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Abstract: We consider inhomogeneous Erdős-Rényi random graphs GN on N ver-
tices in the non-dense regime. The edge between the pair of vertices {i, j} is retained
with probability εN f( i

N
, j
N

), 1 ≤ i 6= j ≤ N , independently of other edges, where
f : [0, 1] × [0, 1] → [0,∞) is a continuous function such that f(x, y) = f(y, x) for
all x, y ∈ [0, 1]. We study the empirical distribution of both the adjacency matrix
AN and the Laplacian matrix ∆N associated with GN in the limit as N →∞ when
limN→∞ εN = 0 and limN→∞NεN = ∞. In particular, we show that the empirical
spectral distributions of (NεN )−1/2AN and (NεN )−1/2∆N converge to determinis-
tic limits weakly in probability. For the special case where f(x, y) = r(x)r(y) with
r : [0, 1] → [0,∞) a continuous function, we give an explicit characterization of the
limiting distributions. We further show some applications of our results to constrained
random graphs, Chung-Lu random graphs and social networks.

1. Introduction and main results

Spectra of random matrices have been analyzed for close to a century. In recent years,
many interesting results have been derived for random matrices associated with random
graphs, like the adjacency matrix and the Laplacian matrix (Bauer and Golinelli (2001),
Bhamidi et al. (2012), Bordenave and Lelarge (2010), Ding et al. (2010), Dumitriu and Pal
(2012), Farkas et al. (2001), Jiang (2012a,b), Khorunzhy et al. (2004), Lee and Schnelli
(2016), Tran et al. (2013)).

The focus of the present paper is on inhomogeneous Erdős-Rényi random graphs, which
are rooted in the theory of complex networks. We consider the regime where the degrees of
the vertices diverge sublinearly with the size of the graph. In this regime, we identify the
scaling limit of the empirical spectral distribution, both for the adjacency matrix and the
Laplacian matrix. For the special case where the connection probabilities have a product
structure, we obtain an explicit description of the scaling limit of the empirical spectral
distribution in terms of objects that are rooted in free probability. It is known that in
the absence of inhomogeneity, i.e., for standard Erdős-Rényi random graphs, in the sparse
regime the empirical spectral distributions of the adjacency matrix and the Laplacian
matrix converge (after appropriate scaling and centering) to a semicircle law, respectively,
a free additive convolution of a Gaussian and a semicircle law. See, for example, Bryc
et al. (2006), Ding et al. (2010), Jiang (2012a). Our results extend these results to the
inhomogeneous setting.

There are some recent results on the largest eigenvalue of sparse inhomogeneous Erdős-
Rényi random graphs (Benaych-Georges et al. (2017)), and also on the empirical spectral
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distribution of adjacency matrices via the theory of graphons (Zhu (2018)). Inhomogeneous
Erdős-Rényi random graphs with a product structure in the connection probabilities arises
naturally in different contexts. In Dembo and Lubetzky (2016) the latter have been shown
to play a crucial role in the identification of the limiting spectral distribution of the ad-
jacency matrix of the configuration model. Our methodology allows us to look at some
important applications. For instance, a Chung-Lu type random graph is used to model
sociability distribution in networks. We show how to use the rescaled empirical spectral
distribution and free probability to statistically recover the sociability distribution. An-
other important application is constrained random graphs. Given a sequence of positive
integers, among the probability distributions for which the sequence of average degrees
matches the given sequence, the one that maximizes the entropy is the canonical Gibbs
measure. It is known that, under a sparsity condition, the connection probabilities arising
out of the canonical Gibbs measure asymptotically have a product structure (Squartini
et al. (2015)). We show that our results on the adjacency matrix can be easily extended
to cover such situations. The spectrum of the Laplacian of a random graph is well known
to be connected to properties of the random walk on the graph, algebraic connectivity,
and Kirchhoff’s law, among others. The explicit bearing of the spectral distribution of the
Laplacian on the corresponding graph are left for future research, for which our results
may serve as a starting point.

The paper is organized as follows. The setting is defined in Section 1, and three scaling
theorems are stated, Theorems 1.1–1.4. A number of technical lemmas are stated and
proved in Section 2. These serve as preparation for the proof of Theorems 1.1–1.3, which
is given in Section 3. Theorem 1.4, which is a randomized version of Theorem 1.1, is proved
in Section 4. In Section 5, various applications are discussed. Appendix A collects a few
basic facts that are needed along the way.

1.1. Setting

Let f : [0, 1]× [0, 1]→ [0,∞) be a continuous function, satisfying

f(x, y) = f(y, x) ∀x, y ∈ [0, 1] .

A sequence of positive real numbers (εN : N ≥ 1) is fixed that satisfies

lim
N→∞

εN = 0 , lim
N→∞

NεN =∞ . (1.1)

Consider the random graph GN on vertices {1, . . . , N} where, for each (i, j) with 1 ≤
i < j ≤ N , an edge is present between vertices i and j with probability εNf( i

N ,
j
N ),

independently of other pairs of vertices. In particular, GN is an undirected graph with
no self loops and no multiple edges. Boundedness of f ensures that εNf( i

N ,
j
N ) ≤ 1 for

all 1 ≤ i < j ≤ N when N is large enough. If f ≡ c with c a constant, then GN is the
Erdős-Rényi graph with edge retention probability εNc. For general f , GN can be thought
of as an inhomogeneous version of the Erdős-Rényi graph.

The adjacency matrix of GN is denoted by AN . Clearly, AN is a symmetric random
matrix whose diagonal entries are zero and whose upper triangular entries are independent
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Bernoulli random variables, i.e.,

AN (i, j) , BER
(
εNf

(
i
N ,

j
N

))
, 1 ≤ i 6= j ≤ N .

Write P to denote the law of AN .

1.2. Scaling

Our first theorem states the existence of the limiting spectral distribution of AN after
suitable scaling. Here, and elsewhere in the paper, ESD is the abbreviation for empirical
spectral distribution: the probability measure that puts mass 1/N at every eigenvalue,
respecting its algebraic multiplicity.

Theorem 1.1. There exists a compactly supported and symmetric probability measure µ
on R such that

lim
N→∞

ESD
(

(NεN )−1/2AN

)
= µ weakly in probability . (1.2)

Furthermore, if
min

0≤x,y≤1
f(x, y) > 0 ,

then µ is absolutely continuous with respect to Lebesgue measure.

The Laplacian of GN is the N ×N matrix ∆N defined as

∆N (i, j) =

{
−
∑N

k=1AN (i, k), i = j ,

AN (i, j), i 6= j .

Our second theorem is the analogue of Theorem 1.1 with AN replaced by ∆N .

Theorem 1.2. There exists a symmetric probability measure ν on R such that

lim
N→∞

ESD
(

(NεN )−1/2
(
∆N −DN

))
= ν weakly in probability ,

where
DN = Diag

(
E
(
∆N (1, 1)

)
, . . . ,E

(
∆N (N,N)

))
. (1.3)

Remark 1.1. The ESD of a random matrix is a random probability measure. Note that
µ and ν are both deterministic, i.e., a law of large numbers is in force. Theorems 1.1 and
1.2 are existential, in the sense that explicit descriptions of µ and ν are missing. We have
some control on the Stieltjes transform of µ (see Remark 3.1 below) and we know that ν
has a finite moment generating function (see (3.9) below).
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1.3. Multiplicative structure

Our next theorem identifies µ and ν under the additional assumption that f has a multi-
plicative structure, i.e.,

f(x, y) = r(x)r(y) , x, y ∈ [0, 1] , (1.4)

for some continuous function r : [0, 1] → [0,∞). The statement is based on the theory of
(possibly unbounded) self-adjoint operators affiliated with a W ∗-probability space. A few
relevant definitions are given below. For details the reader is referred to (Anderson et al.,
2010, Section 5.2.3).

