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Abstract

This is a survey on polling systems, focussing on the basic single-server multi-queue
polling system in which the server visits the queues in cyclic order. The main goals of the
paper are: (i) to discuss a number of the key methodologies in analyzing polling models;
(ii) to give an overview of recent polling developments; and (iii) to present a number of
challenging open problems.
Note: Invited paper, to appear in TOP.

1 Introduction

This paper is devoted to polling systems. The basic polling system is a queueing model in which
customers arrive at n queues according to independent Poisson processes, and in which a single
server visits those n queues in cyclic order to serve the customers. When n = 1, this system
reduces to the classical M/G/1 queue. For general n, the basic polling system may be viewed
as an M/G/1 queue with n customer classes and dynamically changing priority – in contrast
to queueing models with multiple customer classes which have fixed priority levels. In many
applications, the switchover times of the server, when moving from one queue to another, are
nonnegligible and should be included in the model.

Applications of polling systems abound, because a service facility that can serve the needs of
n different types of customers is such a natural setting in every-day life. Indeed, polling systems
have been used to model a plethora of congestion situations, like (i) a patrolling repairman with
n types of repair jobs, (ii) a machine producing n types of products on demand, (iii) protocols
in computer-communication systems, allocating resources to n stations, job types or traffic
sources, and (iv) a signalized road traffic intersection with n different traffic streams. These and
other application areas have given rise to a huge range of variants and extensions of the basic
polling system. Several overviews of the applicability of polling systems have been published,
cf. Grillo [102], Levy and Sidi [129], Takagi [152] and Boon, Van der Mei and Winands [24]. We
therefore refrain from an extensive discussion of polling applications. When it comes to polling
surveys, one should of course mention that, until 2000, Takagi maintained a quite complete
bibliography on polling models, which included more than 700 publications [154, 155]. A more
recent survey is Vishnevskii and Semenova [159].

The main goals of the present paper are threefold. Firstly, to discuss a number of the key
methodologies in analyzing polling models. Secondly, to give an overview of recent polling
developments. Finally, to present a number of challenging open problems, which hopefully
promote the interest of the reader in this fascinating field.
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As a disclaimer, we would like to emphasize that we do not aim for completeness. Since
the publication of the survey [155], several hundreds of polling papers have appeared. When
discussing recent developments, we mainly focus on contributions which we believe to be method-
ologically important or which give rise to interesting open problems – and undoubtedly there is
a bias towards publications which are in some way related to the authors.

Polling models are closely related to queueing models with vacations. One could naively
model one queue of a polling model as a queue in isolation, in which the intervisit time (composed
of switchover times and visit times at the other queues, i.e., the time periods the server spends
at a queue) is viewed as a server vacation. Unfortunately, the intervisit times depend on the
visit times in an intricate way. In this paper we do not give much consideration to queues with
vacations; we refer the reader to the surveys of Doshi [71, 72] and the books of Takagi [153] and
Tian and Zhang [156].

The remainder of the paper is organized in the following way. Section 2 presents a detailed
model description. Section 3 reviews some properties and results of very general validity, in-
cluding the so-called pseudoconservation law. Section 4 focuses on waiting times and (mainly)
joint queue length distributions, for the important class of disciplines which satisfy a so-called
branching property. Section 5 is devoted to polling models which do not satisfy that property.

The next few sections consider some special topics: polling models with arrival processes
that generalize the above-mentioned Poisson processes (Section 6), scheduling in polling models
(Section 7) and two types of asymptotics: many-queue asymptotics and heavy-traffic asymp-
totics. Section 9 contains a collection of interesting isolated polling models and results. Finally,
Section 10 presents some suggestions for further research.

2 Model description

We are interested in situations in which a service facility offers services to n classes of customers,
in some prescribed order. We present the model description via 10 assumptions. Some of these
assumptions will be relaxed in later sections.
Assumption 1. The service facility has a single server; and that server works at unit speed
when it is working.
Assumption 2. The number of customer classes, n, is finite.
Assumption 3. Customers in the various classes arrive at the service facility according to
n independent Poisson arrival processes, with intensity λi for class i, joining a queue Qi, i =
1, 2, . . . , n. Customers of class i have service requirements which are independent, identically
distributed (i.i.d.) random variables, generically denoted by Bi, with distribution Bi(·) and
Laplace-Stieltjes transform (LST) βi(·), i = 1, 2, . . . , n. Service requirements of customers of
different classes are also independent of each other, and of the arrival processes.
Assumption 4. Each queue has an infinite buffer capacity. Furthermore, all customers have
infinite patience; hence no customer is lost.
Assumption 5. The routing policy of the server is cyclic: the server successively visits the
queues in order Q1, Q2, . . . , Qn, Q1, Q2, . . . , Qn etc. Another option that we will briefly touch
upon is a polling table, i.e., a fixed visit pattern which is cyclically repeated (like star polling
with Q1 as center of the star: Q1, Q2, Q1, Q3, . . . , Q1, Qn). Yet another option is random polling,
in which the server visits the queues according to a probabilistic visit scheme. Markovian polling
refers to the case in which the transitions between queues follow a Markov chain.
Assumption 6. The service policy, describing the behavior of the server while visiting a queue,
can be one of many policies which have been considered in the literature. The most popular
ones are the following: (i) exhaustive: the server keeps serving a queue until it has become
empty; (ii) gated: the server keeps serving a queue until all those customers have been served
that were already present when the server arrived at that queue; (iii) k-limited: the server keeps
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working at a queue until a predefined number of k customers has been served, or the queue has
become empty – whichever occurs first. Other policies include decrementing service: the server
serves a queue until the number in that queue has decreased to one less than the number present
upon arrival of the server; time-limited service: the server serves customers at Qi until a time
limit Ti has been reached, or until the queue has become empty – whichever occurs first; and
binomial-gated: the server restricts service to the customers present upon its arrival, but each
of those is only served with a fixed probability pi (in Qi, i = 1, 2, . . . , n). Another well-studied
policy is Globally gated: when the server arrives at Q1 at some time t1, it starts a cycle of the
n queues in which it only serves the customers that are already present at t1.

Finally, we assume that a server does not stay at an empty queue if other queues are not
empty (non-idling assumption); however, in Subsection 9.2 we briefly consider an idling service
policy.
Assumption 7. The service order within each queue is First-Come First-Served (FCFS). This
assumption was almost universally made in the polling literature until the work of Wierman et
al. [163]. In Section 7 we will discuss non-FCFS service orders.
Assumption 8. The times to switch from Qi, i = 1, 2, . . . , n, to the next queue are assumed to
be i.i.d. random variables, generically denoted by Si, with distribution Si(·) and LST σi(·). All
switchover times are assumed to be independent of each other and of the interarrival and service
times. When the switchover times between successive queues are all zero, a special situation
arises. If the system has become empty after a visit to, say, Qi in the case of zero switchover
times, then the server is assumed to visit queues Qi+1, . . . , Qn (which now takes zero time)
and stay in front of Q1 (see Section 4). In the case of non-zero switchover times, the server is
assumed to keep switching in an empty system.
Assumption 9. As soon as a customer has been served, it leaves the system. At some places
we briefly mention the case of customer routing; a served customer might rejoin the same queue,
or join another one.
Assumption 10. The total traffic load is such that the key stochastic processes (queue lengths,
waiting times) reach steady state. A necessary condition for this is that the total offered load
ρ :=

∑n
i=1 ρi < 1; here ρi := λiEBi is the mean offered load at Qi per time unit, i = 1, 2, . . . , n.

When all switchover times are zero, this condition is also sufficient. Otherwise the situation
may be much more complicated, and in particular the service policies may influence the stability
condition; e.g., in 1-limited service, the server is forced to spend a switchover time after each
service. See Fricker and Jäıbi [93] for an extensive discussion of these stability issues. We refer
to Foss and Chernova [86, 87], Foss, Chernova and Kovalevskii [88], Foss and Last [90, 91],
and Kovalevskii, Topchii and Foss [119] for stability results for various polling systems (not
necessarily satisfying all of the above assumptions), along with related dominance theorems and
fluid limits.

When a polling system satisfies all 10 assumptions, we denote it by PS.

3 General results

In this section we discuss a number of results which hold for basically all PS, i.e., polling
systems that satisfy Assumptions 1–10 of Section 2. These are cycle-time and visit-time results
(Subsection 3.1), workload decompositions (Subsection 3.2), pseudo-conservation laws for mean
waiting times (Subsection 3.3), Eisenberg’s relations between queue lengths at visit beginnings,
visit completions, service beginnings and service completions (Subsection 3.4) and a general
relation between the joint queue length distribution at an arbitrary epoch and the joint queue
length distributions at visit beginnings and visit completions (Subsection 3.5).
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3.1 Mean cycle and visit times

In a polling model of type PS, let us define the cycle time Ci of Qi as the time between two
successive visit beginnings of the server to Qi. If the mean total switchover time in a polling
model of type PS is positive, i.e., s :=

∑n
i=1 ESi > 0, then the mean cycle time for Qi satisfies

the following balance equation:

ECi − s = ρECi, i = 1, 2, . . . , n.

