
Delta probing policies for redundancy
Youri Raaijmakers

Eindhoven University of Technology

Eindhoven, The Netherlands

y.raaijmakers@tue.nl

Sem Borst

Eindhoven University of Technology

Eindhoven, The Netherlands

Nokia Bell Labs

Murray Hill, NJ, USA

s.c.borst@tue.nl

Onno Boxma

Eindhoven University of Technology

Eindhoven, The Netherlands

o.j.boxma@tue.nl

ABSTRACT
We consider job dispatching in systems with N parallel servers. In

redundancy-d policies, replicas of an arriving job are assigned to

d ≤ N servers selected uniformly at random (without replacement)

with the objective to reduce the delay. We introduce a quite general

workload model, in which job sizes have some probability distribu-

tion while the speeds (slowdown factors) of the various servers for

a given job are allowed to be inter-dependent and non-identically

distributed. This allows not only for inherent speed differences

among different servers, but also for affinity relations. We further

propose two novel redundancy policies, so-called delta-probe-d
policies, where d probes of a fixed, small, size ∆ are created for

each incoming job, and assigned to d servers selected uniformly

at random. As soon as the first of these d probe tasks finishes, the

actual job is assigned for execution – with the same speed – to the

corresponding server and the other probe tasks are abandoned. We

also consider a delta-probe-d policy in which the probes receive

preemptive-resume priority over regular jobs. The aim of these

policies is to retain the benefits of redundancy-d policies while ac-

counting for systematic speed differences and mitigating the risks

of running replicas of the full job simultaneously for long periods of

time. Analytical and numerical results are presented to evaluate the

effect of both probing policies on the job latency, and to illustrate

the potential performance improvements.

KEYWORDS
Parallel-server system, dispatching, redundancy, probing policies,

delay performance

ACM Reference Format:
Youri Raaijmakers, Sem Borst, and Onno Boxma. 2018. Delta probing policies

for redundancy. In Proceedings of Performance Evaluation (Toulouse’18).ACM,

New York, NY, USA, 11 pages. https://doi.org/10.475/123_4

1 INTRODUCTION
Redundancy scheduling has emerged as a powerful paradigm for

improving the delay performance in parallel-server systems, and

has attracted strong interest in recent years [2–4, 7–10, 15, 17, 20].

The key element in redundancy scheduling is job replication where

replicas of each incoming job are dispatched to, say d , different

Permission to make digital or hard copies of part or all of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for third-party components of this work must be honored.

For all other uses, contact the owner/author(s).

Toulouse’18, December 2018, France
© 2016 Copyright held by the owner/author(s).

ACM ISBN 123-4567-24-567/08/06. . . $15.00

https://doi.org/10.475/123_4

servers. Redundant copies are then abandoned as soon as the first

of thesed replicas either enters service (‘cancel-on-start’) or finishes

service (‘cancel-on-completion’).

Note that the ‘cancel-on-start’ variant is equivalent to a strat-

egy which assigns an arriving job to the server with the currently

smallest workload among d servers selected uniformly at random

(assuming each of the individual servers adheres to a FCFS dis-

cipline) without generating any replicas. Such a load balancing

strategy is also commonly referred as a JSW(d) policy, reflecting the
connection with the ordinary Join-the-Shortest-Workload (JSW)

policy which assigns each job to the server with the minimum

current workload. This latter criterion (myopically) minimizes the

waiting time of each incoming job, and emulates the operation of

a centralized queue with a global FCFS discipline. Likewise, the

‘cancel-on-completion’ (c.o.c.) version shares some similarity with

a strategy which assigns an incoming job to the server that will

provide the minimum sojourn time among d servers selected uni-

formly at random. Viewed from this angle, redundancy scheduling

is also closely related to a JSQ(d) policy which assigns an incoming

job to the server with the currently shortest queue length among

d servers selected uniformly at random [13, 14, 21].

By virtue of the “power-of-d choices”, redundancy scheduling

inherits the strong merits of JSW(d) and JSQ(d) policies in improv-

ing the delay performance. A major advantage of a redundancy

strategy is that it does not rely on workload information or advance

knowledge of service times, and does not entail any communica-

tion overhead upon arrival of a job. On the flip side, a redundancy

strategy involves generating replicas and incurs a communication

burden in abandoning redundant copies once the first replica has

entered or finished service.

