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Hydrodynamic limits for zero speed RWRE Systems of independent RWRE

Independent RWRE

Environment ω = {ωx}x∈Z i.i.d.

Random walk particles {X x ,j
· }x∈Z, j≥1

I independently evolve in common environment ω.

Configuration of particles
I Initial configuration: η0 = {η0(x)}x∈Z.
I ηn(x) = #(particles at x after n steps).
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Hydrodynamic limits for zero speed RWRE Systems of independent RWRE

Hydrodynamic limit - asymmetric SRW

ωx ≡ p 6= 1/2 v := lim
n→∞

Xn

n
= 2p − 1

Hydrodynamic Limit (Asymmetric SRW)

If {ηn
0}n≥1 is a sequence of initial configurations such that

lim
n→∞

1
n

∑

x∈Z
ηn

0(x)φ(x/n) =

∫
u(x)φ(x) dx , ∀φ ∈ C0,

then for any t ≥ 0,

lim
n→∞

1
n

∑

x∈Z
ηn

tn(x)φ(x/n) =

∫
u(x − vt)φ(x) dx , ∀φ ∈ C0,

Note: scale time and space by n
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Hydrodynamic limits for zero speed RWRE Systems of independent RWRE

Understanding the hydrodynamic limit

lim
n→∞

1
n

∑

x∈Z
ηn

tn(x)φ(x/n) =

∫
u(x − vt)φ(x) dx , ∀φ ∈ C0,

I (Asymptotic) empirical density of particles
Initial u(x) dx
Time tn u(x − vt) dx .

I Example of initial configurations

ηn
0 ∼

⊗

x∈Z
Poisson(u(x/n)).

I u(t , x) = u(x − vt) solves the PDE
{

∂
∂t u(t , x) = −v ∂

∂x u(t , x)

u(0, x) ≡ u(x)
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Hydrodynamic limits for zero speed RWRE Systems of independent RWRE

Hydrodynamic limit - symmetric SRW

{t 7→ Xtn2/n} =⇒ Brownian Motion (ωx ≡ p = 1/2)

Hydrodynamic Limit (Symmetric SRW)

If {ηn
0}n≥1 is a sequence of initial configurations such that

lim
n→∞

1
n

∑

x∈Z
ηn

0(x)φ(x/n) =

∫
u(x)φ(x) dx , ∀φ ∈ C0,

then lim
n→∞

1
n

∑

x∈Z
ηn

tn2 (x)φ(x/n) =

∫
u(t , x)φ(x) dx , ∀φ ∈ C0, t > 0,

where u(t , x) is a solution to the heat equation

∂

∂t
u(t , x) =

1
2
∂2

∂x2 u(t , x) u(0, x) ≡ u(x).
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Hydrodynamic limits for zero speed RWRE Systems of independent RWRE

RWRE basics - Recurrence/Transience and Speed

ρx =
1− ωx

ωx
, x ∈ Z.

Theorem (Solomon ’75)
1 Recurrence/transience is determined by E [log ρ0].

I P(Xn →∞) = 1 ⇐⇒ E [log ρ0] < 0.
I P(Xn → −∞) = 1 ⇐⇒ E [log ρ0] > 0.
I P(Xn is recurrent) = 1 ⇐⇒ E [log ρ0] = 0.

2 If E [log ρ0] < 0, then

lim
n→∞

Xn

n
= v :=

{
1−E [ρ0]
1+E [ρ0]

if E [ρ0] < 1

0 if E [ρ0] ≥ 1,
P-a.s.
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Hydrodynamic limits for zero speed RWRE Systems of independent RWRE

RWRE basics - Limiting distributions

Scaling parameter κ > 0 defined by

E [ρκ0 ] = 1.

Theorem (Kesten, Kozlov, Spitzer ’75)

Assuming E [log ρ0] < 0 and some other technical assumptions

κ ∈ (0,1) lim
n→∞

P
(

Xn

nκ
≤ x

)
= 1− Lκ(x−1/κ)

κ ∈ (1,2) lim
n→∞

P
(

Xn − nv
n1/κ ≤ x

)
= 1− Lκ(−x)

κ > 2 lim
n→∞

P
(

Xn − nv
a
√

n
≤ x

)
= Φ(x)
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Hydrodynamic limits for zero speed RWRE Systems of independent RWRE

RWRE basics - Quenched vs. Annealed

Quenched law Pω - environment ω fixed.
Averaged law P - averaged over all environments.

