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Abstract

In a previous paper we analysed a simple undirected random graph subject to constraints on
the total number of edges and the total number of triangles. We considered the dense regime in
which the number of edges per vertex is proportional to the number of vertices. We showed that,
as soon as the constraints are frustrated, i.e., do not lie on the Erdgs-Rényi line, there is breaking of
ensemble equivalence, in the sense that the specific relative entropy per edge of the microcanonical
ensemble with respect to the canonical ensemble is strictly positive in the limit as the number of
vertices tends to infinity. In the present paper we analyse what happens near the Erdés-Rényi line.
It turns out that the way in which the specific relative entropy tends to zero depends on whether
the total number of triangles is slightly larger or slightly smaller than typical. We identify what
the constrained random graph looks like asymptotically in the microcanonical ensemble.

MSC 2010: 05C80, 60K35, 82B20.
Key words: Erdés-Rényi random graph, Gibbs ensembles, relative entropy, graphon, breaking of
ensemble equivalence, constrained random graph.

Acknowledgements: The research in this paper was supported through NWO Gravitation Grant
NETWORKS 024.002.003. The authors are grateful to V. Patel and H. Touchette for helpful
discussions. FdH, AR and NJS are grateful for hospitality at the International Centre for Theo-
retical Sciences in Bangalore, India, as participants of the program on Large Deviation Theory in
Statistical Physics: Recent Advances and Future Challenges in the Fall of 2017.

1 Introduction

In this paper we analyse random graphs that are subject to constraints. Statistical physics prescribes
what probability distribution on the set of graphs we should choose when we want to model a given
type of constraint [12]. Two important choices are:

(1) The microcanonical ensemble, where the constraints are hard (i.e., are satisfied by each individual
graph).
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(2) The canonical ensemble, where the constraints are soft (i.e., hold as ensemble averages, while
individual graphs may violate the constraints).

For random graphs that are large but finite, the two ensembles are obviously different and, in fact,
represent different empirical situations. Each ensemble represents the unique probability distribution
with mazimal entropy respecting the constraints. In the limit as the size of the graph diverges, the
two ensembles are traditionally assumed to become equivalent as a result of the expected vanishing of
the fluctuations of the soft constraints, i.e., the soft constraints are expected to behave asymptotically
like hard constraints. This assumption of ensemble equivalence is one of the corner stones of statistical
physics, but it does not hold in general (see [32] for more background).

In a series of papers the question of possible breaking of ensemble equivalence was investigated for
various choices of the constraints, including the degree sequence and the total number of edges, wedges
and triangles. Both the sparse regime (where the number of edges per vertex remains bounded) and
the dense regime (where the number of edges per vertex is of the order of the number of vertices) have
been considered. The effect of community structure on ensemble equivalence has been investigated
as well. Relevant references are [13], [14], [15], [30] and [31]. In [15] we considered a random graph
subject to constraints on the total number of edges and the total number of triangles, in the dense
regime. With the help of large deviation theory for graphons (see [9]), we derived a variational formula
for soo = lim,_,oo " 2s,, where n is the number of vertices and s, is the relative entropy of the
microcanonical ensemble with respect to the canonical ensemble. We found that s, > 0 when the
constraints are frustrated. In the present paper we analyse the behaviour of s., when the constraints
are close to but different from those of the Erdés-Rényi random graph, and we identify what the
constrained random graph looks like asymptotically in the microcanonical ensemble. It turns out that
the behaviour changes when the total number of triangles is larger, respectively, smaller than that of
the Erd&s-Rényi random graph with a given total number of edges.

While breaking of ensemble equivalence is a relatively new concept in the theory of random graphs,
there are many studies on the asymptotic structure of random graphs. In the pioneering work [9],
followed by [20], the large deviation principle for dense Erdés-Rényi random graphs was proven and
the asymptotic structure of constrained Erdgs-Rényi random graphs was described as the solution of a
variational problem. In the past few years significant progress has been made regarding sparse random
graphs as well. We refer the reader to [8], [10], [21] and [36]. Two other random graph models that
have been extensively studied are the following:

e FExponential random graphs, which are related to the canonical ensemble, were introduced in the
physics literature (see [23] and references therein), and were subsequently analysed in detail in [3]
and [7]. In [3] the mixing time of the Ising model subject to Glauber dynamics was investigated,
and it was shown that exponential random graphs behave asymptotically like Erdgs-Rényi random
graphs with a biased parameter. In [7] this result was generalised with the help of the machinery
developed in [9], resulting in an asymptotic expression for the logarithm of the partition function
in terms of a variational problem. ilt was further shown that in the edge-triangle model a phase
transition occurs for specific values of the parameters, which is defined as a discontinuity in
the derivative of the logarithm of the partition function. The existence of phase transitions for
exponential random graphs was investigated further in [28] and [33], and for directed graphs in
[2]. An analysis of sparse exponential random graphs was carried out in [35].

e Constrained exponential random graphs have received a lot of attention in the literature. We refer
the reader to [1], [17], [19] and [34] for a detailed description and analysis. A stream of research
that is relevant for the present paper concerns the asymptotic description of the structure of
graphs drawn from the microcanonical ensemble with a constraint on the edge density and the
triangle density. In [27] the behaviour of random graphs with edge and triangle densities close
to the Erdds-Rényi line was studied. The scaling behaviour was studied via a bound on the
entropy function. In one of the results in the present paper, we rigorously prove the results of
[27] and determine the exact structure of constrained random graphs close to the Erdés-Rényi
line. The same question was investigated in [22] for a constraint on the edge density and the



triangle density close to the lower boundary of the admissibility region. In [18], through extensive
simulations, curves in the admissibility region were determined where phase transitions occur in
the structure of the constrained random graphs.

The remainder of this paper is organised as follows. In Section 2 we define the two ensembles, give the
definition of equivalence of ensembles in the dense regime, and recall some basic facts about graphons.
In Section 2.4 we recall the variational representation of so derived in [15] when the constraints are on
the total numbers of subgraphs drawn from a finite collection of subgraphs. We also recall the analysis
of soo in [15] for the special case where the subgraphs are the edges and the triangles. In Section 3 we
state our main theorems. Proofs are given in Sections 4 and 5.

2 Definitions and preliminaries

In Section 2.1 we give the formal definition of the two ensembles we are interested in and give our
definition of equivalence of ensembles in the dense regime. In Section 2.2 we recall some basic facts
about graphons, in Section 2.3 we present some basic properties of the canonical ensemble and in
Section 2.4 we give a variational characterisation of ensemble equivalence proven in [15].

2.1 Microcanonical ensemble, canonical ensemble, relative entropy

For n € N, let G,, denote the set of all 2(5) simple undirected graphs with n vertices. Any graph G € G,
can be represented by a symmetric n X n matrix with elements

. (2.1)
0 otherwise.

¥e i, 5) {1 if there is an edge between vertex ¢ and vertex j,
i,§) =

Let C denote a vector-valued function on G,.. We choose a specific vector C_"*, which we assume to be

graphical, i.e., realisable by at least one graph in G,. For this C* the microcanonical ensemble is the

probability distribution P, on G, with hard constraint C* defined as

o 1Qs, i C(G) =07,
Punie(CF) = { 0, otherwise, G € Gn, (2.2)
where . .

Qp. = {G € Gu: C(G) = Y| (23)

is the number of graphs that realise C*. The canonical ensemble Pean is the unique probability
distribution on G,, that maximises the entropy

Sn(P) :=—= Y P(G)logP(G) (2.4)

(C) = C(G)P(@) (2.5)
Gegn
This gives the formula [16]
1 e A
Pcan(G) = = eH(O 7C(G))7 G e gnv (26)
Z(6)

with oL L . I

H(6",C(G)) ==0"-C(G), Z(0%) = Z e’ C(G)a (2.7)
Gegn



denoting the Hamiltonian and the partition function, respectively. In (2.6)—(2.7) the parameter 6%,
which is a real-valued vector whose size is equal to the number of constraints, must be set to the unique
value that realises (@} =C* Asa Lagrange multiplier, g always exists, but uniqueness is non-trivial.
In the sequel we will only consider examples where the gradients of the constraints in (2.5) are linearly
independent vectors. Consequently, the Hessian matrix of the entropy of the canonical ensemble in
(2.6) is a positive-definite matrix, which implies uniqueness.