Indeed the lefthand side gives the mean length of time the server is working during an arbitrary
cycle of Qi, and the righthand side gives the mean amount of work arriving in PS during an
arbitrary cycle Ci. In steady state these two quantities should be equal. Hence we find:

ECi =
s

1− ρ
, i = 1, 2, . . . , n. (1)

Apparently each queue has the same mean cycle time EC. It is important to notice, though,
that the distributions of the cycle times of different queues, and even the variances, may not the
same (unless the system is completely symmetric).

The balance argument used above also immediately implies that the mean visit time EVi of
Qi is given by

EVi = ρiECi =
ρis

1− ρ
, i = 1, 2, . . . , n. (2)

In a system with zero switchover times, viz., s = 0, Formulas (1) and (2) still hold if the server
is assumed to keep cycling when the system has become empty (indeed, in an empty system
there will be an infinite number of zero-length cycles); however, these formulas are meaningless
then.

3.2 Workload decompositions

Again consider the polling system PS, and assume in addition that all switchover times are zero.
The server is then always working as long as there are customers in the system (cf. Assumption 6).
Since the server is working at unit speed when it is working (Assumption 1), a sample path
consideration reveals that the amount of work in the system evolves in a way that does not
depend on the order of service of the queues, or within the queues, and neither on the service
policies at the queues. This is the principle of work conservation (cf. Heyman and Sobel [105],
p. 418). In particular, the amount of work evolves exactly as in an M/G/1 queue in which
the arrival rate is Λ :=

∑n
i=1 λi and in which the service time distribution is

∑n
i=1

λi
ΛBi(·). We

denote this queue by the ‘corresponding M/G/1 queue’.
If the switchover times are positive, then the principle of work conservation is violated: the

server is sometimes switching (not working) although there is work present in the system. It
was proven in [37] that, for a cyclic polling system PS, a principle of work decomposition holds:
the steady-state amount of work Vwith in PS with switchover times is, in distribution, the sum
of the steady-state amount of work Vwithout in the corresponding PS without switchover times
(hence the corresponding M/G/1 queue) plus the steady-state amount of work Y present in the
system at an epoch in which the server is not working:

Vwith
d
= Vwithout + Y, (3)

and Vwithout and Y are independent. This decomposition result was generalized in [33] to a
large class of single-server queues with multiple customer classes and various forms of work
interruptions. These decompositions fit in a line of decomposition results for queueing models
with vacations/interruptions which goes back to the ground-breaking paper of Fuhrmann and
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Cooper [96] which concentrates on queue length decompositions. It should be noticed that queue
lengths are much more sensitive to distributional assumptions than workload, and hence the con-
ditions for queue length decompositions to hold are also more stringent than those for workload
decompositions. Most of the decomposition proofs rely on sample path considerations, and on
the fact that the workload evolves exactly the same under FCFS and Last-Come First-Served
(LCFS), and on the exploitation of nice properties of the LCFS Preemptive-Resume discipline.
See also the insightful discussion in Ivanovs and Kella [110], and a workload decomposition for
polling models with multi-dimensional Lévy input in Boxma and Kella [40].

3.3 Pseudoconservation laws

For the PS model one can express the mean workload EVwith into the mean numbers ENi of
waiting customers at the various queues of PS, and hence, via Little’s formula, into the mean
waiting times EWi. This is sometimes referred to as Brumelle’s formula [53]:

EVwith =
n∑
i=1

EBiENi +
n∑
i=1

ρi
EB2

i

2EBi
=

n∑
i=1

ρiEWi +
1

2

n∑
i=1

λiEB2
i . (4)

Indeed, EBiENi is the mean amount of work of waiting customers at Qi (we use here the fact
that service at each queue is non-preemptive; hence we have to exclude a discipline like time-

limited), and ρi
EB2

i
2EBi

is the product of the probability that Qi is being served at an arbitrary
epoch, and the mean length of the residual service time of a customer at Qi.

Using (3) and the fact that, in the case of zero switchover times, one has (using a well-known
result for the ‘corresponding M/G/1 queue’):

EVwithout =
n∑
i=1

λiEB2
i

2(1− ρ)
, (5)

the following so-called pseudo-conservation law (PCL) for the mean waiting times is obtained [37]:

n∑
i=1

ρiEWi = ρ

n∑
i=1

λiEB2
i

2(1− ρ)
+ EY. (6)

In [37], EY is subsequently split in three terms:

EY = ρ
s(2)

2s
+

s

2(1− ρ)
[ρ2 −

n∑
i=1

ρ2
i ] +

n∑
i=1

EZii, (7)

where s and s(2) are the mean and second moment of the total switchover time in one cycle of
the server. The three terms reflect the influence of the presence of switchover times. All three
terms have an easy probabilistic interpretation. Focussing on the contributions from Qi, one
has EZii in the last term, which denotes the mean amount of work left behind by the server

in Qi after a visit to that queue. In the first term one has a contribution ρi
s(2)

2s , which is the
mean amount of work which has arrived in Qi (after the server visit to Qi) during the past part
of the total switchover time in a cycle. Finally, the contribution of Qi to the second term of
(7), ρi

∑n
j=i+1

ρjs
1−ρ , is the mean total workload which has arrived in Qi during the visit times at

Qi+1, . . . , Qn of the server (cf. (2)).
The term EZii is the only term that depends on the service policy at the queues (and in

fact only on the service policy at that particular queue). For many service policies, it is easy
to determine EZii. For exhaustive service, it equals zero, and for gated service EZii = ρ2

i
s

1−ρ ;

indeed, ρiEVi arrives on average at Qi per visit, and EVi = ρis
1−ρ according to (2).
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The PCL has been generalized in several directions, including batch Poisson arrivals, polling
tables and Markovian polling. The simplicity, quite general validity and robustness of the PCL
make it suitable for several purposes. These include the development of approximations for mean
waiting times and/or a check of such approximations and optimizations as will be discussed in
Subsections 9.2 and 9.3.

3.4 Eisenberg’s relation

In this subsection, following [29], we discuss a beautiful relation of Eisenberg [73], which in
our view would have deserved greater attention in the polling literature. Eisenberg relates
the probability generating functions of queue lengths at various instants: visit beginnings and
endings, and service beginnings and endings. Eisenberg [73] studies a polling model with non-
zero switchover times and the exhaustive service discipline at all queues (while briefly discussing
the case of gated service at all queues). He considers the following four quantities, with N
denoting a vector of numbers of customers at Q1, . . . , Qn and N a realization:

Sbi(t,N) := number of service beginnings at Qi in (0, t) for which N = N ;
Sci(t,N) := number of service completions at Qi in (0, t) for which N = N ;
Vbi(t,N) := number of visit beginnings at Qi in (0, t) for which N = N ;
Vci(t,N) := number of visit completions at Qi in (0, t) for which N = N .

In the case of a service or visit completion, the state is defined as what exists immediately after
the departure of the customer.
Eisenberg [73] now makes the crucial observation that each time a visit beginning or a service
completion occurs, this coincides with either a service beginning or a visit completion. Hence,

Vbi(t,N) + Sci(t,N) = Sbi(t,N) + Vci(t,N). (8)

As observed in [29], (8) not only holds for the case of non-zero switchover times and exhaustive
or gated service, but for any service discipline, and also for the case of zero switchover times.
Define the following equilibrium state probabilities for this polling model:

S̃bi(N) := Pr(N = N , S is at Qi | service beginning instant);
S̃ci(N) := Pr(N = N , S is at Qi | service completion instant);
Ṽbi(N) := Pr(N = N | visit beginning at Qi);
Ṽci(N) := Pr(N = N | visit completion at Qi).

Eisenberg [73] divides all four terms in (8) by the total number of service completions at all
queues in (0, t), and takes the limit for t → ∞. He thus relates those four equilibrium state
probabilities:

γiṼbi(N) + S̃ci(N) = S̃bi(N) + γiṼci(N).

Here γi is the long-term ratio of the number of visit completions at Qi to the number of customers
that are handled by the system; in this cyclic polling model γi ≡ γ, i = 1, . . . , n. Written in
terms of PGF’s (probability generating functions),

γVbi(z) + Sci(z) = Sbi(z) + γVci(z), (9)

for z = (z1, . . . , zn), | zj | ≤ 1, j = 1, . . . , n; here Vbi(z) and Vci(z) denote the PGF of the joint
queue length distribution at visit beginnings and visit completions of Qi, respectively, while
Sbi(z) and Sci(z) denote the PGF of the joint distribution of queue length vector and server
position at service beginnings and service completions, respectively.
Now Eisenberg observes that Sci(z) and Sbi(z) are related via

Sci(z) = Sbi(z)βi(
n∑
j=1

λj(1− zj))/zi, (10)
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for | zj | ≤ 1, j = 1, . . . , n.
It follows from (9) and (10) that

Sci(z) =

γβi(
n∑
j=1

λj(1− zj))

zi − βi(
n∑
j=1

λj(1− zj))
[Vbi(z)− Vci(z)]. (11)

Eisenberg, considering the variant with switchover times and exhaustive service, subsequently
expresses Vbi(z) into Vci−1(z). For the moment we refrain from that (see (15) below), but we
observe that Formula (11) is generally valid for the polling systems PS described in Section 2
(with and without switchover times).