P(·) = E [Pω(·)]

Theorem (Goldsheid ’07, P. ’08, P. and Zeitouni ’08)
I If κ > 2 then

lim
n→∞

Pω

(
Xn − nv + Zn(ω)

b
√

n
≤ x

)
= Φ(x), P-a.s.

I If κ ∈ (0,2), then for P-a.e. environment ω there is no quenched
limiting distribution.

If κ ∈ (0,1) lim
n→∞

Pω

(
Xn

nκ
≤ x

)
does not converge.
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Hydrodynamic limits for zero speed RWRE Systems of independent RWRE

RWRE hydrodynamic limit - ballistic case

Theorem (P. ’10)

Assume that E [log ρ0] < 0 and κ > 1. If {ηn
0}n≥1 is a sequence of initial

configurations such that

lim
n→∞

1
n

∑

x∈Z
ηn

0(x)φ(x/n) =

∫
u(x)φ(x) dx , ∀φ ∈ C0,

then for any t ≥ 0,

lim
n→∞

1
n

∑

x∈Z
ηn

tn(x)φ(x/n) =

∫
u(x − vt)φ(x) dx , ∀φ ∈ C0,
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Hydrodynamic limits for zero speed RWRE Systems of independent RWRE

RWRE hydrodynamic limit - ballistic case

Admissible initial conditions

lim
n→∞

1
n

∑

x∈Z
ηn

0(x)φ(x/n) =

∫
u(x)φ(x) dx , ∀φ ∈ C0,

I ηn
0 ∼

⊗
x∈Z Poisson(u(x/n)).

I ηn
0 ∼

⊗
x∈Z Poisson(u(x/n)gω(x)), (locally stationary)

gω(x) = Ex
ω

[ ∞∑

n=0

1{Xn=x}

]
= (1 + ρx ) (1 + ρx+1 + ρx+1ρx+2 + · · · )

Note: E [gω(x)] <∞ ⇐⇒ E [ρ0] < 1 ⇐⇒ κ > 1
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Hydrodynamic limits for zero speed RWRE Systems of independent RWRE

RWRE hydrodynamic limit - zero speed case

Question What hydrodynamic limit to expect when κ ∈ (0,1)?
I Scaling: scale time by n1/κ and space by n.

I What PDE will govern the hydrodynamic limit.
I No stationary distributions with finite density.

If η0 ∼
⊗

x∈Z
Poisson(gω(x)) then E[η0(x)] = EP [gω(x)] =∞.

I Locally stationary initial configurations are not “smooth.”
If ηn

0 ∼
⊗

x∈Z Poisson(u(x/n)gω(x))

1
n1/κ

∑

x∈Z
ηn

0(x)φ(x/n) =⇒
∫

u(x)φ(x)σ(dx), ∀φ ∈ C0,

where σ is a κ-stable subordinator.
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Hydrodynamic limits for zero speed RWRE Systems of independent RWRE

RWRE hydrodynamic limit - zero speed case

Theorem (Jara and P. ’14)

Assume that E [log ρ0] < 0 and κ ∈ (0,1) (+ technical conditions).
If u ∈ C0 and ηn

0 ∼
⊗

x∈Z Poisson(u(x/n)gω(x)), then for any t ≥ 0

1
n1/κ

∑

x∈Z
ηn

tn1/κ(x)φ(x/n) =⇒
∫

u(t , x)φ(x)σ(dx), ∀φ ∈ C0,

where σ is a κ-stable subordinator and u(t , x) satisfies
{

u(0, x) ≡ u(x)
∂
∂t u(t , x) = − d

dσu(t , x) ∀t > 0.
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Hydrodynamic limits for zero speed RWRE Systems of independent RWRE

Interpreting the PDE

{
u(0, x) ≡ u(x)
∂
∂t u(t , x) = − d

dσu(t , x) ∀t > 0.

I For any point x where σ(x) is discontinuous,

∂

∂t
u(t , x) = − lim

h→0

u(t , x + h)− u(t , x)

σ(x + h)− σ(x)
.