The relative entropy of P with respect to Peay, is defined as

Pmic(G)

Sn(Pmic | Pcan) = Z Pmic<G) logm_

Gegn

(2.8)

—

For any G1,G2 € Gn, Pean(G1) = Pean(G2) whenever C(G;) = C(Gy), i.c., the canonical probability
is the same for all graphs with the same value of the constraint. We may therefore rewrite (2.8) as

Pmic (G*)

Sn Pmic Pcan =1 D (=)
(Pric | Pean) = log Poun (G)

(2.9)

where G* is any graph in G, such that C (G*) = c* (recall that we assumed that C* is realisable by
at least one graph in G,,). All the quantities above depend on n. In order not to burden the notation,
we exhibit this n-dependence only in the symbols G, and S;,(Pmic | Pean). When we pass to the limit

n — 0o, we need to specify how CH(G)7 C* and 6* are chosen to depend on n. We refer the reader to
[15] where this issue has been discussed in detail.

Definition 2.1 In the dense regime, if

.1
S0 = lim ﬁsn(Pmic | Pcan) =0, (210)

then Pnic and Pean are said to be equivalent.

Remark 2.2 In [31], which was concerned with the sparse regime, the relative entropy was divided by
n (the number of vertices). In the dense regime, however, it is appropriate to divide by n? (the order
of the number of edges).

2.2 Graphons

There is a natural way to embed a simple graph on n vertices in a space of functions called graphons.
Let W be the space of functions h: [0,1]> — [0, 1] such that h(z,y) = h(y, z) for all (z,y) € [0,1]%. A
finite simple graph G on n vertices can be represented as a graphon h% € W in a natural way as (see
Figure 1)

1 if there is an edge between vertex [nz| and vertex [ny]
G — g Yl
W= (@, y) = { 0 otherwise. (2.11)
The space of graphons W is endowed with the cut distance
do(hi, he) == sup / dz dy [hi (2, y) — ha(z,9)]|, hi,hy € W. (2.12)
s,7co,1] [JSxT
On W there is a natural equivalence relation =. Let ¥ be the space of measure-preserving bijections

o: [0,1] — [0,1]. Then hy(x,y) = ha(z,y) if hi(z,y) = ha(ox,oy) for some o € ¥. This equivalence
relation yields the quotient space (W, ), where dg is the metric defined by

6a(hi,hg) == inf _do(hS*,h3?),  hi,hy € W. (2.13)

01,02€%



I
<

A b,
1 7
5 4 |
6 S G _
0 hS(z,y) = 1, on
s | .
% 7 | hG(z,y) =0, else
1 . 3 // :
= 4
6 ’ 1
4 1
2 - |
6 4 |
1 .’ \
6 61 f 1
7 I
e
12 3 4 5 1
6 6 6 6 6

Figure 1: An example of a graph G and its graphon representation h°.

As noted above, we suppress the n-dependence. Thus, by G we denote any simple graph on n vertices,
by h¢ its image in the graphon space W, and by hG its image in the quotient space W. For a more
detailed description of the structure of the space (W, dg) we refer the reader to [4], [5], [11]. In the
sequel we will deal with constraints on the edge and triangle density. In the space W the edge density
and the triangle density of a graphon h are defined by

Tl(h) = A} . dl‘ldliz h(l?l,.fﬁg), Tg(h) = /[O s dLEleEQdCCg h(zl,iﬁz)h(l‘g, 173)h($3,1‘1). (214)

For an element £ of the quotient space W we define the edge and triangle density by
Ti(h) =Ty(h), and Ty(h) = Ta(h),

where h is any representative element of the equivalence class h.

2.3 Subgraph counts

Label the simple graphs in any order, e.g., I} is an edge, F5 is a wedge, F3 is triangle, etc. Let
Ci(G) denote the number of subgraphs Fy, in G. In the dense regime, Cx(G) grows like n'*, where
Vi = |V (F)| is the number of vertices in Fy. For m € N, consider the following scaled vector-valued

function on Gn: ( e (G))’" < e (G)>m
C(G) = (BERZR TN g2 (BRI ) (2.15)

Ve—2 %
nrk k=1 nrk k=1

The term p(F})) counts the edge-preserving permutations of the vertices of Fy, i.e., p(Fy) = 2 for an
edge, p(Fy) = 2 for a wedge, p(F3) = 6 for a triangle, etc. The term C},(G)/n"* represents a subgraph
density in the graph G. The additional n? guarantees that the full vector scales like n?, the scaling
of the large deviation principle for graphons in the Erdds-Rényi random graph derived in [9]. For
a simple graph Fj, let hom(F}y, G) be the number of homomorphisms from Fjy to G, and define the
homomorphism density as

hom(Fy, G) _ p(Fy)Ck(G)

t(Fk’ G) = nVe n Ve

: (2.16)

which does not distinguish between permutations of the vertices. Hence the Hamiltonian becomes

HET(6) = Y 0ut(F.G) =20 (@), G €0, @.17)

k=1

where .
7(6) = (PG, .18



The canonical ensemble with parameter g thus takes the form

Pcan(G | 0_') — en2 [5.T(G)*¢n(§)]’ G e gn, (219)

=

where 1, replaces the partition function Z(0):

~ 1 n2(G. T 1 ~
¥n(0) == —log D e TE) < —5 log Z(0). (2.20)

In the sequel we take ] equal to a specific value 5*, so as to meet the soft constraint, i.e.,
(T) = > T(G)Pean(G) =T". (2.21)
Gegn

The canonical probability then becomes
Pcan(G) = Pcan(G | 9_;) (2.22)

Both the constraint 7* and the Lagrange multiplier 6* in general depend on n, i.e., T =T ~ and
0* = 0. We consider constraints that converge when we pass to the limit n — oo, i.e.,

nl;n;o T, =Tx. (2.23)
Consequently, we expect that . .
lim 6; =07 . (2.24)
n—oo

Throughout the sequel we assume that (2.24) holds. If convergence fails, then we may still consider
subsequential convergence. The subtleties concerning (2.24) are discussed in [15, Appendix A].

2.4 Variational characterisation of ensemble equivalence

The expression in (2.17) can be written in terms of graphons as
H(,T(G)) =n>Y_ O t(Fi, h°). (2.25)
k=1

With this scaling the hard constraint T* has the interpretation of the density of an observable quantity
in G, and defines a subspace of the quotient space W, which we denote by W*, and which consists of
all graphons that meet the hard constraint, i.e.,

W*:={heW: T(h) =T} (2.26)
The soft constraint in the canonical ensemble becomes (T') = T* (recall (2.5)). Recall that for n € N
we write 6% for 5;’;

In order to characterise the asymptotic behavior of the two ensembles, the entropy function of a
Bernoulli random variable is essential. For u € [0, 1] we define

I(u) := gulogu+ (1 — u)log(1 — u). (2.27)

We extend the domain of this function to the graphon space W by defining
I(h) = / dz dy I(h(z,y)) (2.28)
[0,1]2

(with the convention that 0log0 = 0). On the quotient space (W,8n) we define I(h) = I(h), where
h is any element of the equivalence class h. In order to keep the notation minimal we use I(-) for
both (2.27) and (2.28). Depending on the argument of the function it will be clear which of the two is
considered. The key result in [15] is the following variational formula for s..



Theorem 2.3 [15] Subject to (2.21), (2.23) and (2.24),

/li_>m 128, (Pmic | Pean) =1 Soo (2.29)
with . L ~ . L ~
Seo = SUP [9;; T(R) — I(h)] — sup [9;;0 - T(h) — I(h)] . (2.30)
heWw heWw*

Theorem 2.3 and the compactness of W give us a variational characterisation of ensemble equivalence:

Se0 = 0 if and only if at least one of the maximisers of 6%, - T'(h) — I(h) in W also lies in W* C W.
Equivalently, soc = 0 when at least one the maximisers of 9;0 H(l}) -1 (h) satisfies the hard constraint.
Theorem 2.3 allows us to identify cases where ensemble equivalence holds (so = 0) or is broken
(S0 > 0). In [15] a detailed analysis was given for the special case where the constraint is on the total
number of edges and the total number of triangles. The analysis in [15] relied on the large deviation
principle for dense Erdés-Rényi random graphs established in [9]. The function defined in (2.27) plays
a crucial role and is related to the rate function of the large deviation principle.