Definition. A C∗-algebra A ⊂ B(H), with H a Hilbert space, is a W ∗-algebra when A is
closed under the weak operator topology. If, in addition, τ is a state such that there exists
a unit vector ξ ∈ H satisfying

τ(a) = 〈aξ, ξ〉 ∀ a ∈ H ,

then (A, τ) is a W ∗-probability space. In that case a densely defined self-adjoint (possibly
unbounded) operator T on H is said to be affiliated with A if h(T ) ∈ A for any bounded
measurable function h defined on the spectrum of T , where h(T ) is defined by the spec-
tral theorem. Finally, for an affiliated operator T , its law L(T ) is the unique probability
measure on R satisfying

τ (h(T )) =

∫
R
h(x)

(
L(T )

)
(dx)

for every bounded measurable h : R→ R.

The distribution of a single self-adjoint operator is defined above. For two or more
self-adjoint operators T1, . . . , Tn, a description of their joint distribution is a specification
of

τ
(
h1 (Ti1) · · ·hk (Tik)

)
,

for all k ≥ 1, all i1, . . . , ik ∈ {1, . . . , n}, and all bounded measurable functions h1, . . . , hk
from R to itself. Once the above is specified, it is immediate that L(p(T1, . . . , Tk)) can be
calculated for any polynomial p in k variables such that p(T1, . . . , Tk) is self-adjoint.

Definition. Let (A, τ) be a W ∗-probability space and a1, a2 ∈ A. Then a1 and a2 are
freely independent if

τ (p1(ai1) · · · pn(ain)) = 0 ,

for all n ≥ 1, all i1, . . . , in ∈ {1, 2} with ij 6= ij+1, j = 1, . . . , n − 1, and all polynomials
p1, . . . , pn in one variable satisfying

τ
(
pj(aij )

)
= 0, j = 1, . . . , n .

For (possibly unbounded) operators a1, . . . , ak and b1, . . . , bm affiliated with A, the collec-
tions (a1, . . . , ak) and (b1, . . . , bm) are freely independent if and only if

p (h1(a1), . . . , hk(ak)) and q (g1(b1), . . . , gm(bm)) ,
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are freely independent for all bounded measurable h1, . . . , hk and g1, . . . , gm, and all poly-
nomials p and q in k and m non-commutative variables, respectively. It is immediate that
the two operators in the above display are bounded, and hence belong to A.

We are now in a position to state our third and last theorem.

Theorem 1.3. If f is as in (1.4), then

µ = L
(
r1/2(Tu)Tsr

1/2(Tu)
)
, (1.5)

and
ν = L

(
r1/2(Tu)Tsr

1/2(Tu) + αr1/4(Tu)Tgr
1/4(Tu)

)
, (1.6)

where

α =

(∫ 1

0
r(x) dx

)1/2

.

Here, Tg and Tu are commuting self-adjoint operators affiliated with a W ∗-probability space
(A, τ) such that, for bounded measurable functions h1, h2 from R to itself,

τ (h1(Tg)h2(Tu)) =

(∫ ∞
−∞

h1(x)φ(x) dx

)(∫ 1

0
h2(u) du

)
, (1.7)

with φ the standard normal density. Furthermore, Ts has a standard semicircle distribution
and is freely independent of (Tg, Tu).

Remark 1.2. The right-hand side of (1.5) is the same as the free multiplicative convo-
lution of the standard semicircle law and the law of r(U), where U is a standard uniform
random variable.

Remark 1.3. The fact that Tg and Tu commute, together with (1.7), specifies their joint
distribution. In fact, they are standard normal and standard uniform, respectively, inde-
pendently of each other in the classical sense. Free independence of Ts and (Tg, Tu), plus
the fact that the former follows the standard semicircle law, specifies the joint distribution
of Ts, Tg, Tu.

Remark 1.4. In order to admit the unbounded operator Tg, a W ∗-probability space is
needed. If all the operators would have been bounded, then a C∗-probability space would
have sufficed.

1.4. Randomization

Theorem 1.1 can be generalized to the situation where the function f is random. Such
a randomization helps us to address the applications listed in Section 5. Suppose that
(εN : N ≥ 1) is a sequence of positive numbers satisfying (1.1). Suppose further that, for
every ≥ 1, (RNi : 1 ≤ i ≤ N) is a collection of non-negative random variables such that
there is a deterministic C <∞ for which

sup
N≥1

max
1≤i≤N

RNi ≤ C a.s. (1.8)
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In addition, suppose that there is a probability measure µr on R such that

lim
N→∞

1

N

N∑
i=1

δRNi = µr weakly a.s. (1.9)

The non-negativity of RNi and (1.8) ensure that µr is concentrated on [0, C]. Furthermore,
the first line of (1.1) ensures that the additional assumption

sup
N≥1

εN ≤
1

C
(1.10)

entails no a loss of generality.
For fixed N and conditional on (RN1, . . . , RNN ), the random graph GN is constructed

as before, except that there is an edge between i and j with probability εNRNiRNj , which
is at most 1 by (1.10) for all 1 ≤ i < j ≤ N . In other words, GN has two levels of
randomness: one in the choice of (RN1, . . . , RNN ) and one in the choice of the set of edges.
Once again, AN is the adjacency matrix of GN . The following is a randomized version of
Theorem 1.1.

Theorem 1.4. Under the assumptions (1.1) and (1.8)–(1.9),

lim
N→∞

ESD
(

(NεN )−1/2AN

)
= µr � µs, weakly in probability ,

where µs is the standard semicircle law.

2. Preparatory approximations

The proofs of Theorems 1.1–1.3 in Section 3 rely on several preparatory approximations,
which we organize in Lemmas 2.1–2.5 below. Along the way we need several basic facts,
which we collect in Appendix A.

2.1. Centering

The first approximation is that the mean of each off-diagonal entry of AN and ∆N can be
subtracted, with negligible perturbation in the respective empirical spectral distributions.

Lemma 2.1. Let A0
N and ∆0

N be N ×N matrices defined by

A0
N (i, j) = (NεN )−1/2 [AN (i, j)− E (AN (i, j))] ,

∆0
N (i, j) = (NεN )−1/2 [∆N (i, j)− E (∆N (i, j))] ,

for all 1 ≤ i, j ≤ N . Then

lim
N→∞

L
(

ESD(A0
N ),ESD((NεN )−1/2AN )

)
= 0 in probability ,

lim
N→∞

L
(

ESD(∆0
N ),ESD((NεN )−1/2(∆N −DN ))

)
= 0 in probability ,

where L(η1, η2) denotes the Lévy distance between the probability measures η1 and η2, and
DN is the diagonal matrix defined in (1.3).
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Proof. An appeal to Fact A.1 shows that

L3
(

ESD(A0
N ),ESD((NεN )−1/2AN )

)
≤ 1

N2εN

N∑
i=1

N∑
j=1

E2 (AN (i, j))

=
1

N2εN

N∑
i=1

N∑
j=1, 6=i

ε2
Nf

2

(
i

N
,
j

N

)

= [1 + o(1)] εN

∫ 1

0

∫ 1

0
f2(x, y) dx dy , N →∞ .

The first claim follows by recalling that εN ↓ 0. The proof the second claim is verbatim
the same.

2.2. Gaussianisation

One of the crucial steps in studying the scaling properties of ESD is to replace each entry
by a Gaussian random variable.

Lemma 2.2. Let (Gi,j : 1 ≤ i ≤ j) be a family of i.i.d. standard Gaussian random
variables. Define N ×N matrices AgN and ∆g

N by

AgN (i, j) =


√

1
N f
(
i
N ,

j
N

)(
1− εNf

(
i
N ,

j
N

))
Gi∧j,i∨j , i 6= j ,

0, i = j ,

(2.1)

∆g
N (i, j) =

{
AgN (i, j), i 6= j ,

−
∑

1≤k≤N
k 6=i

AgN (i, k), i = j .
(2.2)

Fix z ∈ C \ R and a three times continuously differentiable function h : R→ R such that

max
0≤j≤3

sup
x∈R
|h(j)(x)| <∞ .