Taking z = (1, . . . , 1, y, 1, . . . , 1) in (11), with y as i-th argument, and dividing by the prob-
ability λi/λ that an arbitrary service completion is at Qi, gives the queue length PGF at Qi
at a service completion instant at Qi. PASTA, in combination with a standard up- and down-
crossing argument, shows that the queue length distribution at Qi at its service completion
instants, at its customer arrival instants, and in steady state, are all the same. Hence, with Ni

the steady-state queue length at Qi and with Xi and Yi the steady-state queue lengths at Qi
at the beginning and end of a visit at that queue (or, equivalently, at the end and beginning of
an intervisit time of Qi), one obtains after some rewriting (see [29] for the details):

E(yNi) =
(1− ρi)(1− y)βi(λi(1− y))

βi(λi(1− y))− y
E(yYi)− E(yXi)

(1− y)(EXi − EYi)
, |y| ≤ 1. (12)

The first term in the right-hand side is the PGF E(yNi|M/G/1) of the queue length distribution in a
‘corresponding’ isolated M/G/1 queue of Qi with arrival rate λi and service time LST βi(·). The
second term appears to be the PGF of the number of customers Ni|I at an arbitrary intervisit
time of Qi. Formula (12) implies that

Ni
d
= Ni|M/G/1 + Ni|I , (13)

the two terms in the righthand side being independent. This is the well-known Fuhrmann-Cooper
queue length decomposition [96].

Remark 3.1
Fuhrmann and Cooper [96] state five conditions under which their decomposition holds; these
conditions are contained in the 10 assumptions of Section 2, except that it is explicitly assumed
in [96] that service is non-preemptive, a condition that is violated when the service discipline is
time-limited for example.

Using the distributional form of Little’s law, cf. Keilson and Servi [114], the above Fuhrmann-
Cooper queue length decomposition (13) immediately translates into a waiting-time decomposi-
tion. In Section 4.1 we will return to this relation, for the case of polling models that satisfy
Property 4.1. �

3.5 The joint queue length distribution at an arbitrary epoch

In Subsection 3.4 we focused on queue length vectors at visit beginnings and visit completions,
and at service beginnings and service completions. Throughout the polling literature, the at-
tention has always been on those epochs, as far as joint queue length distributions is concerned.
However, in [41] it was shown that, for the general PS model, one can express the PGF L(z) of
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the steady-state joint queue length distribution at an arbitrary epoch in those at visit beginnings
and visit completions, in the following way (with z = (z1, . . . , zn)):

L(z) =
1

EC

n∑
i=1

(
Vbi(z)− Vci(z)

Σ(z)

zi (1− βi(Σ(z)))

zi − βi(Σ(z))
+
Vci(z)− Vbi+1

(z)

Σ(z)

)
, (14)

with Σ(z) :=
∑n

j=1 λj(1− zj). Its proof in [41] is based on the following relations:
(i) Eisenberg’s [73] relation (11) as generalized to PS polling models in [29].
(ii) Relation (10) between queue length PGF’s at the beginning and end of a service.
(iii) an obvious relation between queue lengths at the beginning and end of a switchover:

Vbi+1
(z) = Vci(z)σi (Σ(z)) , i = 1, 2, . . . , n. (15)

(iv) a stochastic mean value theorem, expressing L(z) as an average over the PGF’s of the joint
queue length distribution at an arbitrary moment during a visit to Qi (Xi(z)) and during a
switchover period between Qi and Qi+1 (Yi(z)):

L(z) =
1

EC

n∑
i=1

(
EBi

γi
Xi(z) + siYi(z)

)
, (16)

where, for i = 1, 2, . . . , n,

Xi(z) = Sbi(z)β
past
i (Σ(z)), (17)

Yi(z) = Vci(z)σ
past
i (Σ(z)), (18)

where βpast
i (·) and σpast

i (·) are the LST’s of the past parts of Bi and Si, respectively, and therefore

βpast
i (Σ(z)) =

1− βi(Σ(z))

EBiΣ(z)
, σpast

i (Σ(z)) =
1− σi(Σ(z))

ESiΣ(z)
. (19)

Starting from (16), substituting (17) and (18), and using (10) and (11) to eliminate all Sbi(z)
and Sci(z), yields (14).

Remark 3.2
In [41] also zero switchover times are allowed; the same result (14) is shown to hold.

In Theorem 1 of [41] it was subsequently observed that one may simplify (14) as follows, by
using the fact that

∑n
i=1(Vci(z)− Vbi+1

(z)) =
∑n

i=1(Vci(z)− Vbi(z)) and (11):

L(z) =

∑n
i=1 λi(1− zi)Sci(z)∑n

i=1 λi(1− zi)
. (20)

This formula is remarkably simple; notice that it does not involve the service time distri-
butions, and that the service disciplines at the various queues do not play a role either, which
confirms that (14) is based on very general principles. A short proof of this formula was subse-
quently presented in Boon et al. [22]. That proof is based on a very simple, yet very general,
balance equation for n-dimensional queue length processes just before arrivals and just after
departures, and on PASTA. For marginal queue lengths it reduces to a classical up- and down-
crossing identity.
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4 The joint queue length distribution at polling epochs

In Subsection 3.4, we have seen that Eisenberg’s results [73] yield simple relations between the
PGF Sci(z) of the joint queue length vector at service completion epochs (or Sbi(z), at service
beginning epochs) and the PGF’s Vbi(z) and Vci(z) of the joint queue length vector at visit
beginning and visit completion epochs. Here, again, z = (z1, . . . , zn). We now restrict ourselves
to polling models for which the service discipline at each queue satisfies the following property:

Property 4.1
If there are ki customers present at Qi at the start of a visit, then during the course of the visit,
each of these ki customers will effectively be replaced in an i.i.d. manner by a random population
having PGF hi(z1, . . . , zn), which may be any n-dimensional PGF.

Resing [144] (see also Fuhrmann [94]) has studied polling systems that satisfy this property;
this includes the case of exhaustive or gated service at all queues, but it excludes the case
of 1-limited service at any queue. Resing [144] has pointed out that, for this class of polling
systems, the joint queue length process at visit instants of a fixed queue is a so-called multi-type
branching process with immigration. The theory of multi-type branching processes (cf. Athreya
and Ney [11], Resing [143]) thus leads to an expression for the PGF of the joint steady-state
queue length process at visit beginning (polling) instants (which exists if ρ < 1 and si <∞ for
all i). Property 4.1 prescribes how each of the customers present at Qi at the visit beginning
is replaced by independent families of customers at its visit completion. This enables one to
express Vci(·) nicely into Vbi(·):

Vci(z) = Vbi(z1, . . . , zi−1, hi(z), zi+1, . . . , zn). (21)

Next we relate Vbi(z) to Vci−1(z). That will allow us – after n steps – to express, say, Vb1(·) into
itself, and finally to obtain an explicit expression for Vb1(z). The PGF’s Vci(·), Sbi(·) and Sci(·)
then also follow.

In our analysis we follow Resing [144]. We distinguish the two cases of non-zero and zero
switchover times. In both cases, the following branching functions play a crucial role, thus
establishing the link between both cases.
Define

f(z) := (f1(z), . . . , fn(z)), (22)

with
fi(z) := hi(z1, . . . , zi, fi+1(z), . . . , fn(z)) (23)

for | zj | ≤ 1, j = 1, . . . , n. This is the offspring PGF, the PGF of the joint distribution of the
numbers of customers at the end of a cycle w.r.t. Q1 that are descendants of a type-i customer.
In this branching process setting, a descendant of some customer K is a customer that has
arrived during the service time of K or of one of its descendants.
For | zj | ≤ 1, j = 1, . . . , n, define

f (0)(z) := z, f (k)(z) := f(f (k−1)(z)), k ≥ 1.

Case I: Non-zero switchover times
Observe that

Vbi(z) = Vci−1(z)σi−1(

n∑
j=1

λj(1− zj)). (24)
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Substituting (21) into (24),

Vbi(z) = Vbi−1
(z1, . . . , zi−2, hi−1(z), zi, . . . , zn)σi−1(

n∑
j=1

λj(1− zj)). (25)

Applying (25) n times (which corresponds to following the server during one full cycle w.r.t. Q1),

Vb1(z) = Vb1(f(z))g(z), (26)

with

g(z) =

n∏
i=1

σi(

i∑
j=1

λj(1− zj) +

n∑
j=i+1

λj(1− fj(z))).

The function g(·) represents the ‘immigration process’ of this multi-type branching process: it
is the PGF of the vector of all customers that either have arrived in the switchover periods of
the past cycle (measured w.r.t. Q1), or are descendants of such customers.
Iterating (26) yields

Vb1(z) =

∞∏
k=0

g(f (k)(z)) (27)

=
∞∏
k=0

n∏
i=1

σi(
i∑

j=1

λj(1− f (k)
j (z)) +

n∑
j=i+1

λj(1− f (k+1)
j (z))),

the infinite product being convergent when the ergodicity conditions are fulfilled.