Theorem 2.4 [15] For the edge-triangle model, soo = 0 when
o T; =17,
e 0< Ty <1 and T =0,
while s > 0 when
o T3 AT1% and Ty > &
o T3 AT, 0<Ty < 5 and 0 < T5 < &,

o (T7,Ty) lies on the scallopy curve in Figure 2.

Here, T7, Ty are in fact the limits Ty ., 75 ., in (2.23), but in order to keep the notation light we now
also suppress the index co.

o) (L,1)
— Soo =0
— Soo >0
Soo > 0
S o N
j=<3
=
i3
<
3
b
=
=
=
0,%)
(0,0) =Ty (217 — 1)
(3, 0) (1,0)
edge density 17

Figure 2: The admissible edge-triangle density region is the region on and between the blue curves [27].

Theorem 2.4 is illustrated in Figure 2. The region on and between the blue curves corresponds to the
choices of (T, Ty) that are graphical, i.e., there exists a graph with edge density 75 and triangle density



T5. The red curves represent ensemble equivalence, the blue curves and the grey region represent
breaking of ensemble equivalence, while in the white region between the red curve and the lower blue
curve we do not know what happens. Breaking of ensemble equivalence arises from frustration

The lower blue curve, called the scallopy curve, consist of infinitely many pieces labelled by ¢ € N\{1}.

The ¢-th piece corresponds to 15 € (‘]_71, H_Ll] and a T that is a function of 17" given by

(=) (¢ 2/I- T D)) (4 V- T+ D)

(0 +1)2

We refer the reader to [24], [26], [27] and [29] for more details. The structure of the graphs drawn from
the microcanonical ensemble was determined in [24] and [27]: the vertex set can be partitioned into ¢
subsets, the first £ — 1 subsets have size |cyn], the last subset has size between |c¢yn| and 2|cn], where

= {1 + m} €[4, L. (2.32)

2

(2.31)

Ty =

1 1
0.9 0.9
0.8 0.8
0.7 0.7 (=1
& <
= S 061
5 0.6 é
g &
. S 05
£ os &
3 S
" Soal
0.4r
031
0.3
0.2
0.2
0.1
01 . . . . . . . .
0 01 02 03 04 05 06 07 08 09 0 : : : :
Edge density T} 0 01 02 03 04 05 06 07 08 09

Edge density T}
Figure 3: For ¢ € N: ¢, (left) and p; (right) as a function of 77"

The graph has the form of a complete ¢-partite graph, with some additional edges on the last subset
that create no triangles within that last subset. The optimal graphons have the form

1, J1<k<l:x <kcg< yory<ke <u,
9 (z,y) == 4 pe, (—1)ce <z < FA+{U—-Deg]<yor ({—1)cg <y< i1+ —-1)]<uz,
0, otherwise,
(2.33)
where
deel=bed) g q), (2.34)

P
Figure 3 plots ¢, and p; as a function of T} for £ € N. Figure 4 is an illustration of g; for £ € N and

T € (7, o

3 Theorems

In this section we present our results. Our results address the following two issues:

o In Theorems 3.1-3.3 we identify the scaling behaviour of s, for fixed T} and Ty | T73, re-
spectively, Ty 1 T;3. It turns out that the way in which s, tends to zero differs in the two
cases.
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Figure 4: The graphon g; for £ € N and Ty € (2, 2.

o In Theorems 3.4-3.6 we characterise the asymptotic structure of random graphs drawn from
the microcanonical ensemble when the hard constraint is on the edge density and the triangle
density. Our results indicate that the structure of the graphs differs in the two cases, i.e. Ty | 173,
respectively, Ty 1 T3,

In the sequel we make the following assumption:

Assumption 1 Fix the edge density 77 € (0, 1) and consider the triangle density 772+ 3T} e, for some
e either positive or negative. For this pair of constraints we consider the Lagrange multipliers 0% (€) :=
(01 (e),05(€)) as defined in Section 2.3. Then, for € sufficiently small, we have the representation

sup [0 (T3 (R) + 03 () To(h) — I(R)| = 0,7 — I(TY) + (nTf + T+ O(),  (3.1)
heWw

where 61 := 601(0),v1 = 07(0) and 2 = 65(0).

In Section 4.1 we show that Assumption 1 is true when T; € [%,1). For Ty € (0, 1) we can prove (3.2)
and (3.3) below but with > replacing the equality. If Assumption 1 is true, then we again obtain (3.2)
and (3.3) with equality. If it fails, then we have strict inequality.

Theorem 3.1 For T} € (0,1),
1

lim € Lsoo (T, T1 + €) = ———— € (1,00). 2
im ¢ Soo (T1, 17 + €) 2T1*(17T1*)€(700) (3.2)
Theorem 3.2 For T} € (0, 3],
lim e s (T7, T2 — €) = L1(2T7) — I(T7) € (0, £ log 2). (3.3)
Theorem 3.3 For € N/{1} and T} € (34, 751,
lim e 23500 (T7, T1 — €) = L(1 — (¢ — V)ee) I (pe) — I(T7) € (0, L log 2). (3.4)

el0

We illustrate these results in Figure 5 below. In the left panel we plot the limits in the right-hand side
of (3.3)-(3.4) as a function of T5. In the right panel we plot so. (75, T;3 + €) as function of ¢, for €
sufficiently small, and for four different values of T7.

In Theorems 3.4-3.6 below we identify the structure of the graphons corresponding to the perturbed
constraints in the microcanonical ensemble in the limit as n — oo.



g
—T'=05 8T, T +e)
— e TE= 066
0.35¢ —Tl*: 0.75 /'l
— = T'=091 /
| ;
! ;
03F Ne=2 fle=3 J
| | 7
i i /
! ! (=4 ;
ot ! 0\ /
I ! I/ J
b ! [ 7
g 1 P /
g 021 (=1 I [ N /
g 1 P 7
¥ 1 P /
1 P /
7 0157 ! P! N / .
E ! b /
3 ! P - /
A 01 ! L R / 7
h | L N\ Yy
! P ~. N\ | S 4
| | [ ~.. / 2
0051 i R \'\.\ /
i R : ! ! . . . . . \ |
1 P 1 08 06 04 02 0 02 04 06 08 1
0 1 1 1 1 | 1 | L LIl

-3
0 01 02 03 04 05 06 07 08 09 10

Edge density Ty

Figure 5: Limit of scaled s as a function of T} € (0,1) (left panel) and of s as a function of € for e
sufficiently small (right panel).

Theorem 3.4 When the ER-line is approached from above, the optimal perturbation of the graphon is

h =T} +Veg" + O(e) (global perturbation) (3.5)
with g* the graphon
2, (z,y)€10,5)%
g (@y) =4 0, (zy) €[0,5] x (3, 1]U(5.1] x [0, 3], (3.6)

Theorem 3.5 When the ER-line is approached from below and Ty € (0, %], the optimal perturbation
18
h =17 1p=2\0. + 90, (local perturbation) (3.7)

with O = [0,6/1/3]2, ¢ = e+ O(e*?) and g7y, the graphon

. 2T, O<:£<%e’1/?’<y<e’1/3 0r0<y<%e’1/3<x<e’1/3,
gt (@) = (3.5)
0, otherwise.

Theorem 3.6 When the ER-line is approached from below and T} € (5771,“_%], ¢ € N/{1}, the
optimal perturbation is

h =17 1jp1=\0, + 971, (local perturbation) (3.9)

with O = [0, 6’1/3]2, ¢ = e+ O(e*?) and g , the graphon

1, J1<k<l:a <kee? < yory<k0ge’1/3<x,
. Do, (£ — 1)6@6/1/3 <z < 14— 1)@]6’1/3 <y<ell?
9, (z,y) = /1/3 1 /1/3 /1/3 (3.10)
€ or (£ — 1)cge <y< 1+ E—=1ce” <z <7,
0, otherwise.