For an N ×N real symmetric matrix M , define

HN (M) =
1

N
Tr
(
(M − zIN )−1

)
,

where IN is the identity matrix of order N . Then

lim
N→∞

E
[
h
(
<HN (AgN )

)
− h

(
<HN (A0

N )
)]

= 0 , (2.3)

lim
N→∞

E
[
h
(
=HN (AgN )

)
− h

(
=HN (A0

N )
)]

= 0 , (2.4)

and

lim
N→∞

E
[
h
(
<HN (∆g

N )
)
− h

(
<HN (∆0

N )
)]

= 0 , (2.5)
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lim
N→∞

E
[
h
(
=HN (∆g

N )
)
− h

(
=HN (∆0

N )
)]

= 0 , (2.6)

where < and = denote the real and the imaginary part of a complex number, respectively.

Proof. We only prove (2.5). The proofs of the other claims are similar. We use ideas from
Chatterjee (2005). Let z = u+ iv ∈ C+ and n = N(N − 1)/2. Define φ : Rn → C as

φ(x) = HN (∆(x)) (2.7)

where ∆(x) is the N ×N symmetric Laplacian matrix given by

∆(x)(i, j) =

{
−
∑N

k=1,k 6=i xi,k i = j

xi∧j,i∨j i 6= j.

Note that ∂∆(x)/∂xij is the N ×N matrix that has −1 at the i-th and j-th diagonal and
1 at (i, j)-th and (j, i)-th entry. The following identities were derived in (Chatterjee, 2005,
Section 2):

∂φ

∂xi,j
= −N−1 Tr

(
∂∆

∂xi,j
K2

)
,

∂2φ

∂x2
i,j

= 2N−1 Tr

(
∂∆

∂xi,j
K

∂∆

∂xi,j
K2

)
, (2.8)

∂3φ

∂x3
i,j

= −6N−1 Tr

(
∂∆

∂xi,j
K

∂∆

∂xi,j
K

∂∆

∂xi,j
K2

)
,

where K(x) = (∆(x)− zI)−1. Now using these identities we get∥∥∥ ∂φ
∂xij

∥∥∥
∞
≤ 4

|=z|2
1

N
,
∥∥∥ ∂2φ

∂x2
ij

∥∥∥
∞
≤ 8

|=z|3
1

N
,
∥∥∥ ∂3φ

∂x3
ij

∥∥∥
∞
≤ 48

|=z|4
1

N
.

If we define

λ2(φ) = sup

{∥∥∥ ∂φ

∂xi,j

∥∥∥2

∞
,
∥∥∥ ∂2φ

∂x2
i,j

∥∥∥
∞

}
,

λ3(φ) = sup

{∥∥∥ ∂φ

∂xi,j

∥∥∥3

∞
,
∥∥∥ ∂2φ

∂x2
i,j

∥∥∥2

∞
,
∥∥∥ ∂3φ

∂x3
i,j

∥∥∥
∞

}
,

then there exists constants C2 and C3 depending on =z such that λ2(φ) ≤ C2N
−1 and

λ3(φ) ≤ C3N
−1. Hence, using λr(<φ) ≤ λr(φ) and

U = <
(
HN (∆0

N )
)
, V = =

(
HN (∆g

N )
)
, (2.9)

we have from (Chatterjee, 2005, Theorem 1.1)

|E[h(U)]− E[h(V )]|
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≤ C1(h)λ2(φ)
∑

1≤i 6=j≤N

(
E[A0

N (i, j)2I(|A0
N (i, j)| > K)

+ E[AgN (i, j)2I(|AgN (i, j)| > K)
)

+ C2(h)
λ3(φ)

(NεN )3/2

∑
i 6=j

(
E[A0

N (i, j)3I(|CN (i, j)| > k)

+ E[(AgN (i, j)3I(|AgN (i, j)| > k)
)
. (2.10)

Using the fact that εN ↓ 0, we have that E[A0
N (i, j)4] = O(N−2ε−1

N ). Also

P (|A0
N (i, j)| > K) ≤ O(N−1).

So, by the Cauchy-Schwartz inequality and the above bounds, we have

E[A0
N (i, j)2I(|A0

N (i, j)| > K) ≤ O
(
ε
−1/2
N N−3/2

)
.

Since NεN →∞, we have

λ2(φ)
∑

1≤i 6=j≤N
E[A0

N (i, j)2I(|A0
N (i, j)| > K) ≤ CN−1/2ε

−1/2
N → 0 , N →∞ .

Similarly, we have

λ3(φ)
∑
i 6=j

E[A0
N (i, j)3I(|A0

N (i, j)| > K) ≤ C

N5/2ε
3/2
N

N2εN → 0 , N →∞ .

Using Gaussian tail bounds, we can also show that the other two terms in (2.10) go to 0,
which settles (2.5). A similar computation can be done for the imaginary part in (2.9),
which proves (2.6). The proofs of (2.3) and (2.4) are analogous (and, in fact, closer to the
argument in Chatterjee (2005)).

2.3. Leading order variance

Next, we show that another minor tweak to the entries of AgN and ∆g
N results in a negligible

perturbation.

Lemma 2.3. Define an N ×N matrix AN by

ĀN (i, j) =

√
1

N
f

(
i

N
,
j

N

)
Gi∧j,i∨j , 1 ≤ i, j ≤ N , (2.11)

and let
∆̄N = ĀN −XN ,

where XN is a diagonal matrix of order N , defined by

XN (i, i) =
∑

1≤k≤N,k 6=i
ĀN (i, k), 1 ≤ i ≤ N .
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Then

lim
N→∞

L
(
ESD(AgN ),ESD(ĀN )

)
= 0 in probability , (2.12)

lim
N→∞

L
(
ESD(∆g

N ),ESD(∆̄N )
)

= 0 in probability . (2.13)

Proof. To prove (2.13), yet another application of Fact A.1 implies that

E
[
L3
(
ESD(∆g

N ),ESD(∆̄N )
)]

≤ 1

N
E
(

Tr
[(

∆g
N − ∆̄N

)2])
=

1

N

∑∑
1≤i 6=j≤N

Var
(
ĀN (i, j)−AgN (i, j)

)
+

1

N

N∑
i=1

Var

 N∑
j=1
j 6=i

(
ĀN (i, j)−AgN (i, j)

)+
1

N2

N∑
i=1

f

(
i

N
,
i

N

)

=
4

N2

∑∑
1≤i<j≤N

f

(
i

N
,
j

N

)(
1−

√
1− εNf

(
i

N
,
j

N

))2

+
1

N2

N∑
i=1

f

(
i

N
,
i

N

)
→ 0 , N →∞ ,

because f is bounded. Thus, (2.13) follows. The proof of (2.12) is similar.

2.4. Decoupling

The (diagonal) entries of XN are nothing but the row sums of ĀN . However, the correlation
between an entry of ĀN and that of XN is small. The following decoupling lemma shows
that it does not hurt when the entries of XN are replaced by a mean-zero Gaussian random
variable of the same variance that is independent of ĀN .

Lemma 2.4. Let (Zi : i ≥ 1) be a family of i.i.d. standard normal random variables,
independent of (Gi,j : 1 ≤ i ≤ j). Define a diagonal matrix YN of order N by

YN (i, i) = Zi

√√√√ 1

N

∑
1≤j≤N, j 6=i

f

(
i

N
,
j

N

)
, 1 ≤ i ≤ N ,

and let
∆̃N = ĀN + YN .