I If u(x) is of bounded variation, then also

u(t ,b)− u(t ,a) = −
∫

(a,b]

∂

∂t
u(t , x)σ(dx) ∀t > 0.
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Hydrodynamic limits for zero speed RWRE Systems of independent RWRE

Related Results

Systems of independent particles in a random environment
I RW on random conductances (Faggionato, Jara, Landim ’09)

∂

∂t
u(t , x) =

∂

∂x
d

dσ
u(t , x)

I 1-dim Bouchaud trap model (Jara, Landim, Teixeira ’11)

∂

∂t
u(t , x) =

d
dσ

∂

∂x
u(t , x)

Jonathon Peterson 4/2/2015 14 / 21
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Hydrodynamic limits for zero speed RWRE Systems of directed traps

Directed Trap Process

Trap environment W =
∑

k δ(xk ,yk ).
I xk - spatial location of trap
I yk - “depth” of the trap

xk

yk

{

Directed trap process ZW (t)
I Stays at xk for Exp(1/yk )
I then jumps to the “next” trap to the right.

Jonathon Peterson 4/2/2015 15 / 21
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Hydrodynamic limits for zero speed RWRE Systems of directed traps

Directed Traps and RWRE

Theorem (P. and Samorodnitsky ’12)

If E [log ρ0] < 0 and κ ∈ (0,1), then

Pω

(
Xtn

nκ
≤ x

)
=⇒ PW (ZW (t) ≤ x) ,

where W is a Poisson point process(λy−κ−1 dx dy).

Idea of proof:
I Implicit “trapping structure” in ω: B = B(ω) =

∑
k δ(νk ,βk ).

I Rescaled trap environments Wn =
∑

k δ( νk
n ,

βk
n1/κ )

converge in

distribution to W .
I Couple random walk Xn with directed trap process ZWn (t).
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I Rescaled trap environments Wn =
∑

k δ( νk
n ,

βk
n1/κ )

converge in

distribution to W .
I Couple random walk Xn with directed trap process ZWn (t).

Jonathon Peterson 4/2/2015 16 / 21



Hydrodynamic limits for zero speed RWRE Systems of directed traps

Directed Traps Hydrodynamic Limit

T = trap environments where ZW (t) is well defined.
T ′ = trap environments with traps dense in R.

Assumptions
I Sequence Wn =

∑
k δ(xn

k ,y
n
k )
∈ T .

I Wn →W ∈ T ′ (vague convergence)
I initial configurations: {ηn

0(xn
k )}k product Poisson with

ηn
0(xn

k ) ∼ Poisson(anyn
k u(xn

k )).

for some an →∞.
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Hydrodynamic limits for zero speed RWRE Systems of directed traps

Directed Traps Hydrodynamic Limit

Theorem (Jara and P. ’14)
Under the previous assumptions, for any t > 0 and φ ∈ C0,

lim
n→∞

1
an

∑

k

ηn
t (xn

k )φ(xn
k ) =

∫
uW (t , x)φ(x)σW (dx), in probability

where σW (dx) =
∫∞

0 y W (dx dy) and uW (t , x) satisfies
{

uW (0, x) ≡ u(x)
∂
∂t uW (t , x) = − d

dσW
uW (t , x) ∀t > 0.

uW (t , x) = E [u(Z ∗W (t ; x))],

where Z ∗W (·; x) is the left-directed trap process started at x .
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Hydrodynamic limits for zero speed RWRE Systems of directed traps

Sketch of proof

E [ηn
t (xn

k )] =
∑

m

E [ηn
0(xn

m)]P
(
ZW (t ; xn

m) = xn
k
)

=
∑

m

anyn
mu(xn

m)P
(
ZW (t ; xn

m) = xn
k
)

=
∑

m

anyn
k u(xn

m)P
(
Z ∗W (t ; xn

k ) = xn
m
)

= anyn
k E [u(Z ∗W (t ; xn

k ))]

= anyn
k uWn (t , xn

k )
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Hydrodynamic limits for zero speed RWRE Systems of directed traps

Sketch of proof

E [ηn
t (xn

k )] = anyn
k uWn (t , xn

k )

Therefore

E

[
1
an

∑

k

ηn
t (xn

k )φ(xn
k )

]
=
∑

k

yn
k uWn (t , xn

k )φ(xn
k )

=

∫
uWn (t , x)φ(x)σWn (dx)
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Hydrodynamic limits for zero speed RWRE Systems of directed traps

Further Questions

I What can be done when η0 is not “locally stationary”?

I η0 ∼
⊗

x∈Z Poisson(u(x/n)).
I η0(x) ≡ 1.

I What are the fluctuations from the hydrodynamic limit?
I What can be done with added interactions to the RWRE?
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