Case II: Zero switchover times
In the case of zero switchover times (in the sequel we add a superscript 0 for that case, to
distinguish its quantities from those for non-zero switchover times):

V 0
bi

(z) = V 0
ci−1

(z), (28)

for i = 2, . . . , n. The relation between V 0
b1

(z) and V 0
cn(z) deserves special attention, because of

our convention concerning the behavior of the server when the system is empty. When all queues
in the model with zero switchover times become empty, S makes a full cycle, and subsequently
stops right before Q1 (all this requires zero time). When the first new customer arrives, S cycles
along the queues to that customer. The consequence of this is that when the system is empty
at the start of a visit to Q1, then the next visit to Q1 does not take place until a customer has
arrived. We can write

V 0
b1(z) = V 0

cn(z)− V 0
b1(0)[1− g0(z)], (29)

with

g0(z) :=
n∑
i=1

λi
λ
zi.

The function g0(·) represents the ‘immigration process’ of the multi-type branching process: it
is the PGF of the arrival process of customers during periods in which the system is empty.

Remark 4.1
Although we sometimes find it convenient to concentrate on Q1, it should be noted that our
convention for the position of S in an empty system does not affect the waiting-time and queue
length distributions.
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In fact, our convention slightly differs from that of Resing [144], who assumes that when the

system is empty, S immediately stops right behind Q1, and hence takes g0(z) =

n∑
i=1

λi
λ
fi(z).

Our convention enables us to simultaneously apply the theory of multi-type branching processes
and Eisenberg’s approach.

�

Substituting (21) into (28),

V 0
bi

(z) = V 0
bi−1

(z1, . . . , zi−2, hi−1(z), zi, . . . , zn) (30)

for i = 2, . . . , n. Starting from (29) and (21) for i = n, and subsequently using (30) for i =
n, n− 1, . . . , 2, one obtains

V 0
b1(z) = V 0

b1(f(z))− V 0
b1(0)[1− g0(z)]. (31)

Iterating (31) yields

V 0
b1(z) = 1− V 0

b1(0)
∞∑
k=0

[1− g0(f (k)(z))] = 1− V 0
b1(0)

∞∑
k=0

n∑
i=1

λi
λ

(1− f (k)
i (z)), (32)

with

V 0
b1(0) =

[
1 +

∞∑
k=0

[1− g0(f (k)(0))]

]−1

=

[
1 +

∞∑
k=0

n∑
i=1

λi
λ

(1− f (k)
i (0))

]−1

,

the infinite sum being convergent when the ergodicity conditions are fulfilled.

From (27) and (32) we see that Vb1(z) as well as V 0
b1

(z) is determined by
n∑
j=1

λj(1− f (k)
j (z)).

Remark 4.2
It is worth observing that the Globally gated service discipline [45] as described in Section 2 does
not satisfy Property 4.1. At the same time, the PGF’s Vbi(·) and Vci(·) can all be expressed
in terms of the joint queue length PGF Vb1(·) at the start of a cycle. Indeed, Globally gated
is, arguably, the most tractable service discipline, providing a useful testing ground for novel
concepts. Altman et al. [6] consider the elevator variant of Globally gated, where the various
queues are visited in alternating order. From an application perspective, it might be interesting
to consider the concept of a reservation mechanism, which also underlies Globally gated, in more
detail. For example, customers at some queue might have a certain window of opportunity to
make a reservation for service in the next visit period of that queue. See Abidini et al. [1] for
an application in optical switches.

4.1 Marginal queue lengths and waiting times

Above, the joint queue length PGF’s Vbi(z) and V 0
bi

(z) at visit beginning instants have been
determined for the class of cyclic polling models in which Property 4.1 holds for the service
disciplines at all queues. In Subsection 3.4, we already obtained a decomposition for the PGF
of the marginal queue length distribution at Qi into a corresponding M/G/1 term and a term
involving E(yXi) and E(yYi) (via the PGF E(yNi|I )). In particular, denoting

h̃i(y) := hi(1, . . . , 1, y, 1, . . . , 1); Ṽbi(y) := Vbi(1, . . . , 1, y, 1, . . . , 1); Ṽ 0
bi

(y) := V 0
bi

(1, . . . , 1, y, 1, . . . , 1),
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with y as i-th argument, it follows from (12) and (21) for the case of non-zero switchover times
that

E(yNi|I ) =
Ṽbi(h̃i(y))− Ṽbi(y)

(1− y)Ṽ ′bi(1)(1− h̃′i(1))
; (33)

the same result holds for the case of zero switchover times, replacing Ṽbi(·) by Ṽ 0
bi

(·) in (33).
Similarly indicating queue lengths, and waiting times, by a superscript 0 in the case of zero
switchover times, one finds [29]:

E(yNi) = E(yN
0
i )

[Ṽbi(h̃i(y))− Ṽbi(y)]Ṽ 0
bi
′(1)

[Ṽ 0
bi

(h̃i(y))− Ṽ 0
bi

(y)]Ṽ ′bi(1)
, (34)

E(e−ωWi) = E(e−ωW
0
i )

[Ṽbi(h̃i(1− ω/λi))− Ṽbi(1− ω/λi)]Ṽ 0
bi
′(1)

[Ṽ 0
bi

(h̃i(1− ω/λi))− Ṽ 0
bi

(1− ω/λi)]Ṽ ′bi(1)
. (35)

For exhaustive service, h̃i(·) ≡ 1; for gated service, h̃i(y) = βi(λi(1− y)).
Let us now (without loss of generality) concentrate on W1 and W0

1. After some calculations [29],
one gets:

E(e−ωW1) = E(e−ωW
0
1)
Ṽb1(h̃1(1− ω/λ1))− Ṽb1(1− ω/λ1)

s[H̃(h̃1(1− ω/λ1))− H̃(1− ω/λ1)]
, (36)

which for exhaustive service (h̃1(·) ≡ 1) and gated service (h̃1(1− ω/λ1) = β1(ω)), corresponds
to Theorems 2 and 5 in Srinivasan et al. [151], respectively.

Remark 4.3
The above results expose a close similarity between the cases with and without switchover times.
Before [29], models with switchover times and models without switchover times had usually been
treated separately, often via different approaches; the problem with simply letting the switchover
times tend to zero in a polling model with non-zero switchover times is that the number of polling
epochs in an idle period tends to infinity, leading to degenerate distributions at such epochs, cf.
Levy and Kleinrock [127] and Eisenberg [75]. The relationship between the two models has
further been exposed in Cooper, Niu and Srinivasan [67], Fuhrmann [95], and Srinivasan, Niu
and Cooper [151]; in [29] some of their results are unified and generalized.

4.2 Computational aspects

The above results provide a basis for a very efficient numerical calculation of the mean waiting
times as well as higher-order moments [29]. The number of elementary operations (additions,
multiplications) involved for calculating the mean waiting time at a single queue is O(n logρ(ε)),
with ε the desired level of accuracy. This is comparable to the computational complexity of the
so-called descendant-set approach developed by Konheim and Levy [117] and the so-called station
time method of Ferguson and Aminetzah [85] which entail solving a system of n2 equations for
obtaining the mean waiting times at all n queues. These methods provided a significant reduction
in computational complexity compared to the original buffer occupancy method described by
Cooper [65], Cooper and Murray [66] and Eisenberg [73] which required solving a system of n3

equations for determining the mean waiting times at all n queues. The Mean Value Analysis
developed by Winands, Adan and Van Houtum [166], as further discussed in Section 7, also
provides an efficient way to determine mean sojourn times, as demonstrated in Van der Gaast
et al. [99] for a model with batch arrivals. It additionally offers a basis for approximations of
mean queue lengths and mean delays.

We close this subsection by remarking that (i) Equation (11) of [144] provides exact (non-
numerical) moment expressions for branching-type polling models, and (ii) Choudhury and
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Whitt [58] present an elegant method to obtain moments and tail probabilities in polling models
via numerical inversion of transform expressions.

5 Two-queue polling systems which are not of branching type

There appears to be a sharp division between ‘easy’ (branching-type) and ‘complicated’ polling
models. Such a division is not uncommon in queueing theory; one also sees it, e.g., in queueing
networks that do or do not satisfy the conditions to have a product form for their joint queue
length distribution. If a polling system does not satisfy the branching property, then an exact
analysis of queue length and waiting-time distributions generally seems out of reach. Just like
in queueing networks, there are a few two-queue exceptions; in the present section we consider
some of those. We restrict ourselves to the case of non-zero switchover times. Starting point is
a relation between the two-dimensional queue length generating functions Vb1(z) = Vb1(z1, z2)
and Vb2(z1, z2) at server visits to Q1 and Q2, respectively. When the branching property holds,
this relation is given by (25), which could be iterated to yield an infinite product. Now consider
the case in which Q1 receives exhaustive service and Q2 receives 1-limited service. Then (26) is
replaced by

Vb1(z1, z2) =
β2(z1, z2)σ2(z1, z2)

z2
[σ1(z1, z2)Vb1(h1(z1, z2), z2)

− σ1(z1, 0)Vb1(h1(z1, 0), 0)] + σ2(z1, z2)σ1(z1, 0)Vb1(h1(z1, 0), 0). (37)

Ibe [109] has obtained the marginal queue length transform for Q1 at polling instants of that
queue; Groenendijk ([103], Section 6.3) used (37) to obtain an explicit expression for Vb1(z1, z2).
The key to solving (37) is the observation that, because service at Q1 is exhaustive, one has
h1(z1, z2) = π1(λ2(1− z2)) with π1(·) the LST of a busy period of M/G/1 queue Q1 in isolation.
Because this function does not depend on z1, Vb1(h1(z1, 0), 0) is a constant, not depending
on z1. Hence the only unknown functions in (37) are Vb1(z1, z2) and Vb1(h1(z1, z2), z2), and the
substitution z1 = π1(λ2(1 − z2)) (plus the normalization condition) solves the problem. For a
study of the two-queue case with exhaustive service at Q1 and k-limited service at Q2, we refer
to Ozawa [140] and Winands et al. [167].