Then, for every k ∈ N,

lim
N→∞

1

N
E
(

Tr
[
(∆̃N )2k − (∆̄N )2k

])
= 0 , (2.14)

and

lim
N→∞

1

N2
E
(

Tr2
[
(∆̃N )k

]
− Tr2

[
(∆̄N )k

])
= 0 . (2.15)
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Proof. Without loss of generality we may assume that f ≤ 1. For N ≥ 1, define the N×N
matrices M̄N and M̃N by

M̄N (i, j) =

{
N−1/2Gi∧j,i∨j , i 6= j ,

N−1/2Gi,i −
∑N

k=1, k 6=i M̄N (i, k), i = j ,

and

M̃N (i, j) =

{
M̄N (i, j), i 6= j ,

N−1/2Gi,i + Zi

√
N−1
N , i = j .

Note that, in the special case where f is identically 1, M̄N and M̃N are identical to ∆̄N

and ∆̃N , respectively. For k ∈ N and Π a partition of {1, . . . , 2k}, let

Ψ(Π, N) =
{
i ∈ {1, . . . , N}2k : iu = iv (2.16)

⇐⇒ u, v belong to the same block of Π
}
.

For fixed Π and N , an immediate application of Wick’s formula shows that, for all i, j ∈
Ψ(Π, N),

E

(
2k∏
u=1

M̄N (iu, iu+1)

)
= E

(
2k∏
u=1

M̄N (ju, ju+1)

)
,

with the convention that i2k+1 ≡ i1, and

E

(
2k∏
u=1

M̃N (iu, iu+1)

)
= E

(
2k∏
u=1

M̃N (ju, ju+1)

)
,

Therefore, for any i ∈ Ψ(Π, N), we can unambiguously define

ψ(Π, N) = E

(
2k∏
u=1

M̄N (iu, iu+1)

)
− E

(
2k∏
u=1

M̃N (iu, iu+1)

)
.

As shown in (Bryc et al., 2006, Lemma 4.12), for a fixed Π,

lim
N→∞

N−1|ψ(Π, N)|#Ψ(Π, N) = 0 , (2.17)

where # denotes cardinality of a set.
An immediate observation is that, for all 1 ≤ i, j, i′, j′ ≤ N ,

Cov
(
M̃N (i, j), M̃N (i′, j′

)
= 0 if (i ∧ j, i ∨ j) 6=

(
i′ ∧ j′, i′ ∨ j′

)
,

and likewise for ∆̃N . Furthermore,

Var
(
M̃N (i, j)

)
= Var

(
M̄N (i, j)

)
, 1 ≤ i, j ≤ N ,
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and likewise for ∆̃N and M̄N . For N ≥ 1 and 1 ≤ i, j, i′, j′ ≤ N , define

ηN (i, j, i′, j′) =


Cov(∆̄N (i,j),∆̄N (i′,j′))
Cov(M̄N (i,j),M̄N (i′,j′))

, if the denominator is non-zero ,

0 , otherwise .

It is easy to check that the assumption f ≤ 1 ensures that |ηN (i, j, i′, j′)| ≤ 1. Therefore,
for all N and 1 ≤ i, j, i′, j′ ≤ N ,

Cov
(
∆̄N (i, j), ∆̄N (i′, j′)

)
= ηN (i, j, i′, j′)Cov

(
M̄N (i, j), M̄N (i′, j′)

)
,

Cov
(

∆̃N (i, j), ∆̃N (i′, j′)
)

= ηN (i, j, i′, j′)Cov
(
M̃N (i, j), M̃N (i′, j′)

)
.

For fixed Π, N and i ∈ Ψ(Π, N), by an appeal to Wick’s formula the above implies that
there exists a ξ(i,N) ∈ [−1, 1] such that

E

(
2k∏
u=1

∆̄N (iu, iu+1)

)
− E

(
2k∏
u=1

∆̃N (iu, iu+1)

)
= ξ(i,N)ψ(Π, N) ,

and therefore, by (2.17),

∑
i∈Ψ(Π,N)

∣∣∣∣∣E
(

2k∏
u=1

∆̄N (iu, iu+1)

)
− E

(
2k∏
u=1

∆̃N (iu, iu+1)

)∣∣∣∣∣
=

∑
i∈Ψ(Π,N)

|ξ(i,N)| |ψ(Π, N)| ≤ |ψ(Π, N)|#Ψ(Π, N) = o(N) , N →∞ .

Since this holds for every partition Π of {1, . . . , 2k}, (2.14) follows. The proof of (2.15)
follows along similar lines.

2.5. Combinatorics from free probability

The final preparation is a general result from random matrix theory. To state this, the
following notions from the theory of free probability are borrowed, the details of which
can be found in Nica and Speicher (2006).

Definition. For an even positive integer k, NC2(k) is the set of non-crossing pair par-
titions of {1, . . . , k}. For σ ∈ NC2(k), its Kreweras complement K(σ) is the maximal
non-crossing partition σ̄ of {1̄, . . . , k̄}, such that σ ∪ σ̄ is a non-crossing partition of
{1, 1̄, . . . , k, k̄}. For example,

K ({(1, 4), (2, 3)}) = {(1, 3), (2), (4)} ,
K ({(1, 2), (3, 4), (5, 6)}) = {(1), (2, 4, 6), (3), (5)} .

The second example is illustrated as:
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1 1̄ 2 2̄ 3 3̄ 4 4̄ 5 5̄ 6 6̄

For σ ∈ NC2(k) and N ≥ 1, define

S(σ,N)

=
{
i ∈ {1, . . . , N}k : iu = iv ⇐⇒ u, v belong to the same block of K(σ)

}
and

C(k,N) = {1, . . . , N}k \

 ⋃
σ∈NC2(k)

S(σ,N)

 .

In other words, S(σ,N) is the same as Ψ(K(σ), N) defined in (2.16).

Lemma 2.5. Suppose that, for each N ≥ 1, WN,1, . . . ,WN,k are N ×N real (and possibly
asymmetric) random matrices, where k is a positive even number. Suppose further that,
for each u = 1, . . . , k,

max
1≤i,j≤N

E
[
WN,u(i, j)k

]
= O

(
N−k/2

)
(2.18)

and

lim
N→∞

E

 1

N

∑
i∈C(k,N)

Pi

2  = 0 , (2.19)

and that, for every σ ∈ NC2(k), there exists a deterministic and finite β(σ) such that

lim
N→∞

E

 1

N

∑
i∈S(σ,N)

Pi

 = β(σ) , (2.20)

lim
N→∞

E

 1

N

∑
i∈S(σ,N)

Pi

2  = β(σ)2 , (2.21)

where

Pi = WN,1(i1, i2) . . .WN,k−1(ik−1, ik)WN,k(ik, i1) , i ∈ {1, . . . , N}k .

Furthermore, let V1, V2, . . . be i.i.d. random variables drawn from some distribution with
all moments finite, independent of (WN,j : N ≥ 1, 1 ≤ j ≤ k), and let

UN = Diag(V1, . . . , VN ), N ≥ 1 .
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Then, for all choices of n1, . . . , nk ≥ 0,

lim
N→∞

1

N
Tr
(
Un1
N WN,1 . . . U

nk
N WN,k

)
= c in L2

for some deterministic c ∈ R.

Proof. The fact that the sets S(σ,N) are disjoint for different σ ∈ NC2(k) allows us to
write

Tr
(
Un1
N WN,1 . . . U

nk
N WN,k

)
=

∑
σ∈NC2(k)

∑
i∈S(σ,N)

P̃i +
∑

i∈C(k,N)

P̃i ,

where

P̃i =
k∏
j=1

(
V
nj
ij
WN,j(ij , ij+1)

)
, i ∈ {1, . . . , N}k .

