Algebraic polynomials and moments of stochastic integrals

Mikhail Langovoy

Mikhail Langovoy
EURANDOM, Technische Universiteit Eindhoven,
Postbus 513,
Den Dolech 2,
5600 MB Eindhoven, The Netherlands

e-mail: langovoy@eurandom.tue.nl
Phone: (+31) (40) 247 - 8113
Fax: (+31) (40) 247 - 8190

Abstract: We propose a new proof of the following variation of the Burkholder-Davis-Gundy inequality. Let \(b(s), \ s \in [0, t], \) be a progressively measurable process, \(b \in L_2[0, T], \ t \leq T. \) Then for every \(n \geq 2 \) there exists constants \(C_1 > 0, C_2 > 0 \) such that

\[C_1 \mathbb{E} \left(\int_0^t b^2(s) \, ds \right)^n \leq \mathbb{E} \left(\int_0^t b(s) \, dW(s) \right)^{2n} \leq C_2 \mathbb{E} \left(\int_0^t b^2(s) \, ds \right)^n. \]

Our proof is based on using qualitative properties of roots of algebraic polynomials from certain general classes.

Primary 60H05, 60E15; secondary 60G44, 33D45, 26C10, 62E20.

Keywords and phrases: Stochastic integral, polynomial, Burkholder-Davis-Gundy inequalities, moments of stochastic integrals, iterated stochastic integral, stochastic processes.

1. Introduction

Connections between special algebraic polynomials and stochastic integrals have a long history (see Wiener [1938], Itô [1951]), and received considerable attention in stochastic analysis (Ikeda and Watanabe [1989], Carlen and Krée [1991], Borodin and Salminen [2002]). Fruitful applications of special polynomials have been found in the theory of Markov processes (Kendall [1959], Karlin and Mc-

In this paper, we study a different type of applications of polynomials to stochastic integration. We show that not only properties of special systems of orthogonal polynomials can be used in stochastic analysis, but in fact that elementary properties of many general classes of polynomials lead to fruitful applications in stochastics.

2. The main result

We propose an algebraic proof for the following classic variation of the Burkholder-Davis-Gundy inequality.

Theorem 1. Let \(b(s), s \in [0,t], \) be a progressively measurable process, \(b \in \mathcal{L}_2[0,T], t \leq T. \) Then for every \(n \geq 2 \) there exists constants \(C_1 > 0, C_2 > 0 \) such that

\[
C_1 \mathbb{E}\left(\int_0^t b^2(s) \, ds \right)^n \leq \mathbb{E}\left(\int_0^t b(s) \, dW(s) \right)^{2n} \leq C_2 \mathbb{E}\left(\int_0^t b^2(s) \, ds \right)^n.
\]

(1)

The constants \(C_1 \) and \(C_2 \) depend on the choice of \(n, \) but not on \(b. \)

The specific feature of our approach is that we make a heavy use of properties of algebraic polynomials.

Proof. In the proof below we can assume that \(b \) is bounded, since the general case follows by the usual truncation argument.

We denote for brevity

\[
\int_0^t b^2(s) \, ds = \int b^2 \, ds, \quad \int_0^t b(s) \, dW(s) = \int b \, dW.
\]

Let us write for \(n \geq 1 \)
\[\rho_{2n}(t) = H_{2n} \left(\int b^2 ds, \int b dW \right) \]
\[= \sum_{0 \leq k \leq n} (-1)^k a_k \left(\int b dW \right)^{2n-2k} \left(\int b^2 ds \right)^k, \]
where we denote
\[a_k = \frac{1}{2^k k!(2n-2k)!}. \]

Taking in (2) the expectation of both sides and noting that \(E \rho_{2n} = 0 \) (see Borodin and Salminen [2002] or Ikeda and Watanabe [1989]), we get
\[\sum_{0 \leq k \leq n} (-1)^k a_k E \left\{ \left(\int b dW \right)^{2n-2k} \left(\int b^2 ds \right)^k \right\} = 0. \]