It is perhaps not that surprising that the two-queue exhaustive/1-limited model is easy to
analyze; in the case of zero switchover times, it reduces to a classical queueing model with two
customer classes and non-preemptive priority for class 1. It is surprising, though, that the two-
queue gated/1-limited model has not succumbed to an exact analysis; in Boon et al. [23] it is
suggested that determination of Vb1(z1, z2) for that model might be accomplished by solving a
so-called boundary value problem of a complicated type.

Several two-queue polling models have been solved via a formulation as a boundary value
problem; we now turn to this line of research.

Eisenberg [74] studies a two-queue polling model with 1-limited service at both queues,
and without switchover times. He transforms the problem of determining Vb1(z1, z2) into the
problem of solving a singular integral equation (a complex Fredholm integral equation of the
second kind). As the author indicates, due to the difficult nature of the mathematics, some
steps in the solution remain to be proven. In [64], a different approach for this same model is
given. Below we sketch that approach, for the more general case of non-zero switchover times
(cf. [38]). Starting-point in [38] again is the functional equation for Vbi(z1, z2):

K(z1, z2)Vb1(z1, z2) = Vb1(0, z2) [β2(z1, z2)σ1(z1, z2)σ2(z1, z2)(z1 − β1(z1, z2))]

+ Vb2(z1, 0) [z1σ2(z1, z2)(z2 − β2(z1, z2))] , (38)

with K(z1, z2) the kernel of the functional equation, defined as

K(z1, z2) := z1z2 − β1(z1, z2)β2(z1, z2)σ1(z1, z2)σ2(z1, z2). (39)
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The appearance of the functions Vb1(0, z2) and Vb2(z1, 0) corresponds to a server arriving at an
empty queue. Once they have been obtained, Vb1(z1, z2) is also known. The key in the analysis
in [38] is that, according to its definition as a probability generating function, Vb1(z1, z2) should
be analytic inside the product of unit circles |z1| < 1, |z2| < 1. Hence every zero of K(z1, z2) in
that region should also be a zero of the righthand side of (38). The ensuing relation between
Vb1(0, z2) and Vb2(z1, 0) is thus translated into a Riemann boundary value problem – a problem
in which two functions are related on a closed contour, while one function is analytic inside that
contour (and continuous upto the boundary) and the other function is analytic outside that
contour (and continuous upto the boundary). By solving such a Riemann problem, Vb1(0, z2)
and Vb2(z1, 0) are obtained. In [64], for the case of zero switchover times, a similar approach
was followed, resulting in a (somewhat simpler) Dirichlet boundary value problem.

Cohen [63] studies a two-queue polling model with semi-exhaustive (also called decrementing)
service: the server stays in a non-empty queue until the number of customers present has
become one smaller than the number found upon its arrival to the queue. The joint queue
length distribution at visit completion epochs is obtained by formulating and solving a Riemann
boundary value problem.

Several studies consider two-queue polling models with Bernoulli service. Under this service
discipline, if both queues are non-empty and the server is at Qj , a customer from Qj is served
with probability pj and a customer from the other queue is served with probability 1 − pj .
The case with p1 = 1 and 0 ≤ p2 < 1 was solved by Weststrate and Van der Mei [162] via
an iterative process. The case that p1, too, is less than one is harder. Both Lee ([124], zero
switchover times) and Feng, Kowada and Adachi ([83], non-zero switchover times) treat this
model by using boundary value techniques. Lee formulates a Riemann boundary value problem
with a shift, and translates it to a Fredholm integral equation which he solves. Feng et al. [83]
also formulate and solve a Riemann boundary value problem.

Finally, we would like to observe that it seems unlikely that an exact analysis will be provided
for an n-queue polling model, with n > 2, in which none of the queues has a branching-type
service discipline. This belief is based on the lack of a boundary value approach in dimensions
higher than two. Analytic-numerical approaches like the power-series algorithm could be used
in such cases, see Blanc [17].

6 The input process

The polling literature focuses almost exclusively on the case of customers arriving according to
independent Poisson processes, the service requirements at the various queues moreover being
independent sequences; the resulting input processes hence are independent compound Poisson
processes. In this section we consider some generalizations of these assumptions.

(i) BMAP arrivals. Saffer and Telek [147] consider a polling model with either exhaustive or
gated service, in which the arrival processes at the n queues are independent Batch Markovian
Arrival Processes (BMAP). They developed a generalization of the so-called buffer occupancy
method, a classical method for analyzing queue lengths in polling systems, first presented by
Cooper and Murray [66].

(ii) Renewal arrivals. Bertsimas and Mourtzinou [16] consider a polling model with independent
renewal arrival processes at the various queues. For the case of gated service at all queues,
they derive expressions for the mean delays in heavy traffic, expressing these in cycle time
variances which can be obtained by solving a system of n × n equations. Van der Mei and
Winands [134] build upon their result, allowing general switchover times and providing closed-
form expressions for scaled mean delays in heavy traffic. Boon et al. [27] combine light- and
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heavy-traffic approximations, via interpolation, to come up with accurate mean waiting-time
approximations for polling systems with both gated and exhaustive service.

Another type of approximation is provided in a few papers of Tran-Gia, see in particu-
lar [157]. He presents a discrete-time analysis of polling systems with finite buffers, 1-limited
service and general renewal input. His method is based on the use of efficient discrete convolu-
tion operations, using fast convolution algorithms like the Fast Fourier transform.

(iii) Correlated arrivals. Levy and Sidi [128] study a polling system with correlated Poisson
arrival streams. They consider gated and exhaustive service, and derive linear equations whose
solution yields the mean delays. They also derive a pseudo-conservation law for the mean de-
lays. They extend their analysis in [130] to the case of Poisson arrivals of customer batches with
correlated numbers (K1, . . . ,Kn), destined for queues Q1, . . . , Qn. A workload decomposition
and general pseudo-conservation law for a polling model with such a batch Poisson arrival pro-
cess is presented in [33]. Van der Gaast et al. [99] derive the sojourn time LST of a batch, for
exhaustive, gated and Globally gated service; a batch here may contain customers of various
queues.

(iv) Lévy input. Recently there has been a growing interest in queueing models with as input a
Lévy process (‘Lévy-driven queues’, see Debicki and Mandjes [69]). Lévy processes are processes
with stationary, independent increments. Compound Poisson processes, Brownian motion and
linear increment processes are some special cases. The generalization from a compound Poisson
input (as in an M/G/1 queue) to a Lévy input implies that one can no longer speak of customers
and queue lengths; the focus naturally shifts to workloads. There is hardly any literature on
Lévy-driven polling systems. A pioneering paper is due to Eliazar [76], who studies Lévy-driven
polling systems under the gated discipline, using a dynamical systems approach. Czerniak and
Yechiali [68] consider fluid input at all queues, which may be seen as a special case of Lévy
input. In [39] a very general arrival process is allowed: the input process is an n-dimensional
Lévy subordinator (i.e., non-decreasing sample paths, which is of course natural for an input
process). Correlations between the inputs at the various queues are allowed. Moreover, the input
process may change at polling and switchover instants, implying that one can have different input
processes at different server positions. The transition from compound Poisson process to Lévy
subordinator implies that one no longer has the branching Property 4.1, which is stated in
terms of numbers of customers. The authors of [39] identify the analogous branching property
in a continuous state space setting, that allows describing the multi-dimensional workload at
successive polling instants at a fixed queue as a multi-type continuous state space, discrete-time,
branching process. This is referred to as a multi-type Jirina branching process ([112]; MTJBP).
The class of service disciplines that satisfy the new branching property is rich, and contains the
exhaustive and gated disciplines. Altman and Fiems [4] had also observed the relation between
Lévy-driven polling models and MTJBP’s, in a special case in which all the queues are fed
by identical Lévy subordinators. Employing the Kella-Whitt martingale, the LST of the joint
steady-state workload distribution at an arbitrary epoch is also obtained in [39]. Martingales
are also the main tool in proving a workload decomposition result for a polling system with
multi-dimensional Lévy input [40].