In order to show that the second sum in the right-hand side is negligible after scaling by
N , the independence of (V1, V2, . . .) and (WN,j : N ≥ 1, 1 ≤ j ≤ k), together with the fact
that the common distribution of the former has finite moments, implies that

E

 1

N

∑
i∈C(k,N)

P̃i

2  ≤ KN−2
∑

i,j∈C(k,N)

E(PiPj) ,

where K is a finite constant. Assumption (2.19) shows that

lim
N→∞

1

N

∑
i∈C(k,N)

P̃i = 0 in L2 .

In order to complete the proof, it suffices to show that for every σ ∈ NC2(k) there
exists a θ(σ) ∈ R with

lim
N→∞

1

N

∑
i∈S(σ,N)

P̃i = θ(σ) in L2 . (2.22)

To that end, fix σ ∈ NC2(k) and note that, for i ∈ S(σ,N),

E(P̃i) = E (Pi) E

 k∏
j=1

V
nj
ij

 = E (Pi)
∏

u∈K(σ)

E
(
V

∑
j∈u nj

1

)
, (2.23)

the product in the last line being taken over every block u of K(σ). Putting

θ(σ) = β(σ)
∏

u∈K(σ)

E
(
V

∑
j∈u nj

1

)
,

we see that (2.20) gives

lim
N→∞

E

 1

N

∑
i∈S(σ,N)

P̃i

 = θ(σ) . (2.24)
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Let us call i, j ∈ Nk “disjoint” if no coordinate of i matches any coordinate of j, i.e.,

min
1≤u,v≤k

|iu − jv| ≥ 1 .

Since K(σ) has exactly 1
2k + 1 blocks, (2.18) implies that

lim
N→∞

N−2
∑

i,j∈S(σ,N)
i,j not disjoint

E(P̃iP̃j) = 0 .

If i, j ∈ S(σ,N) are disjoint, then it is immediate that

E(P̃iP̃j) =

 ∏
u∈K(σ)

E
(
V

∑
j∈u nj

1

)2

E(PiPj) .

The above two displays, in conjunction with (2.21), show that

lim
N→∞

E

 1

N

∑
i∈S(σ,N)

P̃i

2  = θ(σ)2 .

This, along with (2.24), establishes (2.22), from which the proof follows.

3. Proof of Theorems 1.1–1.3

Proof of Theorem 1.1. Theorem 2.1 of Chakrabarty (2017) implies that as N →∞,

lim
N→∞

ESD
(
ĀN
)

= µ weakly in probability ,

for a compactly supported symmetric probability measure µ. Lemma 2.3 immediately tells
us that

lim
N→∞

ESD
(
AgN
)

= µ weakly in probability ,

and hence for h and HN as in Lemma 2.2,

lim
N→∞

E
[
h
(
<HN (AgN )

)]
= h

(
<
∫
R

1

x− z
µ(dx)

)
.

The claim in (2.3) shows that AgN can be replaced by A0
N in the above display. Since the

right-hand side is deterministic and the above holds for any h satisfying the hypothesis of
Lemma 2.2, it follows that

lim
N→∞

<HN (A0
N ) = <

∫
R

1

x− z
µ(dx) in probability .

A similar argument works for the imaginary part, which shows that

lim
N→∞

ESD(A0
N ) = µ weakly in probability .
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Lemma 2.1 completes the proof of (1.2).
Finally, if f is bounded away from 0, then the combination of (Chakrabarty, 2017,

Lemma 3.1) and (Biane, 1997, Corollary 2) implies that µ is absolutely continuous with
respect to the Lebesgue measure (see also Chakrabarty and Hazra (2016)). Thus, the proof
of Theorem 1.1 follows.

Remark 3.1. The moments of µ are specified in Chakrabarty (2017). It turns out that
the same limiting spectral distribution arises in a different random matrix model (see
Chakrabarty et al. (2016)).

Remark 3.2. A close inspection of the proof reveals that it suffices to assume that f is
Riemann integrable instead of continuous. In other words, if f is symmetric and bounded,
and its set of discontinuities has Lebesgue measure zero, then the result holds. However,
continuity will be used later in (3.3) in the proof of Theorem 1.2.

Proof of Theorem 1.2. The proof comes in 3 Steps.

1. Riemann approximation. For N ≥ 1, define the N ×N diagonal matrix QN by

QN (i, i) = F (i/N)Zi, 1 ≤ i ≤ N , (3.1)

where

F (x) =

(∫ 1

0
f (x, y) dy

)1/2

, 0 ≤ x ≤ 1 , (3.2)

and (Zi : i ≥ 1) is as in Lemma 2.4. Fact A.2 in Appendix A implies that∣∣∣∣∣
(

1

N
Tr
(

(∆̃N )k
))1/k

−
(

1

N
Tr
(

(ĀN +QN )k
))1/k

∣∣∣∣∣
≤
(

1

N
Tr
[
(YN −QN )k

])1/k

.

Since, f being continuous,

E
[
N−2 Tr2

[
(YN −QN )k

]]
= O(1)

× sup
0≤x≤1

F (x)−

 1

N

N∑
j=1,j 6=[Nx]/N

f

(
x,

j

N

)1/2


2k

→ 0 , N →∞ ,
(3.3)

we get, for every even k,(
1

N
Tr
(

(∆̃N )k
))1/k

−
(

1

N
Tr
(

(ĀN +QN )k
))1/k

→ 0 in L2k , N →∞ . (3.4)

Our next step is to show that, for every even integer k,

lim
N→∞

1

N
Tr
(

(ĀN +QN )k
)

= γk in L2 (3.5)
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for some γk ∈ R. The above will follow once we show that, for allm ≥ 1 and n1, . . . , nm ≥ 0,

lim
N→∞

1

N
Tr
(
Qn1
N ĀN . . . Q

nm
N ĀN

)
= θ in L2 (3.6)

for some θ ∈ R (depending on m,n1, . . . , nm). To that end, define the diagonal matrices
UN and BN by

UN (i, i) = Zi ,

BN (i, i) = F (i/N) , i = 1, . . . , N .

Observe that
QN = BNUN = UNBN ,

and hence the left-hand side of (3.6) is the same as

1

N
Tr
(
Un1
N WN1 . . . U

nm
N WNm

)
, (3.7)

where
WNj = B

nj
N ĀN , j = 1, . . . ,m .

In order to apply Lemma 2.5 we need to verify its hypotheses.

2. Verification of the hypotheses. Our next claim is thatWN1, . . . ,WNm satisfy (2.18)–
(2.21). To that end, observe that for N ≥ 1 and j = 1, . . . ,m,

WNj(u, v) = Fnj
( u
N

)
f1/2

( u
N
,
v

N

)
N−1/2Gu∧v, u∨v, 1 ≤ u, v ≤ N .

Let
Hj(x, y) = Fnj (x)f1/2(x, y), (x, y) ∈ [0, 1]2 .

Fix a partition Π of {1, . . . ,m}. Recall the notation Ψ(Π, N) in the proof of Lemma 2.4.
Clearly, for every i ∈ Ψ(Π, N),

E

 m∏
j=1

WNj(ij , ij+1))

 = N−m/2ψ(Π)

 m∏
j=1

Hj

(
ij
N
,
ij+1

N

) ,

where

ψ(Π) = E

 m∏
j=1

Gij∧ij+1,ij∨ij+1

 ,

which does not depend on i ∈ Ψ(Π, N). The standard arguments leading to a proof via
the method of moments of the Wigner semicircle law show that

lim
N→∞

N−m/2+1 ψ(Π) #Ψ(Π, N)

=

{
1, if m is even, and Π = K(σ) for some σ ∈ NC2(m) ,

0, otherwise .
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Assume for the moment that m is even, and let σ ∈ NC2(m). It is known that K(σ) has
m/2 + 1 blocks. Define a function Lσ : {1, . . . ,m} → {1, . . . , 1

2m+ 1} such that

Lσ(j) = Lσ(k) if and only if j, k are in the same block of K(σ) .