The terms c; and p; were defined above in (2.32) and (2.34).

10



In conclusion, Theorems 3.1-3.3 say that at a fixed density of the edges it is less costly in terms
of relative entropy to increase the density of triangles than to decrease it. The ER-line represents a
crossover in the cost (see Figure 5, right panel). Above the ER-line the cost is linear in the distance,
below the ER-line the cost is proportional to the %—power of the distance. Theorems 3.4-3.6 show that
the optimal perturbation of the ER-graphon is global above the ER-line and local below the ER-line.
Note that, as we move down from the ER-line to the scallopy curve in Figure 2, the optimal graphons
in (3.8) and (3.10) converge to the optimal graphon in (2.33).

4 Proofs of Theorems 3.1-3.3

In this section we prove Theorems 3.1-3.3. Along the way we use the results given in Theorems 3.4-3.6,
which we prove in Section 5.

4.1 Proof of Theorem 3.1

For ease of notation we drop the superscript * from the constraint on the edge density and write T
instead of T7. Let
Ti(e) =Ty,  Tole) =T+ 3Te. (4.1)

The factor 377 appearing in front of the € is put in for convenience. We know that for every pair
of graphical constraints (77 (€),T>(€)) there exists a unique pair of Lagrange multipliers (6;(¢),02(€))
corresponding to these constraints. For an elaborate discussion on this issue we refer the reader to [15].
By considering the Taylor expansion of the Lagrange multipliers (61(¢), 82(¢)) around € = 0, we obtain

01(e) = 61 + y1e + %FleQ + O(€), O2(€) = o€ + %FQCQ + 0(63), (4.2)

91(0) = 91 = Il(Tl), Y1 = 9/1(0), Fl = 0/1/(0), 6‘2(0) = O, Y2 = 9/2(0)7 PQ = 0/2/(0)

We denote the two terms in the expression for s, in (2.30) by I, I, i.e.,

So0 = sup [fe - T(h) = 1(h)] = sup [foc - T(h) — I(R)] = I — I, (4.4)
heWw heW =

and we let s, (€) denote the relative entropy corresponding to the perturbed constraints. We distinguish

between the cases T} € [3,1) and Ty € (0, 3).

Case I Ty € [5,1): From [15, Section 5], if 71 € [1,1) and T, € [§,1), then the corresponding
Lagrange multipliers (61, 63) are both non-negative. Hence from [7, Theorem 4.1] we have that

I == sup [el(em(/z) + 05(e)T(h) — 1(;})] = sup [01(e)u+ Oy(e)u® — I(u)], (4.5)
heWw 0<u<l1

and, consequently,

L= sup [01(e)u+0x(e)u® — I(u)] = 0y ()u(e) + Oa(e)u”(€)® — I(u*(e)). (4.6)

0<u<1

The optimiser u*(e) corresponding to the perturbed multipliers 67 (e) and 63(e) is analytic in €, as
shown in [28]. Therefore, a Taylor expansion around ¢ = 0 gives

u*(€) =Ty + e + A + O(€%), (4.7
where § = u*'(0) and A = u*”(0). Hence I; can be written as

I =0Ty — I(Ty) + (mTy + 7T9)e + O(€%). (4.8)
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Moreover,

I = [0 +vie + 30162 + O(®)| Ty + [y2e + 3T26® + O(*)| (T + 3Tve) — _inf I(h)
heWwr (4.9)
=0T + Tie+ 3T1Ti€ + Tivyae + A00TPE + 3Tyy0e? — J4(e) + O(€?),

where

JY(e):= inf I(h),  W!:={heW: Ti(h) =T, To(h) = T3 + 3T1€}. (4.10)
hew
Consequently,
Soo(€) = JH(€) — I(Ty) + O(€?). (4.11)

Denote by fz: one of the, possibly multiple, optimisers of the variational problem J*(¢). From
Theorem 3.4 we know that any graphon, denoted by A for simplicity in the notation, in the equivalence
class hf has the form h¥ =T + v/eg + O(€) for some function g € U, where

U:= {g: [0,1]> = R, g symmetric, / dz dy g(z,y) =0, / dz dy dz g(z,y)g(y, 2) = 1} .
[0,1]? [0,1]

(4.12)
By considering the Taylor expansion of the function I around € = 0, we get

JHe) = I(Ty) + I'(Ty) e inf (/ dxdyg(z,y)) +11"(Ty) € inf (/ dx dyg(:z:,y)2> + o(e)
[0,1)? [0,1)?

geU geU

=I(Th) + 31" (T1) € inf (/ dxdyg(x,y)2> + o(e)
[0,1]2

geU

= I(Tl) + %I”(Tl)V + O(E),

(4.13)
where
V = inf / dzdy g(z,y)? |, (4.14)
geU [0,1]2
Hence we obtain
S00(€) = K¥(T1) € + o(€) (4.15)
with
KYT) = 1" (T)V = LV (4.16)
2 4Ty(1 —T7y)

At the end of Section 5.1, in (5.51), we show that V' = 2. Hence we have that K+(T}) = I"(T}) =
11
2T (1-T1)"

Case II Ty € (0,3): Consider the term Iy := supj,y {Ol(e)Tl(INz) + 0(e)To(h) — I(ﬁ)}, as above.
If Assumption 1 applies, then this case is proved in the same way as Case 1. Otherwise, consider the
following straightforward lower bound

sup |bh ()T (h) + 02 (e)To(h) — I(ﬁ)] > sup [f1(e)u+ Oa(e)u’ — I(u)]. (4.17)
heWw 0<u<1

The arguments used in Case I after (4.6) apply, and the result in (4.11) is obtained with an inequality
instead of an equality.
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4.2 Proof of Theorem 3.2

In this section we omit the computations that are similar to those in the proof of Theorem 3.1 in
Section 4.1. Let

Ti(e) =Ty, Tole)=T T} e (4.18)
The perturbed Lagrange multipliers are
91(6) = 91 + Y1€ + %F162 + 0(63)7 92(6) = 7Y2€ + %FQGQ + 0(63)7 (419)
where
91 = I/(Tl), Y1 = 9/1 (0), Fl = 9/1/(0) Y2 = 9’2(0)7 F2 = 9’2/(0) (420)

We denote the two terms in the expression for s, in (2.30) by Iy, I3, i.e., Soo = I1 — Iz, and let s (€)
denote the perturbed relative entropy. The computations for I are similar as before, because the exact
form of the constraint does not affect the expansions in (4.7) and (4.8). For I3, on the other hand, we

have
IQ = 91T1 —+ "le1€ —+ %F1T162 —+ T13")/26 -+ %F2T1362 — Tls’)/2€2 — JlT(E)

5 N N (4.21)
=0Ty + Tie+ Tl Vo€ — Jl (6) + 0(6 ),
where ~ o R R
Jl(e) := inf I(h), W ={heW: Ty(h) =T, Ta(h) =T — T} ¢}. (4.22)
heW
Consequently,
soo(€) = Tl (e) = I(T1) + O(e%). (4.23)

Denote by iL: one of the, possibly multiple, optimisers of the variational problem J'(¢). From Theorem
3.5 we know that, for Ty € (0, 3], any graphon, denoted by h? for simplicity in the notation, in the

equivalence class b has the form
he =Ty Lo, + 90, (4.24)

with O = [0, 6'1/3]2, ¢ =€+ O(e*?) and g7, the graphon

. 2Ty, O<z<idP<cy<dPoro<y<id?<a<d?
95, (z,y) == ! (4.25)
0 otherwise.
Hence
JHe) = I(Ty) + /3 (§1(2Ty) — 1(T)) = I(Ty) + K] (T1) &, (4.26)
which gives
S500(€) = KT (T1)€2/3 + o(¥/3), (4.27)

where K] (T}) :=
0.