Note that in the c.o.c. version several replicas of the same job may

be in service concurrently until the first replica finishes service. This

unique feature of redundancy scheduling is not shared with JSW(d)
and JSQ(d) policies, and may either yield additional performance

gains or result in potential vulnerabilities. Indeed, having several

replicas of the same job in service concurrently entails a wastage

of service capacity in a certain sense. However, this situation also

creates an opportunity to complete service of a short replica and

avoid full service of a long replica if the run times of the various

replicas are different, thus reducing the total amount of service

capacity devoted to the job.

As it turns out, when the run times of the various replicas are

independent and exponentially distributed, which is the preva-

lent case considered in the literature [5, 10, 16, 20], the collective

amount of work spent on completing a job remains exponentially

distributed, no matter how the services of different replicas may

overlap in time. When the run times of the various replicas are

https://doi.org/10.475/123_4
https://doi.org/10.475/123_4

Toulouse’18, December 2018, France Y. Raaijmakers et al.

independent and highly variable (e.g., heavy-tailed), concurrent

service provides some degree of immunity from extremely long run

times, and even tends to reduce the total amount of service capacity

devoted to a job. In contrast, when the run times are less variable

or highly variable but correlated, which is the typical case observed

in practice, concurrent service can cause a substantial wastage of

service capacity, and at high degrees of replication it can in fact

nullify the performance gains from the “power-of-d choices” and

adversely affect stability properties. Thus the performance gains

from the c.o.c. redundancy policy sensitively depend on the char-

acteristics of the joint distribution of the run times of the various

replicas.

Gardner et al. [7] introduced the so-called S&X model to capture

the typical correlation among the run times of various replicas as

induced by the intrinsic size of a job. The analysis in [7] demon-

strated that higher degrees of replication can degrade the delay

performance for certain run time distributions, and even give rise

to instability issues, corroborating the above observations. Gardner

et al. [7] also proposed a refinement of the c.o.c. redundancy pol-

icy termed ‘Redundant-to-Idle-Queue’ (RIQ), which only assigns

replicas to the idle servers among the d sampled servers, if any,

and otherwise simply assigns the job to just one of these d servers

selected uniformly at random. It was shown in [7] that the RIQ

policy provides similar performance gains as standard redundancy

scheduling policies, but prevents the potential repercussions and

in particular instability issues at higher degrees of correlations for

certain run time distributions.

While the S&X model accounts for the typical correlation among

the various run times induced by the intrinsic size of a job (the

‘X ’), it adheres to the assumption that the slowdown factors at the

various servers (the ‘S ’ components) are independent and identically

distributed. In particular, the special case of deterministic job sizes

X is equivalent to the independent run times (IR) model, which had

been prevalent in the earlier literature.

The present paper aims to make two contributions to the model-

ing and analysis of redundancy-d policies. The first contribution is

that we examine a more general workload model which relaxes the

assumption of i.i.d. slowdown factors, allowing the slowdown fac-

tors to be inter-dependent and possibly non-identically distributed.

This allows not only for inherent speed differences among different

servers, but also for ‘affinity’ relations where some types of jobs

can be handled more efficiently by some of the servers than others

[18].

Although redundancy scheduling policies can handle random

variations in slowdown factors among statistically homogeneous

servers, it turns out that they are not well-suited to deal with sys-

tematic speed differences among heterogeneous servers, let alone

affinity relations. The second contribution of the present paper is

to introduce two novel policies which are able to handle not only

random fluctuations in slowdown factors, but also structural forms

of heterogeneity in server speed and fundamental job-server com-

patibility characteristics. In these delta-probe-d policies, d probes of

a fixed, small, size ∆ are created for each incoming job, and assigned

to d servers selected uniformly at random. As soon as the first of

these d probes finishes, the actual job is assigned for execution –

with the same speed – to the corresponding server and the other

probe tasks are abandoned. The aim of these policies is to retain the

benefits of redundancy-d policies while accounting for systematic

speed differences (e.g., in the scenario of job classes) and mitigating

the risks of running replicas of the full job simultaneously for long

periods of time. To reduce the chance that a probe on a slow server

is finished before other probes on faster servers have completed

their service, we also consider a delta-probe-d policy in which the

probes receive preemptive-resume priority over regular jobs.