Lemma 2. Let \(b(s), s \in [0, t] \), be progressively measurable process, \(b \in L_{2}[0, T] \), \(t \leq T \). Then for all \(k \geq 1 \)
\[E \left\{ \left(\int b dW \right)^{2n-2k} \left(\int b^2 ds \right)^k \right\} \leq \]
\[\leq E^{\frac{n-k}{2}} \left(\int b dW \right)^{2n} \cdot \left(\int b^2 ds \right)^n. \]

Proof. (Lemma 2) This lemma follows by applying the Jensen inequality for \(\int b dW \) and \(\int b^2 ds \) with powers \(p = n/(n-k) \) and \(q = n/k \) respectively. \(\square \)

Part 1. Consider first the case of even \(n \), and let \(n = 2m \) in (1). Since \(a_k \geq 0 \) for all \(k \), and also
\[E \left\{ \left(\int b dW \right)^{2n-2k} \left(\int b^2 ds \right)^k \right\} \geq 0 \]
for all \(k \), after throwing out from (3) all the summands with even \(k \), except for \(k = 0 \) and \(k = n \), we get
where for integer \(l \geq 0 \) we denoted \(k(l) = 2l + 1 \).

Applying Lemma 2 to (5), we get

\[
a_0 \mathbb{E} \left(\int b \, dW \right)^{2n} - \sum_{0 \leq 2l+1 \leq n} a_{2l+1} \mathbb{E} \left\{ \left(\int b \, dW \right)^{2n-2k(l)} \left(\int b^2 \, ds \right)^{k(l)} \right\} + a_n \mathbb{E} \left(\int b^2 \, ds \right)^n \leq 0, (5)
\]

Divide both parts of (6) by \(\mathbb{E} \left(\int b^2 \, ds \right)^n \) and put

\[
z := \frac{\mathbb{E}^{1/n} \left(\int b \, dW \right)^{2n}}{\mathbb{E}^{1/n} \left(\int b^2 \, ds \right)^n}, (7)
\]

then we obtain

\[
a_0 z^n - \sum_{0 \leq 2l+1 \leq n} a_{2l+1} z^{n-k(l)} + a_n \leq 0,
\]

or equivalently

\[
a_0 z^n + a_n \leq \sum_{0 \leq 2l+1 \leq n} a_{2l+1} z^{n-k(l)}. (8)
\]

Lemma 3. Consider real polynomials

\[
P_1(z) = \sum_{k=0}^{2m} b_k z^{2k} \quad \text{and} \quad P_2(z) = z \sum_{i=0}^{2m_1} c_i z^{2i}, (9)
\]

where \(m_1 < m \) is integer and nonnegative, \(b_k \geq 0 \) for all \(k \), \(b_0 > 0 \), \(b_m > 0 \), \(c_i \geq 0 \) for all \(i \). Then there exists \(d_1 > 0 \), \(d_2 > 0 \) such that only for \(z \in [d_1, d_2] \) one can have \(P_1(z) \leq P_2(z) \), but for \(z \notin [d_1, d_2] \) one has \(P_1(z) > P_2(z) \).
Proof. (Lemma 3) Note first that $P_1(z)$ is symmetric, $P_1(z) \geq b_0$ for all $z \in \mathbb{R}$, and $P_1(z) \sim b_m z^{2m}$ as $z \to \infty$. Furthermore, $P_2(-z) = -P_2(z)$, and for $z \geq 0$ one has $P_2(z) \geq 0$, $P_2(0) = 0$, and $\deg P_1(z) < \deg P_2(z)$.

This implies that for $z < 0$ one has $P_1(z) > 0 > P_2(z)$. At $z = 0$ it holds that $P_1(0) = b_0 > 0 = P_2(z)$. This shows that all possible solutions of the inequality $P_1(z) \leq P_2(z)$ are positive, i.e. bounded from below by a positive number d_1.

Since $P_1(z)/P_2(z) \to \infty$ as $z \to \infty$, it follows that for sufficiently large $z \geq z_0$ always $P_1(z) > P_2(z)$. Therefore, all possible solutions of the inequality $P_1(z) \leq P_2(z)$ lies in some interval $[d_1, d_2]$ with $d_1 > 0$ and $d_2 > 0$.