11(2Ty) — I(T1). The latter is larger than zero because I is convex and I(0) = I(1) =

4.3 Proof of Theorem 3.3

The computations leading to the expression for the relative entropy in the right-hand side of (3.4) are
similar as those in Section 4.2, and we omit them. Hence we have

s00(€) = I} () = I(T1) + O(&?), (4.28)
where, for £ € N\{1} and T} € (-3, 124%1]’
Jl(e):= inf I(h), Wr:={heW:Ty(h) =T, To(h) =T - T} ¢}. (4.29)

hGW*

In this case the optimal perturbation depends on the value of £. We observe that the construction in
(4.25) is not possible for 77 € ( ,1]. This is because a bipartite graph has maximum edge density
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equal to % From Theorem 3.6 and after a straightforward computation we get that the first term in
the right-hand side of (3.4) corresponds to the entropy of the graphon given in (3.10). In what follows
we prove that the right-hand side of (3.10) is positive. We consider, for £ € N and T} € the
function

(= 7l

Le(Ty) = 51— (£~ D)er)I(pe), (4.30)

where ¢y and p; are defined in (2.32) and (2.34), and depend on T; (we suppress this dependence from

the notation). In what follows we prove that, for every £ € N\ {1} and Ty € (42, “_Ll],

Lo(Th) = 5(1 — (€ = 1)ep)I(pe) > I(Ty). (4.31)

In the proof we will need the following lemma.

Lemma 4.1 For every £ € N, py as a function of Ty is increasing and concave on the interval

(e7717 e-s-LlL and maps this interval to (0, 1].

Proof. From (2.34) we have that

4Cg(1 — sz)
S S .7 4.32
Pe (1 — (6 — 1)0@)27 ( )
where ¢, is defined in (2. 32) A straightforward computation shows that, for 177 = Z_Tl, cp = % and

pe = 0. Similarly, for T} = ¢

T, we obtain

“_1, = é—&%l and p; = 1. Computing the derivative of py, with respect to

, Ay (T —cg(0+1)) 1 1

= ith ¢)=——————. 4.33
PEET e M T T g gy (4.33)
Substituting ¢, into the expression for p}, we obtain
2 1
= 4.34
e i a0 De)? (4:34)

Observe that ¢ < 0. From (2.32) we get that ¢, € (747, +]. Thus, from (4.34) we get that p, > 0 on

T+ ¢
every interval (£33, ; fl] (see Figure 3). A straightforward computation from (4.34) shows that
6(¢—1) c
1" 4
= - < 0. 4.35
A (VO (43
|
From Lemma 4.1 we see that p, is a one-to-one mapping of the interval ( , efl] o (0,1]. Hence
there is a unique T} € (5, ﬁ] at which I(pg(T})) is minimised, namely, the unique solution of
the equation p, = % on (5_71, Hil]. Existence and uniqueness of this solution follows from Lemma
4.1. Moreover, I(py(T})) = 1logi. The function Ly in (4.31) is just a rescaling of I(p;) on the
interval (E*Tl, é-&-il]' The scaling is due to the multiplication by the factor (1 — (¢ — 1)c¢), where
11— (0 —1)er) € (5, é—) Hence, for every ¢ € N and every Ty € (472, HLlL
Lo(Ty) > ——I(po). (4.36)
(41 i1 De :
o =1 ¢
Therefore it suffices to show that, for every £ € N and every Ty € (7, 715],
—1 > I(Ty). 4.37
/+1 (pe) (T1) ( )
On the interval (ET ZL] the function m I(p¢) attains a minimum at the unique point 7) where
pe(Th) = 1, with minimum value equal to m I(1). On the same interval the function I is increasing
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because ¢ € N\ {1}, and attains its maximum value at Ty = ;2. Hence it suffices to show that, for

every £ € N\ {1}, o
I(3)>@+nr (Hil) . (4.38)

The function (z + 1)1 (H_%), x > 1, is decreasing because

/
T T 1 T T
1 I =17 r =1 0. 4.39
<( +2) 1+x>) <1+x>+l+x <1+x) Og1+x< (4.39)

Thus, (z +1)I(13) < 21(3) < I(3), z > 1, which proves (4.38) and consequently also (4.30).

5 Proofs of Theorems 3.4-3.6

In this section we prove Theorems 3.4 - 3.6. In Section 5.1 we prove Theorem 3.4 and in Section
5.2 we prove Theorem 3.5. The proof of Theorem 3.6 is similar to the proof of Theorem 3.5, just
the computations are slightly more involved. We include a discussion on how to extend the proof of
Theorem 3.5 for this case in Section 5.2.

As we have already seen in Section 4, the following variational problems were encountered:
(1) For Ty € (0,1),
JH(e) =inf {I(h): h € W, Ty(h) = T1, To(h) = T} + 3Ty€}. (5.1)

(2) For Ty € (0, 3]

Ji(e) = inf {I(h): h e W, Ty(h) = T}, To(h) = T} — T{e}. (5.2)
(3) For Ty € [+, 5], £ € N/{1},
Ji(e) =inf {I(h): he W, Ti(h) = T1, To(h) = TF — TPe}. (5.3)

In order to prove Theorems 3.4-3.6, we need to analyse these three variational problems, for e suf-
ficiently small, which is the objective of this section. We analyse these variational expressions with
the help of a perturbation argument. In particular, we show that the optimal perturbations are those
given in (3.5), (3.7) and (3.9), respectively. We summarise the results in the following three lemmas.
The results in Theorems 3.4-3.6 follow directly from these lemmas.

Lemma 5.1 Let Ty € (0,1). For € > 0 consider the variational problem J*¥(e) given in (5.1). Then,

for € sufficiently small,
JHe) = I(Th) 4 I""(Th)e + o(e), (5.4)

Lemma 5.2 Let Ty € (0,1]. For e > 0 consider the variational problem JI(€) given in (5.2). Then,

for € sufficiently small,
Jl(e) = I(T1) + /% (51(211) - [(TY)) - (5.5)

Lemma 5.3 Consider an £ € N\{1} and let Ty € (Z_Tl,p%l]. For € > 0 consider the variational

problem Jg(e) given in (5.3). Then, for e sufficiently small,
JHe) = I(Ty) + ¢ (5(1 = (€ = Ve (pe) = 1(Th)) (5.6)
where ¢y and py are functions of Ty defined in (2.32) and (2.34), respectively.

f(e)
g(e)

In what follows we use the notation f(e) =< g(e), for two functions f,g, when converges to a

positive constant, as € | 0.
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5.1 Proof of Lemma 5.1

In this section we prove Lemma 5.1. Before presenting the technical details of the proof we first
explain how Theorem 3.4 follows from Lemma 5.1. Afterwards, we intuitively explain why the results
in Theorem 3.4 and Lemma 5.1 are true. In order to find the optimal perturbation when the ER-line is
approached from above we need to solve J¥(¢) in (5.1). From Lemma 5.1 we get that the optimiser lies
in a the smaller class of graphons, those having the form given in (3.5). The following construction,
which is not necessarily the optimal one, shows intuitively why the optimal perturbation has the form
n (3.5). Consider the following inhomogeneous ER-random graph on n vertices. We split the vertices
of the graph into two parts of equal size, that is of size n/2. In one part we connect two vertices with
probability T7 + 24/€, in the second part we connect two vertices with probability T} — 24/ and we
connect vertices lying in different parts with probability 7;. This graph has expected edge density
equal to

1 n n
o (nGreme2(3)+@m-2va(3)) =7 5.7
2
Similarly, the expexted triangle density is equal to

11
BE ((Ty 4+ 2v/€)® + 3TT(Ty + 2v/€) + 317 (Th — 2V/€) + (T1 — 2V/€)®) = T} + 3Txe. (5.8)
In the proof below we will see that the optimal perturbation is indeed given by the graphon counterpart
of the inhomogeneous ER-random graph described above. We now proceed to write out the technical
details of the proof.

