_W(t, x) \phi(x) \sigma_W(dx), \quad \text{in probability}$$

where $\sigma_W(dx) = \int_0^\infty y \ W(dx \ dy)$ and $u_W(t, x)$ satisfies
$$\begin{cases} u_W(0, x) \equiv u(x) \\ \frac{\partial}{\partial t} u_W(t, x) = -\frac{d}{d\sigma_W} u_W(t, x) \quad \forall t > 0. \end{cases}$$

wł

Theorem (Jara and P. '14)

Under the previous assumptions, for any t > 0 and $\phi \in C_0$,

$$\lim_{n \to \infty} \frac{1}{a_n} \sum_k \eta_t^n(x_k^n) \phi(x_k^n) = \int u_W(t, x) \phi(x) \sigma_W(dx), \quad \text{in probability}$$

where $\sigma_W(dx) = \int_0^\infty y \ W(dx \ dy)$ and $u_W(t, x)$ satisfies
$$\begin{cases} u_W(0, x) \equiv u(x) \\ \frac{\partial}{\partial t} u_W(t, x) = -\frac{d}{d\sigma_W} u_W(t, x) \quad \forall t > 0. \end{cases}$$

$$u_W(t,x) = E[u(Z_W^*(t;x))],$$

where $Z_W^*(\cdot; x)$ is the *left*-directed trap process started at *x*.

wł

$$E[\eta_t^n(x_k^n)] = \sum_m E[\eta_0^n(x_m^n)] P\left(Z_W(t;x_m^n) = x_k^n\right)$$

$$E[\eta_t^n(x_k^n)] = \sum_m E[\eta_0^n(x_m^n)] P\left(Z_W(t;x_m^n) = x_k^n\right)$$
$$= \sum_m a_n y_m^n u(x_m^n) P\left(Z_W(t;x_m^n) = x_k^n\right)$$

$$E[\eta_t^n(x_k^n)] = \sum_m E[\eta_0^n(x_m^n)] P\left(Z_W(t; x_m^n) = x_k^n\right)$$
$$= \sum_m a_n y_m^n u(x_m^n) P\left(Z_W(t; x_m^n) = x_k^n\right)$$
$$= \sum_m a_n y_k^n u(x_m^n) P\left(Z_W^*(t; x_k^n) = x_m^n\right)$$

$$E[\eta_t^n(x_k^n)] = \sum_m E[\eta_0^n(x_m^n)] P(Z_W(t; x_m^n) = x_k^n)$$

= $\sum_m a_n y_m^n u(x_m^n) P(Z_W(t; x_m^n) = x_k^n)$
= $\sum_m a_n y_k^n u(x_m^n) P(Z_W^*(t; x_k^n) = x_m^n)$
= $a_n y_k^n E[u(Z_W^*(t; x_k^n))]$

$$E[\eta_t^n(x_k^n)] = \sum_m E[\eta_0^n(x_m^n)] P\left(Z_W(t; x_m^n) = x_k^n\right)$$

= $\sum_m a_n y_m^n u(x_m^n) P\left(Z_W(t; x_m^n) = x_k^n\right)$
= $\sum_m a_n y_k^n u(x_m^n) P\left(Z_W^*(t; x_k^n) = x_m^n\right)$
= $a_n y_k^n E[u(Z_W^*(t; x_k^n))]$
= $a_n y_k^n u_{W_n}(t, x_k^n)$

$$E[\eta_t^n(x_k^n)] = a_n y_k^n u_{W_n}(t, x_k^n)$$

Therefore

$$E\left[\frac{1}{a_n}\sum_k \eta_t^n(x_k^n)\phi(x_k^n)\right] = \sum_k y_k^n u_{W_n}(t, x_k^n)\phi(x_k^n)$$
$$= \int u_{W_n}(t, x)\phi(x) \sigma_{W_n}(dx)$$

• What can be done when η_0 is not "locally stationary"?

- What can be done when η₀ is not "locally stationary"?
 - ► $\eta_0 \sim \bigotimes_{x \in \mathbb{Z}} \text{Poisson}(u(x/n)).$

• What can be done when η_0 is not "locally stationary"?

•
$$\eta_0 \sim \bigotimes_{x \in \mathbb{Z}} \text{Poisson}(u(x/n)).$$

►
$$\eta_0(x) \equiv 1$$
.

- What can be done when η₀ is not "locally stationary"?
 - $\eta_0 \sim \bigotimes_{x \in \mathbb{Z}} \mathsf{Poisson}(u(x/n)).$
 - $\blacktriangleright \eta_0(x) \equiv 1.$
- What are the fluctuations from the hydrodynamic limit?

- What can be done when η₀ is not "locally stationary"?
 - $\eta_0 \sim \bigotimes_{x \in \mathbb{Z}} \mathsf{Poisson}(u(x/n)).$
 - $\blacktriangleright \eta_0(x) \equiv 1.$
- What are the fluctuations from the hydrodynamic limit?
- What can be done with added interactions to the RWRE?