Analytical and numerical results are presented to investigate the

effect of both probing policies on the job latency (the time until

a job is completed) and demonstrate the potential performance

improvements. In particular for ∆ ↓ 0 quite explicit delay results

can be derived. We show that both delta-probe-d policies tend

to outperform the c.o.c. redundancy policy in terms of expected

latency. More specifically, for d = N and ∆ small enough it can

be proved that the delta-probe-d policy with preemptive-resume

priority outperforms the c.o.c. policy in terms of expected latency,

and has a larger stability region. The delta-probe-d policy without

preemptive-resume priority usually performs better than the policy

with preemptive-resume priority in the case of balanced server

speed distributions, but the situation is reversed in the case of

unbalanced server speed distributions.

The remainder of the paper is organized as follows. In Section 2

we present a detailed model description, along with a further speci-

fication of the various delta-probe-d policies under consideration.

Analytical results for the delay performance of these policies are

derived in Section 3. Section 4 reports on extensive numerical ex-

periments, in which the performance of the two delta-probe-d poli-

cies is compared with that of other policies such as c.o.c. and RIQ.

Section 5 contains conclusions and some suggestions for further

research.

2 SYSTEM DESCRIPTION ANDWORKLOAD
MODEL

We consider a systemwith a single dispatcher andN parallel servers,

each of which has its own queue and follows a FCFS discipline. Jobs

arrive according to a Poisson process of rate λ, and have sizes

that are independent and identically distributed copies of some

generic random variable X , with distribution function X (·). When

a job arrives, the dispatcher immediately assigns possibly multiple

replicas to one or more servers according to a specific policy which

will be further detailed below. In case replicas are assigned to several

servers, the intrinsic job size is preserved, but the service speeds

R1, . . . ,RN on the various servers, and hence the corresponding run

times, may differ. For a particular job with a given size x , Bi = x/Ri
represents the run time when executed by server i , i = 1, . . . ,N .

We allow the service speedsR1, . . . ,RN of a generic job to be gov-

erned by some joint distribution F (r1, . . . , rN), reflecting possible

server heterogeneity and job-server compatibility characteristics,

thus covering a broad range of common workload models as special

cases. We can broadly distinguish between two scenarios depend-

ing on whether the service speeds R1, . . . ,RN of a generic job are

identically distributed or not, see Figure 1.

When the service speeds are identically distributed, a special

case is when they are in fact exchangeable random variables. The

case where the service speeds are then additionally independent

Delta probing policies for redundancy Toulouse’18, December 2018, France

identical non-identical

exchangeable R̄iUi

S & X
hetero-
geneous

Figure 1: Overview server speed scenarios

corresponds to the S&X model mentioned earlier, where it is typi-

cally further assumed that the service speeds are smaller than or

equal to 1. This assumption ensures that the run time can only be

stretched by the service speed compared to the intrinsic job size

X . The latter job size in our model corresponds exactly to the job

size X in the S&X model, while the slowdown factors S1, ..., SN in

the S&X model correspond to the reciprocal values of the service

speeds R1, ...,RN .

When the service speeds are non-identically distributed, a spe-

cial case is where they are still identically distributed up to re-

scaling, i.e., of the form (R1, . . . ,RN) = (R̄1U1, . . . , R̄NUN), where

R̄1, . . . , R̄N are non-identical coefficients and the random variables

U1, . . . ,UN are identically distributed. The case where the latter

random variables are all equal to the same constant may be inter-

preted as a scenario with heterogeneous server speeds.

For notational convenience, we consider the case where the joint

distribution F (r1, . . . , rN) is discrete, and has mass in a finite num-

ber of sayM points (r1m , ..., rNm)with corresponding probabilities

pm ,m = 1, . . . ,M . This system may equivalently be thought of as

having M job classes, where rnm is the service speed of class-m
jobs at the n-th server.

The scenario of job classes in turn subsumes the ‘output-queued’

flexible server model introduced in [19] as a special case. In the

latter model the service time of a class-j job at the i-th server is expo-
nentially distributed with parameter µi j , i = 1, . . . ,N , j = 1, . . . ,M .

This corresponds to an exponentially distributed job size with unit

mean and ri j = 1/µi j , i = 1, . . . ,N , j = 1, . . . ,M , in our model.

We now proceed to describe the redundancy-d policies and the

novel delta-probe-d policies that we examine in the remainder of

the paper.

2.1 Redundancy-d policies
As stated in the introduction, in redundancy-d policies replicas

of an arriving job are assigned to d ≤ N servers selected uni-

formly at random (without replacement). We will focus on the

cancel-on-completion (c.o.c.) variant, where redundant copies are

instantaneously abandoned as soon as the first of the d replicas

finishes.