Our argument relies only on the strict convexity of the function I(-), defined in (2.27). With a
slight abuse of notation we write (-) for both cases of a graphon and a real number. We consider the
variational problem J*¥(¢) for € > 0 as given in (5.1). We denote by h** one of the, possibly multiple,
optimisers of J¥(¢). For simplicity in the notation, in what follows, we work with a representative
element, denoted by h**, of the equivalence class iL’E"i We write the optimiser h** in the form X% =
Ty + AH, for some bounded symmetric function AH, defined on the unit square [0,1]? and taking
values in R. This term will be called the perturbation term. The optimiser h*' has to satisfy the

conditions on the edge and triangle densities, i.e.,
Tk =T, and  Ty(ht) =T} +3The. (5.9)

Hence the perturbation term AH, needs to satisfy the following two constraints
(G): / dzdy AH.(z,y) = 0, (5.10)
[0,1]

and

(Ga): 3Ty / dedydz AH.(z,y)AH(y,2)
0.1] (5.11)

—I—/ dedydz AH(x,y)AH(y,2)AH:(z,2) = 3T1e.
[0,1]3

We split the proof into two steps. In Step 1 we show that in order to solve J¥(¢) it suffices to look at
graphons that are piece-wise constant functions on [0, 1]? with two possible non-zero values. In Step 2
we show that it suffices to look at the variational problem given in (5.4), i.e., the optimal perturbation
is a two-step function and on the order of \/e. In Step 1 we do not yet take the two constraints (G)
and (G2) into consideration, we proof the more general result that, if we want to minimise I(-), we
may restrict ourselves to the subclass of piece-wise constant graphons. In Step 2 we consider the class
of piece-wise constant graphons satisfying the constraints.
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Step 1: We show that, in order to solve the variational problem J* (), it suffices to look at graphons
that are piecewise constant with two non-zero steps. Such graphons correspond to inhomogeneous
ER random graphs. Consider, for € > 0, the perturbed graphon 71 + AH., where AH, is a bounded
symmetric function defined on [0, 1]2. For this function we consider the two sets

I = {(z,y) €0,1]*: AH(z,y) > 0},

_ ) (5.12)
T~ =A{(z,y) €[0,1]": AHc(z,y) <0},

and suppose that 0 < A(J1) < 1. In Step 2 we will see that this condition is indeed satisfied in our
setting. We consider the two-step function, denoted by AA,, defined on [0, 1]> where the steps are the
average values of AH, on JT and J~, respectively, i.e.,

AAE = A+1j+ + Ai].j—, (513)

where . )
AT = 7/ dedy AH.(z,y), A  =——

N7 [ A Al AT

On the complement of JT U J ™, AA, is equal to zero. We note that it is not necessary that A(J ) +
A(J~) = 1. In what follows we show, using the strict convexity of I and Jensen’s inequality, that, for

a given € and a perturbation term AH.,

/ ) dedy AH(z,y). (5.14)

I(Ty + AH,) > I(Ty + AA,). (5.15)

Again, with a slight abuse of notation we use I(-) for the function defined on the graphon space and
on the unit interval. Substituting the graphons and using the convexity of I(-) and Jensen’s inequality
yields

I(h™) = I(Ty + AH,) = / dedy I(Ty + AH (z,v))
[0,1]2

J+

>ANIN) I (T1 + ﬁ - dzdy AH(z, y)) (5.16)
FAT) I <T1 + ﬁ/ dedy AHe(x,y)>

=AMIN)I(Ti+AY)+ NI ) I(Tv+ A7) = I(Ty + AA,),

which proves (5.15). This argument shows that solving the variational problem J¥(¢) defined in (5.1)
reduces to minimising I(-) amongst graphons taking two non-zero values and satisfying the two con-
straints (G1) and (G2) given in (5.10)—(5.11).

Step 2: In Step 1 we have shown that it suffices to restrict to graphons that can be written in the
form T; + g*, where g* is a bounded, symmetric function defined on [0, 1]2, taking two non-zero values,
ie.,

9 =9+1lg+ +9-17-, (5.17)
for constants gy,g_ € (=Ti,1 —T1) (depending on ¢€) and some sets J, 7~ C [0,1]? (possibly
depending on €) with 0 < A\(J ), A\(J~) < 1. For such a graphon we have

Ty +g") = MT) I(T1 + g4) + AT ™) I(T1 + g-). (5.18)

Note that the value of I(T} + g*) depends only on the size of the sets JT, 7. In what follows we
analyse the variational problem of minimising 7(-) among all piece-wise constant graphons, as defined
above in (5.17), satisfying the constraints in (5.10) and (5.11). From (5.10) we obtain the first equation

GNTH) = —g-MT ). (5.19)
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Before moving to the constraint in (5.11) we show that it suffices to restrict ourselves to the class of
graphons such that J© = I x [ and J~ = J x J for some I,J C [0,1]. Consider the graphon g*
defined above in (5.17). For this given graphon we construct a graphon ¢* = gy1lrxs + -1y« for
some g4 > 0,9_ <0,1,J C[0,1] such that

G MDD =—g_NJ)* and I(Ty +g%) > I(Th +§%). (5.20)

Let g, = gy and g = g_, and we choose I,J such that \(1)?2 < ANJT), A(J)? < AT ™) and
2

i‘((LI]))Q = igt; Since 0 < AM(JT),AM(J~) < 1 we can always chose such sets I,J C [0,1]. Using a

Taylor expansion we get that

I(Ty +g) = I(T1 + §) = I'(TY)(MT g + MT 7)g- = Mg+ = MJ)*g-) (5.21)
+ 51" (E)NTF) = MDDt + 51"(E)NT ) = MJ)*)g?
= 31"(E)NITT) = AD*)g? + 51" (&) NI ) = AJ)*)g?,

for some & € (T1,T1 + g+) and & € (Ty + g—,T1). By convexity of I(-) we have that I”(&;) > 0 and
I"(&) > 0. Hence we have that
I(Th+g)>I(Th +9), (5.22)

which shows that we can restrict ourselves to graphons of the form

g =gslrxr +9-15x75, g9+ >0, g <0, (5.23)

which satisfy the conditions in (5.10) and (5.11). We proceed with the condition in (5.11). A standard
computation yields

/ dzdydz g*(2,y)9%(y, 2) = MI)* g% + A(J)* g2 (5.24)
0,13

and
/ dedydz g*(z,9)g" (4, 2)g" (2, 2) = A1) g2 + A(J)*g2. (5.25)
[0,1]3

Using the condition in (5.19), we get

3T1/[ | dz dy dz g*(m,y)g*(y,z)—i—/ dedydz ¢*(z,v)9" (v, 2)9" (2, )
0,1]3

[0,1]3
s o ALY D (5:26)
= 2 S5O 4 A(D) = 6 57 (D! = A()Y) = STie + o).

There are multiple ways in which the condition in (5.26) can be met. We show that the lowest
possible value of I(-) is attained when g4 =< /e, g— =< —/e and A(I), A(J) are constant. To that end
we distinguish the following cases:

D
g% 3T A;é))g (AJ) + A(D)) < e, 3 ii‘gj (A2 = X(J)3) = o(e), (5.27)
which splits into three subcases:
(Ia)
gr =2 gl = €2 /;\((Q = 1. (5.28)
(Ib)
gy < VB g o (1/2-0 ):\({]))3 =¥ se (0, 4). (5.29)
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(Ic)
AJ)3
L= /2T g = /2 A = 5e(0,4] (5.30)

(IT)
A(J)?

A()

Lo e 5>0. (5.31)

g% 3T AJ)+ M) < e —g_-

A simple calculation shows that in all four cases above A(I) + A(J) < 1 and A(1)® — A(J)? < 1 hence
we can omit these two factors from the analysis below. In what follows we exclude cases (Ib), (Ic) and
(IT) one by one by comparing them to graphons of the type given in case (Ia).