Let us now put in (8) $P_1(z) = a_0 z^n + a_n$, $P_2(z) = \sum_{0 \leq 2t+1 \leq n} a_{2t+1} z^{n-k(l)}$. By Lemma 3, there exists positive constants C_1, C_2 such that $0 < C_1 \leq z \leq C_2$, i.e. $C_1^n \leq z^n \leq C_2^n$, and this proves (1) for the case of $n = 2m$.

Part II. Consider now the case of odd n, and let $n = 2m + 1$ in (1). Throwing away from (3) all the summands with even k, except for $k = 0$, we get

$$a_0 \mathbb{E} \left(\int b \, dW \right)^{2n} - \sum_{0 \leq 2t+1 \leq n} a_{2t+1} \mathbb{E} \left\{ \left(\int b \, dW \right)^{2n-2k(l)} \left(\int b^2 \, ds \right)^{k(l)} \right\} \leq 0,$$
and analogously to (8) we derive

\[a_0 z^n \leq \sum_{0 \leq 2l+1 \leq n} a_{2l+1} z^{n-k(l)}, \]

(11)

where \(z \) is defined by (7).

Lemma 4. Consider real polynomials

\[P_1(z) = b_0 z^{2m+1} \quad \text{and} \quad P_2(z) = z \sum_{i=0}^{m_1} c_i z^{2i}, \]

(12)

where \(m_1 < m \) is integer and nonnegative, \(b_0 > 0, c_i \geq 0 \) for all \(i, c_0 > 0, c_{m_1} > 0 \). Then there exists \(d_2 > 0 \) such that only for \(z \in [-\infty, d_2] \) one can have \(P_1(z) \leq P_2(z) \), but for \(z > d_2 \) one always has \(P_1(z) > P_2(z) \).

Proof. (Lemma 4) The proof is analogous to the one of Lemma 3.

After applying Lemma 4 to \(P_1(z) = a_0 z^n \) and \(P_2(z) = \sum_{0 \leq 2l+1 \leq n} a_{2l+1} z^{n-k(l)} \) in (11), we obtain from (11) that \(z \leq d_2 \) for some positive \(d_2 \). Since \(n \) is odd, this implies \(z^n \leq d_2^n \) and the upper bound in (1) follows.
It remains only to prove the lower bound in (1) for \(n = 2m + 1 \). In this case, we leave in (3) only the summands with even \(k \) and \(k = n \), thus getting

\[
\sum_{0 \leq 2k < n} a_{2k} \mathbb{E} \left\{ \left(\int b dW \right)^{2n-4k} \left(\int b^2 ds \right)^{2k} \right\} - a_n \mathbb{E} \left\{ \left(\int b^2 ds \right)^{n} \right\} \geq 0.
\]

(13)

Analogously to our previous derivations, this implies the inequality

\[
\sum_{0 \leq 2k < n} a_{2k} z^{n-2k} - a_n \geq 0, \quad \text{i.e.}
\]

\[
P(z) := \sum_{0 \leq 2k < n} a_{2k} z^{n-2k} \geq a_n,
\]

(14)

where \(z \) is again as in (7). Since \(P(z) \) is a polynomial of the form \(\sum_{i=1}^{m} b_i z^{2i+1} \), it easily follows that (14) is equivalent to \(z \geq C_1 \) for some constant \(C_1 = C_1(n) > 0 \). Therefore, \(z^n \geq C_1^n \), and the lower bound in (1) is proved for \(n = 2m + 1 \). \(\square \)

The idea of proving the Burkholder-Davis-Gundy inequality via the use of Hermitian polynomials have been already used by different authors (see, for example, Ikeda and Watanabe [1989] or Lecture Notes ”Stochastic Calculus” by Andrei Borodin). However, the previous proofs used properties of polynomials in a different way and worked only for \(n \leq 4 \). Our proof is valid for general \(n \).

In the above proof we have used only some elementary and entirely qualitative facts about certain general types of polynomials, together with such a crude technique as simple throwing out every second term in the starting martingale identity. Nonetheless, we were able to prove a rather general Burkholder-Davis-Gundy theorem. This shows that our approach can lead to substantially stronger results in estimation of stochastic integrals.

Acknowledgments. Author would like to thank Andrei Borodin for introducing him to this field of research and Sergio Albeverio for insightful discussions. Part of this research was done when the author was at the University of
Göttingen.

References