7 Scheduling

Until ten years ago, very few papers diverged from the FCFS assumption for service within a
queue of a polling system. In this section, we pay attention to two lines of research which deviate
from the FCFS adagium: (i) polling systems with multiple classes of customers per queue, and
fixed priorities, and (ii) polling systems in which there is only one class of customers per queue,
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but with a service discipline within a queue that is not FCFS but, e.g., Last-Come First-Served
(LCFS), processor sharing, Random Order of Service (ROS), or Shortest Job First (SJF).
(i) Multiple customer classes with fixed priorities. Shimogawa and Takahashi [149] derive a PCL
for a polling system with fixed priorities within queues, and Fournier and Rosberg [92] consider
polling systems with local priorities and with global priorities (where the server moves to the
next queue if some queue has a customer of higher priority than the ones in the presently visited
queue). They develop a PCL for both model variants.

While most polling+priority studies originated from a computer-communications background,
polling systems with multiple customer classes and fixed priorities also arise naturally in the
Stochastic Economic Lot Scheduling Problem (SELSP), where multiple types of products have
to be produced on a single machine with significant setup times. In the SELSP, orders for
the same product type are being placed by customers of different priority levels, giving rise to
polling models with not only several queues (corresponding to orders for the various product
types) but also several customer classes per queue, see Winands [165]. This formed one of the
motivations for a series of papers of Boon et al. [19, 20, 21]. They analyze the joint queue length
distribution for polling models which are of type PS, except for the additional assumption that
within each queue there are several classes of customers with fixed priorities. That analysis relies
on a relation to multi-type branching processes, cf. Section 4. Boon et al. also determine the
waiting-time distributions of the various classes of customers. This is done for exhaustive, gated
and Globally gated service. A key step of the approach is to determine the joint distribution of
the past and residual cycle time at the arrival epoch of the tagged customer. For gated service,
the waiting time of a customer of priority level k in Qi consists of that residual cycle time, plus
the services of higher priority customers arriving during the cycle, plus the services of customers
of equal priority arriving during the past part of the cycle. For exhaustive service, the procedure
is somewhat similar, with a slightly different definition of the cycle time: for gated service, a
cycle for Qi starts at the beginning of a visit to Qi, whereas for exhaustive service it turns out
to be convenient to let the cycle start at the completion of a visit to Qi.

(ii) One customer class per queue; non-FCFS service. There are quite a few real-world examples
of polling situations in which non-FCFS scheduling might be required. In the computer science
community, polling models are used to study the Bluetooth and 802.11 protocols, and scheduling
policies at routers and i/o subsystems in web servers. The high workload variability in many
of these settings makes non-FCFS scheduling appealing, see Wierman et al. [163]. In [163] it
is argued that the lack of research on scheduling in polling systems is not due to a lack of
applications, but rather due to the beliefs that the impact of within-queue scheduling will be
small, and that the ensuing mathematical analysis will be very hard. Using the Mean Value
Analysis (MVA) framework that was developed for polling systems in Winands, Adan and Van
Houtum [166], in [163] mean response (=sojourn) times in polling systems with exhaustive or
gated service are determined for a wide array of service disciplines: LCFS, Processor Sharing,
SJF and Shortest Remaining Processing Time First (SRPT). It turns out that, while varying the
scheduling strategy at queues with gated service does not have a major effect, it does strongly
affect mean delays in the case of exhaustive service. This holds in particular for SRPT, just as in
an ordinary M/G/1 queue. The reason that the effect is particularly pronounced for exhaustive
service is that small jobs which arrive during a visit of their queue take advantage of preemption
and thus have very small delays.

The above analysis is extended to sojourn time distributions in [35]. The approach globally
consists of the following steps: (i) determine the joint queue length distribution at server visit
epochs to a queue (restricting attention to polling models which satisfy the branching property);
(ii) determine the LST of the cycle time distribution for some queue Qi; (iii) use this to determine
the joint LST of the past and residual part of that cycle time, at the arrival epoch of a customer
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at Qi; (iv) for various service disciplines at Qi, and now focusing on gated and Globally gated,
careful bookkeeping yields the sojourn time LST at Qi. The analysis for exhaustive service
seems more complicated; in Ayesta, Boxma and Verloop [13] the sojourn time LST is obtained
for the case of an M/M/1 processor sharing queue in a polling system, under the constraint that
all other queues also satisfy the branching property. See also Kim and Kim [115] for the case of
phase-type service at the processor sharing queue.

8 Asymptotics

In this section we consider two kinds of asymptotics: Many-queue asymptotics and heavy-traffic
asymptotics.

8.1 Many-queue asymptotics

Asymptotic regimes where the number of queues in a polling system grows large have received
little attention so far. A few authors have studied the case in which the switchover times
between successive queues go to zero when the number of queues grows large. In the limit, the
polling system then behaves as a “continuous” spatial system with a single server which moves
at constant speed along a circle, stopping to perform services when it encounters customers.
These customers arrive uniformly on the circle, according to a Poisson process. Initial studies
of such a continuous polling system were provided in Coffman and Gilbert [60] and Fuhrmann
and Cooper [97]. Their model is generalized by Kroese and Schmidt [122] via an approach that
makes use of random measure theory and stochastic integration theory, and which thus also
provides a rigorous mathematical basis for the study of continuous polling models.

An interesting model generalization is also proposed by Eliazar [77]. He considers a polling
system with gated service and n queues, with a Lev́y input process and general interdependent
switchover times. Letting n → ∞, he proves convergence in law to a limiting polling system
on the circle. His proof is based on an asymptotic analysis of stochastic Poincaré maps. The
obtained limit is identified as a so-called snowplowing system on the circle (a snowplower cycling
along a track, clearing off snow while moving; (cf. [116], pp. 254–255 and 259–264).

Motivated by applications in ferry-assisted wireless local-area networks, Kavitha and Altman
have studied several continuous polling variants. See for instance [113], in which nonclassical
service disciplines are considered, and in which the continuous polling system is analyzed by dis-
cretizing the system in such a way that known pseudo-conservation laws (cf. Subsection 3.3) can
be applied. Their results rely heavily on fixed-point analysis of infinite-dimensional operators.

Kroese [120] considers a greedy service policy: after completion of a service, the server
always moves in the direction of the nearest customer. The stability condition for this system,
and several interesting open problems, are discussed in Rojas Nandayapa, Foss and Kroese [146].
Those open problems concern stability issues as well as characterization of the random measure
describing the steady-state customer positions. This is done in a more general setting than
polling on a circle; customers may arrive in some space, and are served by one or more servers
roaming that space. We refer to [146] for an extensive set of references on continuous polling.

In Meyfroyt et al. [136] another type of scaling with a large number of queues is studied.
Motivated by token passing algorithms for communication channels with medium access control
and a large number of nodes, [136] considers the following scenario: the number of queues grows
large while the total arrival rate is kept fixed and the individual switchover time and service
time distributions remain the same. This asymptotic regime leads to cycles of infinite length
and queue lengths with non-trivial distributions. Explicit pre-limit expressions are derived for
the covariance of queue lengths, the covariance of visit times and the variance of the cycle time
for symmetric polling systems in which the server uses a branching-type discipline. This leads

17



to explicit expressions for limn→∞E[C/n] and limn→∞nVar(C/n). Those results reveal that,
since Var(C/n) is of order 1/n, the scaled cycle time C/n converges in probability to a deter-
ministic value. This implies that the queue lengths at the various nodes become asymptotically
independent. In the limit, the individual queues appear to behave as discrete-time bulk service
queues. It is suggested in [136] that these properties of C/n and of the individual queues remain
valid for symmetric polling systems with a large number of queues and more general non-idling
service disciplines – which are not necessarily of the branching-type.

8.2 Heavy-traffic asymptotics

Pioneering papers regarding the heavy-traffic behavior of polling systems were written by Coff-
man, Puhalskii and Reiman [61, 62]. In [61], the focus is on a two-queue polling model with
renewal arrival processes and exhaustive service at both queues, and with zero switchover times.
The authors first apply standard heavy-traffic assumptions and scalings; they let

√
m(1 − ρ)

approach a constant with m going to infinity, and show that the normalized total workload
process W (mt)/

√
m) weakly converges to reflected Brownian motion (RBM). For this they can

rely on a known G/G/1 result, because of work conservation. They subsequently show that the
scaled workloads of individual queues change at a rate that becomes infinite in the limit. They
then formulate an averaging principle for individual workloads, in which during one polling cycle
these scaled workloads linearly decrease to zero (during visit periods of the corresponding queue)
and linearly increase (during the subsequent intervisit period), while the total scaled workload
in the system during such a cycle basically stays the same. Individual workloads change a factor√
m faster than the total workload. Put differently: when the total scaled workload equals x,

the scaled workload at an individual queue is uniformly distributed on [0, x]. While in [61] a
rigorous proof is only provided for the two-queue case with identical service time distributions,
the authors convincingly argue that such an averaging principle should also hold in the n-queue
case, with not necessarily identical service time distributions.

Coffman et al. prove in [62] that the averaging principle carries over to the case of non-zero
switchover times. Because of those switchover times, they first have to replace the RBM heavy-
traffic limit for the total workload by a Bessel-type diffusion limit. Two key elements of their
subsequent approach are: (i) they first prove the averaging principle for a so-called threshold
queue, a single queue in isolation with a server which only starts serving when the workload
exceeds some value T ; (ii) they strongly rely on a semi-martingale representation of the workload
process, which allows them to use general convergence results for semi-martingales.