It follows that for Π = K(σ),

lim
N→∞

1

N

∑
i∈Ψ(Π,N)

E

 m∏
j=1

WNj(ij , ij+1))


=

∫
[0,1](m/2)+1

∏
(u,v)∈σ,u<v

Hu

(
xLσ(u), xLσ(v)

)
dx1 . . . dx(m/2)+1 .

This shows that hypothesis (2.20) holds. The hypotheses (2.19) and (2.21) follow similarly
by an analogue of the standard arguments, while (2.18) is trivial.

Thus, WN1, . . . ,WNm and UN satisfy the hypotheses of Lemma 2.5. The claim of that
lemma shows that the random variable in (3.7) converges in L2 to a finite deterministic
constant as N →∞, i.e., (3.6) holds. This in turn proves (3.5), which in conjunction with
(3.4) shows that

lim
N→∞

1

N
Tr
(

(∆̃N )k
)

= γk in L2 .

Lemma 2.4 asserts that

lim
N→∞

1

N
Tr
(

(∆̄N )k
)

= γk in L2 , (3.8)

and hence also in probability.

3. Uniqueness of the limiting measure. Equation (3.5) ensures that there exists a
symmetric probability measure on R whose k-th moment is γk for every even integer k.
Our next claim is that such a measure is unique, i.e., (γk : k ≥ 1) determines the measure.
It is not obvious how to check Carleman’s condition, and therefore we argue as follows. It
suffices to exhibit a probability measure ν whose odd moments are zero and whose k-th
moment is γk for even k such that∫ ∞

−∞
etxν(dx) <∞ ∀ t ∈ R . (3.9)

To do so we bring in the notion of a non-commutative probability space (NCP), which is
defined in Appendix A. For K > 0 and N ≥ 1, define

UNK = Diag (Z11(|Z1| ≤ K), . . . , Z11(|ZN | ≤ K)) ,

and
QNK = BNUNK .

The arguments leading to (3.6) can be easily tweaked to show that, for fixed K > 0 and
a fixed polynomial p in two non-commuting variables,

lim
N→∞

1

N
E Tr

[
p
(
ĀN , QNK

)]
(3.10)
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exists. Fact A.3 in Appendix A implies that there exist self-adjoint elements q and a in a
tracial NCP (A, φ) such that the above limit equals φ [p (a, q)] for every polynomial p in
two non-commuting variables. Hence

lim
N→∞

EESD
[
p
(
ĀN , QNK

)]
= L [p (a, q)] in distibution , (3.11)

for any symmetric polynomial p, where EESD denotes the expectation of ESD. Theorem
1.1 implies that the LSD of ĀN , which is L(a) by (3.11), is compactly supported, and hence
a is a bounded element. The spectrum of q is clearly a subset of [−K,K]. The second claim
in Fact A.3 in Appendix A allows us to assume that (A, φ) is a W ∗-probability space.

Let
νK = L(a+ q) .

If C is a finite constant such that
a ≤ C1 ,

then clearly
a+ q ≤ C1 + q . (3.12)

Applying the method of moments to QNK , we find by an appeal to (3.11) that the law of
q is same as the law of

F (V )Z11(|Z1| ≤ K) ,

where V is standard uniform independently of Z1, and F is as in (3.2). Under the assump-
tion that f ≤ 1, which represents no loss of generality,∫ ∞

−∞
etx (L(q)) (dx) ≤ et2/2, t ∈ R .

By (Bercovici and Voiculescu, 1993, Corollary 3.3) applied to (3.12), it follows that∫
R
etxνK(dx) ≤

∫
R
etx (L(C1 + q)) (dx) ≤ exp

(
1
2 t

2 + tC
)
, t > 0 . (3.13)

Fact A.1 applied to ĀN +QNK1 and ĀN +QNK1 shows that

sup
N≥1

L
(
EESD

(
ĀN +QNK1

)
,EESD

(
ĀN +QNK2

))
is small for large K1 and K2. Thus, (νK : K > 0) is Cauchy in the Lévy metric, and hence
there exists a probability measure ν such that

lim
K→∞

νK = ν .

This, along with (3.13), establishes that∫
R
etxν(dx) ≤ exp

(
1
2 t

2 + tC
)
, t > 0 , (3.14)

and

lim
K→∞

∫
R
xkνK(dx) =

∫
R
xkν(dx), k ≥ 1 .
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Clearly, ∫ ∞
−∞

xkνK(dx) = lim
N→∞

N−1E Tr
[(
ĀN +QNK

)k]
.

Therefore, by keeping track of the limit in (3.10), we can show (with some effort) that

lim
K→∞

∫
R
xkνK(dx) =

{
γk, k even ,

0, k odd .

Thus, ν has the desired moments. By extending (3.14) to the case t < 0, we see that (3.9)
follows. Thus, ν is the only symmetric probability measure whose even moments are (γk).

Equation (3.8) and the claim proved above show that

lim
N→∞

ESD
(
∆̄N

)
= ν weakly in probability .

Hence Lemmas 2.1–2.3 imply that

lim
N→∞

ESD
(
(NεN )−1/2(∆N −DN )

)
= ν weakly in probability .

as in the proof of Theorem 1.1.

Proof of Theorem 1.3. Let (Gi,j : 1 ≤ i ≤ j) and (Zi : i ≥ 1) be as in Lemma 2.4. For
N ≥ 1, define the N ×N matrices

GN (i, j) = N−1/2Gi∧j,i∨j , 1 ≤ i, j ≤ N ,

RN = Diag
(√

r(1/N), . . . ,
√
r(1)

)
,

UN = Diag(Z1, . . . , ZN ) .

The notation UN is exactly as in the proof of Theorem 1.2. Let ĀN and QN be as in (2.11)
and (3.1), respectively. Observe that, under the assumption (1.4),

ĀN = RNGNRN ,

and
QN = αR

1/2
N UNR

1/2
N ,

where α is as defined in the statement of Theorem 1.3. Proceeding as in the proofs of
Theorems 1.1 and 1.2, wee see that it suffices to show that

lim
N→∞

ESD (RNGNRN ) = L
(
r1/2(Tu)TsT

1/2(Tu)
)

weakly in probability (3.15)

and

lim
N→∞

ESD
(
RNGNRN + αR

1/2
N UNR

1/2
N

)
= L

(
r1/2(Tu)TsT

1/2(Tu) + αr1/4(Tu)Tgr
1/4(Tu)

)
weakly in probability ,

(3.16)
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where Ts, Tg, Tu are as in the statement. Define UNK to be the “truncated” version of UN ,
for a fixed K > 0, as in the proof of Theorem 1.2. Both (3.15) and (3.16) will follow once
we show that

lim
N→∞

1

N
Tr
(
p
(
R

1/2
N , UNK , GN

))
= τ

(
p
(
Tr, T

′
g, Ts

))
in probability , (3.17)

where Tr = r1/4(Tu) and T ′g = Tg1(|Tg| ≤ K), for any symmetric polynomial p in three
non-commuting variables. It is a well known fact that, for all k ≥ 1,

lim
N→∞

1

N
Tr(GkN ) = τ(T ks ) in probability . (3.18)

Since RN and UNK are diagonal matrices, they commute. This, in conjunction with the
strong law of large numbers, implies that, for any k ≥ 1, m1, . . . ,mk and n1, . . . , nk ≥ 0,

lim
N→∞

1

N
Tr
(
Rm1
N Un1

NK . . . R
mk
N UnkNK

)
=

∫ 1

0
du r(m1+...+mk)/4(u)

∫ K

−K
(2π)−1/2dxxn1+...+nke−x

2/2 a.s.