Case Ib: We show that, for € > 0 sufficiently small, graphons having the structure indicated in (Ia)
yield smaller values of the function I(-) than graphons with the structure in (Ib). We consider two
graphons, denoted by T7 + g and T + g, where g is as in Case (Ia) and § is as in Case (Ib). Before
giving the technical details of the proof, we present an intuitive argument why I(T} + g) < I(T1 + §).
In what follows we will denote by B(p) a Bernoulli random variable with parameter p. The function
—I(x), z € [0,1], defined in (2.27) represents the entropy of a B(z) random variable with parameter x.
On the graphon space the function —I(h), h € W, defined in (2.28) can be seen as the expectation of
the entropy of a Bernoulli random variable with a random parameter (the expectation is with respect
to the random parameter), i.e., B(h(X,Y)) with (X,Y) a uniformly distributed random variable on
[0,1]%. For h € W we have

)= [ dwdy (1A 0)] = BRG] (532)
0,1
Hence we have the following equivalence
KTy +g) <I(Ty + §) & E[-I(Ty + g(X,Y))] > E[-I(T1 + §(X,Y))], (5.33)
where (X,Y) is a uniformly distributed random vector on [0,1]2. Instead of working with entropy, it

is intuitively simpler to work with the relative entropy with respect to the random variable B (%) The
relative entropy is defined by

() := xlog? + (1 —=z)log ! ;137 xz € 10,1]. (5.34)

1
2 2

vl=| |

Note that

E[-I(Ty + (X, V)] > E[-I(Ty + §(X,Y))] & E[I (Ty + g(X, Y))] <E[[(Ty + §(X,Y))].  (5.35)

1 1
2 2

We first give an intuitive argument and afterwards prove that

E[I5 (Th + g(X,Y))] < I, (T, + (X, Y))]. (5.36)

1 1
2 2

We distinguish between two cases Ty € (0, 3] and Ty € (3,1]. The case T1 € (0, 3] follows by using

similar arguments as in case Ty € (3,1). We treat in detail only the case T} € (1,1).

The relative entropy of a random variable with respect to B(3) is zero if and only if that random
variable is equal to B(%) So, in order to compare the relative entropies in (5.36), we need to see
how close the Bernoulli random variables with random parameters T + g(X,Y) and 71 + g(X,Y)
are to B(%). We are considering the case Ty > 3. Hence the random variables B(T} + g(X,Y)) and
B(T1 + §(X,Y)) will be close to B(3) when the random parameters T} + g(X,Y) and T1 + §(X,Y)
are close to 3. This is the case when g(X,Y) and §(X,Y) are negative. These events occur with

probabilities

P(T) + g(X,Y) < Th) = P(g(X,Y) < 0) = P(¢(X,Y) = g_) = A(J)® = 1, (5.37)
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because of the properties of the graphon in Case (Ia). Similarly, we have that
P(Ty + §(X,Y) <T1) =P(G(X,Y) <0) =P(G(X,Y) = g_) = \(J)? =< €¥/3, (5.38)

for some ¢ € (0, %], because of the properties of the graphon in Case (Ib). Hence we see that the random
variable B(T} + g(X,Y)) is closer to the random variable B(%) with much higher probability than the
random variable B(T; + §(X,Y’)). We can see this by computing the corresponding expectations,

E(g(X,Y) | g(X,Y) =g )P(g(X,Y) =g_) = g_P(g(X,Y) = g_) < /2, (5.39)
while
E@G(X,Y) | §(X,Y) =g )P(GX,Y) = §-) = g-P(§(X,Y) = ) < e/2702/3 = e!/219/3 (5 40)

In what follows we complete this argument by adding the technical details. We work out the expressions
in the left-hand and right-hand sides of (5.36). The expression at the right-hand side of (5.36) can be
written as

(T +9(X,Y)] = LIy (Ty + 94) + K1 (Ty + g-) + (1 = L — K)I,(Th), (5.41)

1 1
2 2

for some constants L :=P(¢g(X,Y) = ¢g4) and K =P(g(X,Y) = g_) independent of €. Similarly,

(Ty+§(X, )] = ML (Ty + 1) + €21 (T + §-) + (1= A1)? = 7)1 (Th),  (5.42)

N|=

1
2

where A(I)2 = P(§(X,Y) = §4) =< 1 and P(§(X,Y) = §_) = €*9/3. Moreover, we recall that from the
properties of the graphons in Case (Ia) and Case (Ib) we get

g+ =Ve, go =< —ve, gyx=xe /PR g =200 5 e(0,3). (5.43)
Hence, for T € (%, 1] and e sufficiently small, because of (5.43), we obtain the following inequalities:

LTy +g4) > 1 (Th + g4) > L (Ty +g-) > I (Ty + §-). (5.44)

1
2
Using a Taylor expansion of the function I(-) around T; and the first order conditions

Loy +Kg_ =0 and MI)%j; +M(J)%5_ =0, (5.45)

we observe that (5.41) and (5.42) are equal to

E[I(Ty + g(X,Y))] = I3 (Th) + 3 I (T1)(Lg + Kg2) + 0 (g7 +4°). (5.46)
and
B[4 (T + §(X, V)] = I (Th) + 3L (T332 + A(H%52) +0 (MI)32 + A(H%2 ). (5.47)

Using (5.43), we observe that Lg? + Kg* =< € and /\(f2)§i +A(J)2G2 = 1 H20/3 4 A/301-20 — (1-25/3
Hence for e sufficiently small we observe that

E [1}(T + 9(X. V)| <E |1,(T +3(X. V)] (5.48)

1
2

which proves (5.36).

Similar arguments can be used for the case T} € (0, %) to show that graphons, as in Case (Ic), yield
larger values of I for e sufficiently small. We omit the details.
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Case II: This case is simpler to exclude than the ones above. Indeed, suppose that (5.31) holds.
Then either \(I) should become small or —g_ should become large. But g_ =< ¢~° is not possible
because g_ should stay bounded in (—77,0) as € | 0. Hence the only possibility is A(I) =< €7 and
g =< —¢¢ for some 7, ¢ such that ( —2n = —d, because of the second condition in (5.31). From the first
condition in (5.31) we have that 2¢ —n = 1+ ¢. Solving these two equations we obtain that n = % +4
and ¢ = 2 4+ 4. From (5.19) we get then that g, < e~°, which is not possible because g, should stay
bounded in (0,1 —T7) as € ] 0.

At this point we summarise our findings. We have considered the variational problem J*(€) as given
in (5.1) and we have shown that we can restrict ourselves to piecewise-constant graphons (see (5.17))
subject to the constraints in (5.10) and (5.11). Afterwards we have shown that we can restrict ourselves
to an even smaller class of graphons, those of the form

9=9+lixr +9-1sx, (5.49)

for some g, > 0, g- < 0 and I,J C [0,1] with A(I)? + X\(J)? < 1. More specifically, we have
shown that the optimal perturbation will satisfy g, =< €/2, g_ =< €/2 and A(I) < 1, A(J) < 1.
Then the solution to J*(e) has the form T} + g*\/€ + o(¢), where g* = g4 11«1 + g_1xx K, for some
g+ > 0,9 <0,L,K € (0,1) independent of ¢, is a symmetric function defined on [0,1]%. From the
constraints (5.10) and (5.11) we have that g1 L? = —g_K? and L33 + K*g% = 1. A simple calculation
shows that

1Ty + gvE) = I(T0) + I(T)(L2 gy + K2 Ve + 4T (T)(E0 + K22 )e + o(¢)

I
I(Ty) + 31"(Ty) (Lg% + K292 )e + o(e).

Hence, in order to find the optimal graphon we need to solve the following optimisation problem:
min (L?g3 + K°g?) (5.50)
such that L+ K <1, ¢,L*+¢g_K?>=0, L?’gi + K3¢g%2 = 1.
This is equivalent to
. ( 1 n 1 2 )
mn|—+4+- - ——
K L K+1L (5.51)
such that L + K < 1.