The Coffman-Puhalskii-Reiman papers have given rise to several lines of research. Olsen [138]
provides a heuristic refinement of the averaging principle, which improves the accuracy of the
resulting approximation for waiting-time distributions under moderate load. In several stud-
ies it is argued, without a rigorous proof, that the averaging principle of [61, 62] holds in far
greater generality. We refer to Section 2 of Markowitz, Reiman and Wein [131] for an excellent
discussion of the heavy-traffic averaging principle and further references, here only mentioning
the interesting extensions to polling systems in tandem in Reiman and Wein [142] and to the
stochastic economic lot scheduling problem [131]. Olsen and Van der Mei [139], too, conjecture
that the heavy-traffic averaging principle holds in considerable generality, and apply it to polling
models with renewal arrivals, exhaustive or gated service at the queues, and service according
to a polling table. They also use their heavy-traffic limiting result to provide accurate approx-
imations for waiting-time distributions under moderate to heavy load. A similar approach is
followed in Boon et al. [25] for a network with a single roving server, leading to a heavy-traffic
limiting result for the distribution of the total sojourn time of a customer in the network, when
following a specific path. In combination with a novel light-traffic approximation, this yields an
approximation for the mean total sojourn time along a specific path, which is highly accurate
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for a wide range of traffic loads. Jennings [111] uses a new technique to prove the validity of a
heavy-traffic averaging principle for a vector of weighted queue lengths in a polling system with
zero switchover times, and with a certain parameterized set of gated and exhaustive service
disciplines. Each queue length is weighted by its mean processing time.

Finally we mention three results of a different type. Firstly, Van der Mei [132] develops
a heavy-traffic approach which is quite different from the one in [61, 62]. He restricts himself
to branching-type polling systems, and then exploits Theorem 4 of Quine [141] for multi-type
Galton-Watson branching processes, in which the maximal eigenvalue of the so-called mean
matrix (of numbers of descendants) approaches the critical value 1. Using Resing’s relation
between the numbers of particles in multi-type branching processes [144] and the numbers of
customers in the various queues at server polling epochs, he is able to obtain the heavy-traffic
limiting behavior of the queue lengths. See also Abidini, Dorsman and Resing [2] for a related
heavy-traffic result for a polling model with retrials and so-called glue periods that models the
dynamics of optical switches; in [2] heavy-traffic asymptotics for the joint queue length process
are derived. Interestingly, Kroese [121] provides a heavy-traffic analysis of a continuous polling
system on the circle (cf. Subsection 8.1), by exploiting the relationship between such systems
and age-dependent branching processes.

Secondly, Boon and Winands [26] consider a two-queue polling system with zero switchover
times and ki-limited service at Qi, i = 1, 2, under Markovian assumptions. Applying a singular
perturbation technique, they derive the heavy-traffic behavior of the joint queue length vector.
The queue length of the critically loaded queue (Q2) appears to be exponentially distributed
after an appropriate scaling, whereas the queue length of Q1 is distributed as that of a queue
in isolation with Erlang-k2 distributed vacations. This reveals a heavy-traffic behavior that is
quite different from the heavy-traffic behavior of the branching-type polling models studied in
the papers mentioned above.

Thirdly, Bekker et al. [15] consider polling models with the gated or Globally gated service
policy and several non-FCFS service disciplines. They derive asymptotic closed-form expressions
for the LST of scaled (by a factor 1 − ρ) waiting times and sojourn times in heavy traffic. For
FCFS, it was already known that the scaled sojourn times are of the form UΓ, with U and
Γ independent, U uniformly distributed and Γ Gamma distributed. In [15] this result is also
shown to hold for LCFS, while one has ŨΓ for ROS with Ũ having a trapezoidal distribution; for
processor sharing and SJF one gets Ũ∗Γ, with Ũ∗ having a generalized trapezoidal distribution.
These results lead to accurate waiting- and sojourn time approximations. Vis, Bekker and Van
der Mei [158] consider the same heavy-traffic problem for the case of exhaustive service at all
queues. In that case, the scaled sojourn times are of the form ΘΓ, where Θ is related to a
uniformly distributed random variable.

9 Some miscellaneous topics

In this section we discuss some miscellaneous topics, which did not fit in the framework of
the previous sections: (i) multiple-server polling systems, (ii) disciplines with service limits, (iii)
optimization of polling systems and (iv) queue-length dependent server behavior. Unfortunately,
we could not cover some interesting topics like the concept of the dormant server which stays at
a queue when the system has become empty; the concept of the smart customer whose arrival
rate is determined by the server location; and the concept of fairness. The latter concept may
deserve more attention than it has so far received in the literature [148, 164], because it is closely
related to the important question which queue to serve next, and which service discipline to use
at a queue.
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9.1 Multiple-server polling systems

As reflected in Assumption 1 in Section 2, we have focused on polling systems with a single
server. Although multiple-server polling systems find a wide range of applications, they have
received relatively limited attention, and hardly any exact distributional results are available,
since the combination of several queues and multiple servers yields highly complex behavior.

In multiple-server models, it is useful to distinguish between two scenarios with either coupled
servers which always visit the various queues as a group or independent servers which each visit
the queues individually. Browne and Weiss [51] establish index-type rules for determining the
visit order that myopically minimizes the expected length of individual cycles in systems with
coupled servers and exhaustive or gated service. Browne et al. [49] and Browne and Kella [50]
analyze two-queue models with an infinite number of coupled servers and deterministic service
times at one of the two queues. Vlasiou and Yechiali [160] analyze polling systems with an infinite
number of coupled servers and random visit durations. Borst [28] explores the class of models
with multiple coupled servers that satisfy a slight generalization of branching Property 4.1, and
allow an exact analysis of the joint queue length distribution at polling epochs, the marginal
queue length distributions, and the waiting-time distributions.

Models with multiple independent servers arise in scenarios where several queues may be
served concurrently, as is commonly the case in a wide range of applications, e.g., token ring
and optical communication networks, elevator systems, and signalized traffic intersections. In a
pioneering paper Morris and Wang [137] derive the mean cycle time of each server and the mean
intervisit time to a queue, and present approximate expressions for the mean sojourn time for
both a gated-type and a limited-type service discipline. An interesting phenomenon observed
in [137] is that multiple independent servers have a tendency to cluster if they follow identical
routes, especially in high load conditions. This phenomenon is somewhat reminiscent of the
tendency for city buses and trams to bunch together on heavily traveled routes, and may be
visualized and understood as follows. A server that is behind will tend to move fast, as it only
encounters recently served queues, whereas a server at the front will tend to be slowed down
by queues that have not been served for a while. Thus the servers tend to form bunches while
constantly leapfrogging over one another. Obviously, the bunching of servers is alleviated if they
follow different routes, and Morris and Wang [137] therefore advocate the use of ‘dispersive’
policies to improve the system performance. Gamse and Newell [100, 101] use multiple-server
polling models to study elevator operations where similar bunching behavior can occur.

Borst and Van der Mei [32] provide mean waiting-time approximations which exploit pseudo-
conservation-like concepts (which had proven to be valuable in the single-server case, cf. Boxma
and Meister [46, 47]) and explicitly account for the tendency of the servers to cluster as function
of their visit orders. Van der Mei and Borst [133] demonstrate how performance metrics in
polling systems with multiple independent servers may be calculated using the so-called power-
series algorithm.

In recent papers Antunes et al. [8] and Robert and Roberts [145] propose mean-field approx-
imations for the capacity of multiple-server polling systems with a large number of queues and a
limit on the number of servers that can visit a queue simultaneously, motivated by applications
in passive optical networks. Finally, it is worth observing that the analysis of optimal dynamic
routing policies and service disciplines for polling systems with multiple independent servers is
closely related to that of selecting an optimal service vector in ‘switched’ networks with several
potential schedules and reconfiguration delays as considered in [9, 54, 56, 108, 161].

9.2 Disciplines with service limits

Disciplines with service limits as described in Section 2 are commonly adopted in practice to
regulate the amount of service provided to each of the queues during a visit. Such service limits
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can either be specified in terms of the maximum number of customers served during a visit or
the maximum time duration of a visit, and can be leveraged to bound the cycle time. Moreover,
these limits provide a mechanism to achieve prioritization, by assigning different service limits
to different queues, according to their relative importance.

Although these disciplines are widely implemented, they are difficult to analyze and hence
it is not well understood how to set the service limits so as to achieve target performance levels.
Note that k-limited service disciplines do not satisfy Property 4.1 and exact results are only
available for special cases, such as completely symmetric systems with 1-limited service and a
few two-queue scenarios as discussed in Section 5. Polling systems with time-limited service
have not yielded to an exact analysis in any degree of generality either. Coffman, Fayolle and
Mitrani [59] and De Haan, Boucherie and Van Ommeren in a series of papers (see, e.g., [104])
present interesting results for exponentially distributed time limits. Leung [126] develops a
numerical technique for analyzing systems with a probabilistically limited service discipline.