The above, in conjunction with (1.7) and the fact that Tg and Tr commute, implies that

lim
N→∞

1

N
Tr
(
p
(
R

1/2
N , UNK

))
= τ

(
p
(
Tr, T

′
g

))
a.s. (3.19)

for any polynomial p in two variables.
Thus, all that remains to show is the asymptotic free independence of Ts and (Tr, T

′
g),

which is precisely the claim of Fact A.4 in Appendix A, i.e., (3.18) and (3.19) imply (3.17).
Applying (3.17) to p(x, y, z) = x2zx2 and p(x, y, z) = x2zx2 +αxyx, we get the truncated
versions of (3.15) and (3.16), respectively. Yet another application of Fact A.1 in Appendix
A allows us to let K →∞, obtaining (3.15) and (3.16). This completes the proof of (1.5)
and (1.6).

4. Proof of Theorem 1.4

Proof of Theorem 1.4. Lemma 2.1 and the assumption (1.1) imply that the mean of the
entries of AN can be subtracted at the cost of a negligible perturbation of the ESD. The
inequalities (1.1) and (1.8) ensure that the Gaussianization as in Lemma 2.2 goes through
by conditioning on RN1, . . . , RNN . That is, if (Gij : 1 ≤ i ≤ j) is a collection of i.i.d.
standard normal random variables that are independent of (RNi : 1 ≤ i ≤ N,N ≥ 1), and
AgN is an N ×N matrix defined by

AgN (i, j) =
√
RNiRNj Gi∧j,i∨j , 1 ≤ i, j ≤ N ,

then the ESD of AN/
√
NεN is close to that of AgN/

√
N . Finally, (1.9) by an appeal to

Fact A.4 shows that

lim
N→∞

ESD
(
N−1/2Agn

)
= µr � µs weakly in probability ,

which uses (1.8) yet once again.
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5. Applications

In this section we discuss a few applications.

5.1. Constrained random graphs

Let SN be the set of all simple graphs on N vertices. Suppose that we fix the degrees of
the vertices, namely, vertex i has degree k∗i . Here, k∗ = (k∗i : 1 ≤ i ≤ N) is a sequence
of positive integers of which we only require that they are graphical, i.e., there is at least
one simple graph with these degrees. The so-called canonical ensemble PN is the unique
probability distribution on SN with the following two properties:

(I) The average degree of vertex i, defined by
∑

G∈SN ki(G)PN (G), equals k∗i for all
i ≤ i ≤ N .

(II) The entropy of PN , defined by −
∑

G∈SN PN (G) logPN (G), is maximal.

The name canonical ensemble comes from Gibbs theory in equilibrium statistical physics.
The probability distribution PN describes a random graph of which we have no prior
information other than the average degrees. It is known that, because of property (II),
PN takes the form (Jaynes (1957))

PN (G) =
1

ZN (θ)
exp

[
−

N∑
i=1

θiki(G)

]
, G ∈ SN ,

where θ = (θi : 1 ≤ i ≤ N) is a sequence of real-valued Lagrange multipliers that must
be chosen in such a way that property (I) is satisfied. The normalization constant ZN (θ),
which depends on θ, is called the partition function in Gibbs theory.

The matching of property (I) uniquely fixes θ, namely, it turns out that (Squartini et al.
(2015))

PN (G) =
N∏

1≤i<j≤N
(p∗ij)

AN [G](i,j) (1− p∗ij)1−AN [G](i,j) , G ∈ SN ,

where AN [G] is the adjacency matrix of G, and p∗ij represent a reparameterisation of the
Lagrange multipliers, namely,

p∗ij =
x∗ix

∗
j

1 + x∗ix
∗
j

, 1 ≤ i 6= j ≤ N , (5.1)

with x∗i = e−θ
∗
i . Thus, we see that PN is nothing other than an inhomogeneous Erdős-

Rényi random graph where the probability that vertices i and j are connected by an edge
equals p∗ij . In order to match property (I), these probabilities must satisfy

k∗i =
∑

1≤j≤N
j 6=i

p∗ij , 1 ≤ i ≤ N , (5.2)

which constitutes a set of N equations for the N unknowns x∗1, . . . , x
∗
N .
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In order to proceed, we need to make assumptions on the sequence (k∗Ni : 1 ≤ i ≤ N).
For the sake of notational simplification, the dependence on N will be suppressed in the
notation. Let (k∗i : 1 ≤ i ≤ N) be a graphical sequence of positive integers in the so-called
sparse regime, i.e.,

mN := max
1≤`≤N

k∗` = o(
√
N ) , N →∞ . (5.3)

Furthermore, assume that
lim
N→∞

mN =∞ , (5.4)

and that

lim
N→∞

1

N

N∑
i=1

δk∗i /mN = µr weakly , (5.5)

as N → ∞, for some probability measure µr. Let x∗i and p∗ij be determined by (5.1) and
(5.2). Let AN be the adjacency matrix of an inhomogeneous Erdős-Rényi random graph
on N vertices, with p∗ij being the probability of an edge being present between i and j for
all 1 ≤ i 6= j ≤ N .

It is known that (Squartini et al. (2015))

max
1≤`≤N

x∗` = o(1) ,

in which case (5.1) and (5.2) give

x∗i = [1 + o(1)]
k∗i√∑

1≤`≤N k
∗
`

,

p∗ij = [1 + o(1)]
k∗i k
∗
j∑

1≤`≤N k
∗
`

,

(5.6)

as N →∞ with the error term uniform in 1 ≤ i 6= j ≤ N .
Abbreviate

σN :=
∑

1≤`≤N
k∗` ,

and pick

εN =
m2
N

σN
.

It follows from (5.3) and (5.4) that, respectively,

lim
N→∞

NεN =∞ ,

and
lim
N→∞

εN = 0 .

As in the proof of Theorem 1.4, Lemmas 2.1–2.2 imply that the upper triangular entries of
AN can be replaced by independent mean zero normal random variables. In other words,
if (Gij : 1 ≤ i ≤ j) are i.i.d. standard normal, and AgN is the random matrix defined by

AgN (i, j) =
√
p∗ij Gi∧j,i∨j , 1 ≤ i, j ≤ N ,
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with p∗ii = 0 for all i, then ESD
(
(NεN )−1/2AN

)
and ESD

(
(NεN )−1/2AgN

)
are asymptoti-

cally close.
The second line of (5.6) implies that

√
p∗ij =

[
1 + o(1)

]√
εN

k∗i k
∗
j

m2
N

,

uniformly in 1 ≤ i 6= j ≤ N , and hence

N∑
i,j=1

[√
p∗ij −

√
εN

k∗i k
∗
j

m2
N

]2

= o
(
N2εN

)
.

In other words, if ÃN is defined by

ÃN (i, j) =

√
k∗i k
∗
j

m2
N

Gi∧j,i∨j , 1 ≤ i, j ≤ N ,

then

lim
N→∞

1

N
E
[
Tr
(
(NεN )−1/2AgN −N

−1/2ÃN
)2]

= 0 .

Fact A.1 implies that

lim
N→∞

L
(

ESD
(
(NεN )−1/2AgN

)
,ESD

(
N−1/2ÃN

))
= 0 in probability .

Finally, by an appeal to Fact A.4, (5.5) implies that

lim
N→∞

ESD
(
N−1/2ÃN

)
= µr � µs, weakly in probability ,

where µs is the standard semicircle law. Hence

lim
N→∞

ESD
(
(NεN )−1/2AN

)
= µr � µs, weakly in probability .

We close by looking at a concrete example of a graphical sequence (k∗i : 1 ≤ i ≤ N)
satisfying (5.3)–(5.5). For N ≥ 1, let

k∗i = bi1/3c , 1 ≤ i ≤ N .