From a standard computation we find that the optimal K, L should satisfy K + L = 1. Hence we
1-2L+1L2
L(1—L)

point L = %. Having computed L, K we find g, = —g_ = 2, and the optimal solution to J*(e), for e
sufficiently small, is the graphon

Ty + 2y, if (z,y) €0
hHe,y) = T, i (e,) € [0, 4] (3.2] or (.1 x [0.4] (5.5
Ty —2v/e, if (z,y) € (3, 1)

A standard computation shows that T) (k) = Ty and To(hV) = TP + 3T1e.

need to minimize . This function is convex in L € (0,1) and attains a unique minimum at the

5.2 Proof of Lemmas 5.2-5.3

In this section we provide the technical details leading to the optimal perturbation of the variational
problem in (5.2). We denote one of the, possibly multiple, optimizers of (5.2) by B:T In the proof, in
order to keep the notation light, we will consider a representative element of this class, denoted by h:T.
We start by writing the optimizer in the form h*"T = T} + AH, for some perturbation term AH,. The
perturbation term has to be a bounded symmetric function defined on the unit square [0,1]? taking
values in R. The optimizer h*T has to satisfy the constraints

(k=171 and  Ta(h!h) =T — Te, (5.53)
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and so the perturbation AH, needs to satisfy the two constraints
(K1) : / dedy AH (x,y) =0, (5.54)
[0,1]2

and
(K2): 371 [ dodyds AH(e.p)AH.(0,2)
[0,1]

(5.55)
—l—/ drdydz AH (z,y)AH(y, 2)AH(z,2) = —T?e.
[0,1)2

We observe that the construction above in Section 5.1 is no longer possible in the present case, because
the first integral in (5.55) is always nonnegative (think of it as a quadratic form), i.e., for every
symmetric function AH,: [0,1]? = R

/ dedydz AH (z,y)AH(y,z) > 0. (5.56)
[0,1)2

Hence, in order to get the condition in (5.55), both integrals must contribute and both must be
asymptotically on the order of €. In other words, there is competition between the two integrals in
(5.55), which we did not have in the previous perturbation. We show that the cheapest way to achieve
such a constraint is by considering a local perturbation, as indicated in (4.24) and in Lemma 5.2. A
global perturbation as in (3.5) or a combination of a local and a global perturbation will not work,
because the first integral will be of higher order than the second integral in (5.55). Hence the optimal
way to achieve the constraints in (5.54) and in (5.55) is by considering a local perturbation of the form

h:T =T 1[0’1]2\56 + 9*557 (5.57)
where the region (. = [0, ¢'/3]? and the function g* is given by
271, O<z<ieB<y<ePor0<y<ie?<az<el

95, (x,y) == (5.58)
0 otherwise.

Proof of Lemma 5.2: In what follows we provide the technical details leading to (5.57), thereby
proving the result in Lemma 5.2. As before, we write the optimal graphon A*" in the form Ty + AH,
for some symmetric function AH, defined on [0, 1]2. We show that the optimal graphon h:T is constant
everywhere on [0,1]2. This means that, for every function f(e) of € such that f(e) | 0 when € ] 0, we
must have (AH (z,y) - f(€)) | 0 for every (x,y) € [0,1]? as € | 0. Suppose that there exists some set
T C [0,1]? such that AH, =< f(¢), for some function f(-). Then

/ dz dy AH.(z,y) = f(OND). (5.59)
z
From the integral condition in (5.54) we see that there must exist a set Z C [0, 1]% such that
/_ dz dy AH.(z,y) = — F(ONT). (5.60)
z

Then the optimiser AT can be written, for (z,y) € [0, 1]2, as

h:T(Iv y) =T+ f(E)lz(xa y) + AH€($, y)lf(l‘7 y) + AHE(‘T7 y)l[O,l]Q\IUf(xa y) (561)
Next consider the following graphon

}_L: = TllIUf + (Tl + AHﬁ)l[O,l]Q\IUi' (562)
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In what follows, with a slight abuse of notation, we write I(-) to denote the function defined on the
graphon space and on the unit interval (see (2.27) and (2.28)). We have

10 = [ deay 1057 w)
=I(T1 + f(e)) MZ) + / dedy I(Ty + AH(z,y)) —|—/ Cdady I(Th + AH(z,y))
7 [0,1]2\ZUZ

>ITi+ f(e)NZ)+ 1 (Tl + % /idx dy AHﬁ(:my)) AI)

+/ dzdy I(Ty + AH(z,y))
[&1P\qu

LTy 4 ()ND) +1 (TI - A(lz)f(e)A(I>> AT) + /[ oy L T} AL (2, )

AZ) AT)

> (\Z) +AD)) I (T1 ST a@ f(€)>\(I)+>\(I))

+/ dedy I(Ty + AH.(x,y))
[0,1]2\ZUZ

= (M2)+ A1) I(Th) +/ ~dady I(Ty + AH (x,y))
[0,1]2\ZUZ
= I(h),

(5.63)
where the first inequality follows from Jensen’s inequality and the strict convexity of I(-), the second
equality holds because of (5.60). Thus, we see that the optimal graphon must be equal to 77 on a as
large as possible domain, so that the constraints in (5.54) and (5.55) are satisfied. Hence the optimal
graphon will have the form

het = Tiljo2\1.x1. + 9elr 1., (5.64)

for some I. C [0,1] and some non-negative symmetric function g on I, x I.. A similar reasoning as
in (5.22) can be applied to show that we may restrict ourselves to sets have a product form. In order
to keep the notation light we omit the dependence of g and the interval I on e. The function g has
to be symmetric and non-negative because the graphon h*T has to be symmetric and take values in
[0, 1]. Furthermore, the sets I and the function g have to be such so that the graphon h:T satisfies the
constraints, i.e., T1(h:T) = Ty and Ty (h!T) = TP — TPe. A standard computation shows that g must
satisfy the integral conditions

dzdy g(z,y) = TN, / dedydz g(z,m)g(, 2)g(zx) = AT — TS, (5.65)
IxI IxIxI

Consider the graphon gf; defined in (5.58), i.e., for (z,y) € [0, 1],

271, O<z<icdB<y<ePod<y<ie/<az<eld
90, (@, y) = (5.66)
0, otherwise,

where [, = [0,¢!/%]2. Standard computations show that A(I) = €'/3, \(O.) = €*/3 and that 95,
satisfies the integral conditions in (5.65). The final step is to show that we cannot find a graphon that
performs better than 90, - As mentioned above (5.64), we want to maximise the area of the domain

where h!T is equal to T7. Hence we have to exclude the following two cases:

(1) There exists a set J C [0,1] with A\(J) < €}/ and a non-negative symmetric function g defined
on J x J that performs better than g .

(2) There exists a set J C [0,1] with A\(J) = €!/3 and a non-negative symmetric function g defined
on J x J that performs better than 90, -
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We start with (1). Suppose that there exist such J and g. Then from the second condition in (5.65)
we have that

dedydz g(z,y)g(y, 2)g(z,x) = ()\(J)3 —€) Tf’ <0, (5.67)
JIxJIxJ

since A\(J) < €'/3. This can happen only if ¢ can take negative values. This contradicts the fact that
g must be non-negative. We proceed with (2). Again, from the second condition in (5.65) we get that
g must satisfy the integral condition

/ dedydz g(z,y)g(y, 2)g(z.x) = AP — ) TS = 0. (5.68)
JIxJIxJ

Hence the function g has a bipartite structure on J x J, which again leads to the graphon g.

Proof of Lemma 5.3: For the proof of Lemma 5.3 the reasoning is similar. The difference lies in
the last step, where instead of the graphon in (5.58) we need to consider the graphon defined in (3.10),

for £ € N\{1} and Ty € (5771, ﬁ] Up to (5.65) the proof carries on without any difference. Using a

similar argument as before we can exclude the case (1) < ¢'/? showing that O, := I x I = [0,¢'/3]2.
A standard computation shows that

I(R:T) = I(T1) (1 — €/3) + I (gt )e*/>. (5.69)

In order to find the optimal g , we need to minimize I(g) among all graphons defined on [0, €'/3]?
satisfying

/ dedy g(z,y) = Tr/?, / dedydz g(z,y)g(y, )g(z,2) =0.  (5.70)
[0,61/3]2 [0}61/3]'

Consider, for £ € N\{1}, the graphon in (2.33). We know that this graphon minimizes I among all
graphons defined on [0, 1]? satisfying

/ dedy g(z,y) =Th, / drdydz g(z,y)g(y, 2)g(z, ) = 0. (5.71)
[0,1]2 [0,13

Hence we see that the optimal graphon g7y will have the same structure as the graphon in (2.33) but
‘squeezed’ in the interval [0, €!/3]2. This is exactly the graphon defined in (3.10).
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