The fact that disciplines with service limits are widely deployed, yet extremely hard to
analyze, has considerably added to the importance of the pseudo-conservation laws discussed
in Section 3 in constructing and validating waiting-time approximations. Boxma and Meister
[47] use the pseudo-conservation law to derive waiting-time approximations for 1-limited service.
Groenendijk [103] presents a more refined procedure to compute such approximations. For the
general case of k-limited service, the pseudo-conservation law still contains an unknown term.
Fuhrmann and Wang [98] obtain waiting-time approximations for k-limited service by bounding
that term. Everitt [78, 80] derives such approximations by approximating that term. Chang
and Sandhu [57] present a more refined procedure to calculate waiting-time approximations for
k-limited service.

9.3 Optimization of polling systems

Optimization in polling systems is a multi-faceted problem which has been actively pursued,
though it remains somewhat under-explored compared to the analysis of polling systems. We
refer to Boxma [34] (static optimization) and Yechiali [168] (semi-dynamic optimization) for
surveys, and here only highlight a few of the main issues.

In the optimization of polling systems, there are two key factors that play a role: first, what
is the performance metric to be optimized, and second, what is the class of feasible scheduling
policies. As for the first factor, a commonly adopted optimization criterion is a weighted sum of
the mean waiting times at the various queues. Concerning the second factor, usually the class
of feasible scheduling policies consists of a family of strategies of similar structure that differ by
some (vectorial) parameter. Typical examples include a routing vector (routing probabilities, or
polling table), a service vector (service probabilities, or service limits), or a routing vector and
a service vector simultaneously, which we now briefly discuss in succession.

Optimization of the routing policy for a given service policy
A considerable research effort has been devoted to static optimization, i.e., optimization of
static routing policies, in which the routing decisions are made independently of the state of the
system. Boxma, Levy and Weststrate [43] consider a system with random polling, and either
exhaustive or gated service at each of the queues. They address the problem of finding the

routing probabilities that minimize
n∑
i=1

ρiEWi, the latter quantity being explicitly known from

the pseudo-conservation law for random polling, cf. [48]. They subsequently use this to deter-

mine a polling table that minimizes
n∑
i=1

ρiEWi, or, more generally [44], to determine a polling

table that minimizes a weighted sum of the mean waiting times, the latter quantity now being
approximated in terms of the occurrence ratios of the queues in the polling table. Kruskal [123]
studies a similar problem with deterministic arrival, service, and switchover processes. In all
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cases, the optimal visit ratios are given by surprisingly simple square-root formulas.
Also, a considerable amount of research effort has been put to semi-dynamic optimization,

i.e., optimization of semi-dynamic routing policies, in which periodically the visit order for some
future period is determined, based on some partial knowledge of the state of the system; see for
instance Browne and Yechiali [52] and Fabian and Levy [81].

Optimization of the service policy for a given routing policy
Borst, Boxma and Levy [31] consider a system with a k-limited service strategy at each of
the queues, and address the problem of determining the vector of service limits (k1, . . . , kn) that
minimizes a weighted sum of the mean waiting times. Blanc and Van der Mei [18] study a similar
optimization problem in a system with a Bernoulli service strategy at each of the queues.

Simultaneous optimization of routing policy and service policy
Borst et al. [30] consider a system operated with a fixed time polling (ftp) scheme. An ftp
scheme specifies which queue should be visited at what time, i.e., it specifies not only the order
of the visits, but also the starting times of the visits, and addresses the problem of constructing
an ftp scheme that minimizes a weighted sum of the mean waiting times.

For a model with zero switchover times, the optimal (non-preemptive) polling policy is
known to be given by the cµ-rule, cf. Meilijson and Yechiali [135], and Buyukkoc, Varaiya
and Walrand [55]. For a symmetric two-queue model with non-zero switchover times, Hofri
and Ross [106] show that the policy that minimizes the sum of discounted switchover times
and the holding cost, is exhaustive service in a nonempty system, and is of threshold type for
switching from an empty queue to another. For an asymmetric two-queue model with switchover
costs rather than switchover times, Koole [118] shows that the policy that minimizes the sum
of discounted switching cost and holding cost, is not a threshold policy, but that the best
threshold policy approaches the optimal policy very well. See the next subsection for some
further threshold policies.

9.4 Queue-length dependent server behavior

We briefly mention some studies which are devoted to the exact analysis of two-queue polling
models with threshold switching. Lee and Sengupta [125] consider a two-queue system without
switchover times. If there are more than L customers at Q1 after a customer departure, then the
server next serves a type-1 customer. If there are at most L customers at Q1 after a customer
departure, then the server checks the type of the last served customer, and serves a customer of
the other type (if there is one). Boxma, Koole and Mitrani [42] study a two-queue model with
exponential service times and exhaustive service at Q1. Service at Q2 is also exhaustive, unless
the size of Q1 reaches a threshold T during a service at Q2; in the latter case the server switches
to Q1, either preemptively or at the end of the service. The same model, but with general
service time distributions and without preemption, is considered in Boxma & Down [36]; that
paper also contains a simple, yet accurate, mean queue length approximation which is suitable
for optimization purposes. The two-queue model with general service time distributions in
Feng et al. [84] has two thresholds M and N > M in Q2. After a service completion in Q1

that leaves Q1 non-empty, the server still moves to Q2 if its queue length exceeds N . After
a service completion in Q2 that leaves Q2 with at most M customers while Q1 is not empty,
the server switches to Q1; otherwise, it stays at Q2. The analysis in each of these four papers
[36, 42, 84, 125] focuses on queue length PGF’s, and relies on arguments from complex function
theory. The two-queue model of Avrachenkov, Perel and Yechiali [12] also has a threshold based
policy, but the capacities of both queues are finite. They use a matrix-analytic approach, and
expose an interesting oscillation phenomenon. We also refer to this paper for further references
on threshold switching.

Remark 9.1
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Next to queue-length dependent server behavior, one could also allow queue-length dependent
customer behavior. In Adan et al. [3], a two-queue polling model is analyzed in which cus-
tomers join the shortest queue. The joint queue length distribution is determined both via the
compensation approach and via reduction to a Riemann-Hilbert boundary value problem. Alter-
natively, one could allow customers to use some form of information about the server position.
For example, the arrival rate of customers could depend on whether the server is visiting Qi, or
switching to Qj. In the case of branching-type service disciplines, one can then still obtain joint
queue-length distributions by exploiting properties of multi-type branching processes; a similar
statement even holds in the case of Lévy-driven polling models [39].

10 Suggestions for further research

Polling is a quite broad topic, and there are several ways of listing suggestions for further polling
studies. One option is to link an open problem to each of the 10 assumptions of Section 2. Indeed,
it would be interesting to obtain more results for multiple-server polling systems (Ass. 1); to
devote more attention to spatial polling models (Ass. 2; see Altman and Foss [5]); to relax the
assumption of Poisson arrivals (Ass. 3); to allow the loss of customers (Ass. 4); to consider non-
cyclic routing, in particular Markovian routing (Ass. 5. This is, a.o., relevant in the setting of
random access in wireless communications, see Dorsman et al. [70]. It is interesting to notice [144]
that the joint queue length process in Markovian polling models is not a multi-type branching
process, even if the service policies at all queues are of branching type); to get a better grip
on service policies which are not of branching type (Ass. 6); to obtain more results for polling
systems with non FCFS service order (Ass. 7); to study the effect of large switchover times, and
also to allow the possibility that a switchover time is skipped when the corresponding queue is
empty (Ass. 8; see Boon et al. [23]); to consider a network of queues with one or more polling
servers (Ass. 9; [7, 10, 14, 26, 107, 150]); and to study stability conditions [90] but also the
transient behavior of polling systems (Ass. 10).

Rather than “polling” these 10 topics in an exhaustive manner, we prefer to focus on what
in our opinion are a few particularly relevant directions for further research:
(i) Exact results for non-branching models are quite scarce, and exact results for branching-type
polling models are typically given in the form of sums of infinite products of generating functions.
Hence, there is a strong need for readily applicable expressions, which give useful qualitative
insights and reasonably accurate quantitative results, like those provided in Federgruen and
Katalan [82]. In particular, there seems to be a need for more asymptotic analysis. Firstly, we
need to improve our insight into the heavy-traffic behavior of the class of branching-type polling
systems, possibly based on the theory of multi-type branching processes, see Van der Mei [132],
but it is even more important to develop a methodology to study the heavy-traffic behavior
of those polling systems in which the branching property is violated. Secondly, large-deviation
asymptotics for polling systems deserve attention. Finally, we have only begun to understand
the asymptotics for n, the number of queues, growing large. The scaling limits which are devel-
oped via asymptotic analysis may subsequently provide the basis for useful approximations, see
Bertsimas and Mourtzinou [16] and Boon et al. [27].
(ii) Relatively few studies have been devoted to the dynamic optimization of polling systems:
which queue to serve next, and for how long? From an application perspective, it seems im-
portant to develop a methodology, possibly based on Markov decision processes, to tackle such
problems systematically, also covering scenarios with simultaneous service of several queues sub-
ject to certain constraints.
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