Then it is immediate that
mN = bN1/3c = o(

√
N) ,

and
lim
N→∞

mN =∞ ,

and

lim
N→∞

(
1

N

N∑
i=1

δk∗i /mN

)
(·) = P (U1/3 ∈ · ) weakly ,

where U is a standard uniform random variable. Finally, (van der Hofstad, 2017, Theorem
7.12) implies that (k∗i : 1 ≤ i ≤ N) is graphical for N large enough.



A. Chakrabarty, R.S. Hazra, F. den Hollander, M. Sfragara/Inhomogeneous Erdős-Rényi 25

5.2. Chung-Lu graphs

The following random graph introduced by Chung and Lu (2002) is similar to the one
discussed in Section 5.1. For N ≥ 1, let (dNi : 1 ≤ i ≤ N) be positive real numbers
satisfying the following. For fixed N , let

mN := max
1≤i≤N

dNi , σN :=

N∑
i=1

dNi ,

and assume that

lim
N→∞

m2
N

σN
= 0 , lim

N→∞
N
m2
N

σN
=∞ ,

and

lim
N→∞

1

N

N∑
i=1

δdNi/mN = µr weakly ,

for some measure µr on R. Consider an inhomogeneous Erdős-Rényi graph on N vertices
where an edge exists between i and j with probability dNidNj/σN , for 1 ≤ i 6= j ≤ N . This
is the so-called Chung-Lu graph. If AN denotes its adjacency matrix, then Theorem 1.4
implies that

lim
N→∞

ESD
(

(NεN )−1/2AN

)
= µr � µs , weakly in probability ,

where

εN =
m2
N

σN
, N ≥ 1 ,

and µs is the standard semicircle law.

5.3. Social networks

Consider a community consisting of N individuals. Data is available on whether the i-th
individual and the j-th individual are acquainted, for every pair {i, j} with 1 ≤ i, j ≤ N .
Based on this data, the sociability pattern of the community has to be inferred statistically.
Examples arise in social networks and collaboration networks.

The above situation can be modeled in several ways, one being the following. Denote by
ρ the sociability distribution of the community, which is a compactly supported probability
measure on [0,∞). Let (Ri)1≤i≤N be i.i.d. random variables drawn from ρ. Think of Ri
as the sociability index of the i-th individual. Fix εN > 0 such that εNm

2 ≤ 1, where m
is the supremum of the support of ρ, so that

0 ≤ εNRiRj ≤ 1 , 1 ≤ i 6= j ≤ N . (5.7)

Suppose that, conditional on (Ri)1≤i≤N , the i-th and the j-th individual are acquainted
with probability εNRiRj . In other words, the graph in which the vertices are individuals
and the edges are mutual acquaintances is an inhomogeneous Erdős-Rényi random graph
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GN with random connection parameters that are controlled by ν. The data that are
available is the adjacency matrix AN of this graph. The goal is to draw information about
ρ from this data. This statistical inference problem boils down to estimating ρ from AN .
In order to make the model identifiable, we assume that∫ ∞

0
xρ(dx) = 1 . (5.8)

It is immediate that

lim
N→∞

1

N

N∑
i=1

δRi = ρ , weakly, almost surely .

Theorem 1.4 implies that if N−1 � εN � 1, then

lim
N→∞

ESD
(

(NεN )−1/2AN

)
= ρ� µs, weakly, in probability ,

where µs is the standard semicircle law. In practice, εN will be unknown, which can worked
around by using (5.8) to argue that

lim
N→∞

ESD

(√
N

Tr(A2
N )

AN

)
= ρ� µs, weakly in probability .

Thus, ρ�µs can be statistically estimated, in principle, from AN . Subsequently, ρ can be
derived because the moments of ρ� µs are a function of those of ρ and µs. The moments
of the latter being known, the former can be recursively calculated from the estimated
moments of ρ � µs. Since ρ is compactly supported, estimating its moments amounts to
estimating the measure.

Appendix A: Basic facts

The following is (Bai and Silverstein, 2010, Corollary A.41), and is also a corollary of the
Hoffman-Wielandt inequality.

Fact A.1. If L denotes the Lévy distance between two probability measures, then for N×N
symmetric matrices A and B,

L3 (ESD(A),ESD(B)) ≤ 1

N
Tr
[
(A−B)2

]
.

The following is a consequence of the Minkowski and k-Hoffman-Wielandt inequalities.
The latter can be found in Exercise 1.3.6 of Tao (2012).

Fact A.2. For real symmetric matrices A and B of the same order, and an even positive
integer k, ∣∣∣Tr1/k(Ak)− Tr1/k(Bk)

∣∣∣ ≤ Tr1/k
[
(A−B)k

]
.
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Definition. A non-commutative probability space (NCP) (A, φ) is a unital ∗-algebra A
equipped with a linear functional φ : A → C that is unital, i.e.,

φ(1) = 1 ,

and positive, i.e.,
φ(a∗a) ≥ 0 for all a ∈ A .

An NCP (A, φ) is tracial if
φ(ab) = φ(ba), a, b ∈ A .

Fact A.3. Suppose that, for every n ∈ N, (An, φn) is a tracial NCP, and there exist self-
adjoint an1, . . . , ank ∈ An such that, for every polynomial p in k non-commuting variables,

lim
n→∞

φn
(
p
(
an1, . . . , ank

))
= αp ∈ C . (A.1)

Then there exists a tracial NCP (A∞, φ∞) and self-adjoint a∞1, . . . , a∞k ∈ A∞ such that,
for every polynomial p in k non-commuting variables,

φ∞
(
p
(
a∞1, . . . , a∞k

))
= αp .

Furthermore, if

sup
1≤i≤k, j≥1

[
φ∞

(
a2j
∞i

)]1/2j
<∞ , (A.2)

then (A∞, φ∞) can be embedded into a W ∗-probability space.

Proof. Let
A∞ = C[X1, . . . , Xk] ,

the set of all polynomials in k non-commuting variables. For a monomial

p = αXi1 . . . Xim ,

define
p∗ = αXim . . . Xi1 .

This defines the ∗-operation on the whole of A. Let

φ∞(p) = αp for all p ∈ A∞ .

It is immediate from (A.1) that φ∞ is positive and unital, i.e., (A∞, φ∞) is an NCP. The
desired conclusions are ensured by defining

a∞1 = X1, . . . , a∞k = Xk .

Finally, (A.2) implies that a∞,1, . . . , a∞,k are bounded. Hence, by going from polynomials
to continuous functions with the help of the Bolzano-Weierstrass theorem, we can embed
(A∞, φ∞) into a W ∗-probability space.

The next fact follows from (Mingo and Speicher, 2017, Theorem 4.20) (which is due to
Voiculescu) and the discussion immediately following it.
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Fact A.4. Suppose that WN is an N ×N scaled standard Gaussian Wigner matrix, i.e.,
a symmetric matrix whose upper triangular entries are i.i.d. normal with mean zero and
variance 1/N . Let D1

N and D2
N be (possibly random) N ×N symmetric matrices such that

there exists a deterministic C satisfying

sup
N≥1,i=1,2

‖Di
N‖ ≤ C <∞ ,

where ‖ · ‖ denotes the usual matrix norm (which is same as the largest singular value
for a symmetric matrix). Furthermore, assume that there is a W ∗-probability space (A, τ)
in which there are self-adjoint elements d1 and d2 such that, for any polynomial p in two
variables, it

lim
N→∞

1

N
Tr
(
p
(
D1
N , D

2
N

))
= τ (p(d1, d2)) a.s.

Finally, suppose that (D1
N , D

2
N ) is independent of WN . Then there exists a self-adjoint

element s in A (possibly after expansion) that has the standard semicircle distribution and
is freely independent of (d1, d2), and is such that

lim
N→∞

1

N
Tr
(
p
(
WN , D

1
N , D

2
N

))
= τ (p(s, d1, d2)) a.s.

for any polynomial p in three variables.
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