We will also consider the Redundant-to-Idle-Queue (RIQ) policy,

which only assigns replicas to the idle servers among the d ran-

domly selected servers, if any, and otherwise simply assigns the job

to one of these d servers selected uniformly at random. The perfor-

mance of the RIQ policy was studied in [7] in a regime with a large

number of servers, under an “Asymptotically Independent Idleness”

assumption, meaning that the probability that a particular server is

idle does not depend on the idle-busy status of any finite subset of

other servers (e.g., the other d − 1 randomly selected servers for an

incoming job).

2.2 Delta-probe-d policies
In delta-probe-d policies, d probe tasks of size ∆ are created for

each incoming job. Just like in other redundancy-d policies, these

probe tasks are then assigned to d ≤ N servers selected uniformly

at random (without replacement). The goal is to infer how attractive

these servers are to handle the job in question. We assume that the

observed speeds at which the probe task is executed by the various

servers are representative of what their speeds would be for the

actual job, if selected for execution. As soon as the first of thed probe
tasks finishes, the actual job is assigned to the corresponding server,

and the redundant probe tasks are instantaneously abandoned.

Observe that the choice of the server for execution of a given job,

depends on the combination of the speeds of the d selected servers

and their instantaneous workloads, similarly as in redundancy

scheduling. (The workload here refers to the aggregate run time, i.e.,

the size divided by the speed, of both probe tasks and regular jobs

at a particular server.) However, when the probe tasks are relatively

small, concurrent service of the same job by several servers for an

extended period of time is prevented.

We distinguish between two versions of the delta-probe-d policy,

depending on whether the probe tasks receive (preemptive) priority

over regular jobs or not.

2.2.1 Standard version. In the standard version, also referred to

as delta-probe policy, each server handles probe tasks and regular

jobs in order of arrival. In this case, the selection of a server for

a given job primarily depends on the instantaneous workloads of

the d selected servers, provided the probe tasks are relatively small.

Indeed, as ∆ tends to zero, the standard version reduces to the

JSW(d) policy which simply assigns each job to the server with the

smallest workload among the d sampled servers, without paying

any attention to the speeds of the servers for that particular job.

2.2.2 Preemptive version. In the preemptive version, also re-

ferred to as the delta-probe preemption policy, probe tasks receive

preemptive-resume priority over regular jobs. Thus each server

operates as in a two-class preemptive-priority system with a First-

Come First-Served discipline within each class. In this case, the

selection of a server for a given job primarily depends on the speeds

of the d selected servers for that particular job, as long as the probe

tasks are relatively small. Indeed, as ∆ tends to zero, the preemptive

version behaves as a policy which simply assigns each job to the

server with the highest speed among the d selected servers for that

particular job, without taking the workloads into consideration.

Remark 1. In the case ∆ ↓ 0 and d = N the delta-probe preemp-
tion policy always outperforms the c.o.c. redundancy policy, which
intuitively can be seen as follows. In the c.o.c. policy the system is
always in perfect synchronicity, i.e., the workloads are equal for all
servers, and the replica with the smallest run time is always completed

Toulouse’18, December 2018, France Y. Raaijmakers et al.

first. In fact, the behavior of a queue under the c.o.c. redundancy policy
for d = N reduces to that of anM/G/1 queue. In the delta-probe pre-
emption policy the replica with the smallest run time is also completed
first, but here only the actual job is taken into service. The run times
are thus equal under both policies, but in the c.o.c. policy the job has to
wait for all the jobs in the system whereas in the delta-probe preemp-
tion policy the job has to wait only for all the jobs on the server that is
fastest for this specific job. As a consequence, the waiting time under
the delta-probe preemption policy is no larger than under the c.o.c.
policy sample-pathwise and thus we can conclude that the delta-probe
preemption policy has a larger stability region and a lower expected
latency than the c.o.c. policy.

3 DELAY PERFORMANCE OF THE
DELTA-PROBE-d POLICIES

In this section we analyze the delay performance of the delta-probe-

d policies. Exact analysis of both delta-probe-d policies is in general

extremely difficult due to the fact that the assignment of the actual

job to a specific server needs to be known. It can be observed that

in the delta-probe policy this assignment depends on the joint

workloads of the d sampled servers, which cannot be explicitly

derived. For this policy, we are only able to derive exact expressions

for the key performance measures, such as the stability region and

expected delay, in specific scenarios. Section 3.1 is devoted to this

policy.

In the delta-probe preemption policy the assignment of an actual

job to a server seems more tractable, since the job itself is typically

assigned to the fastest server, when ∆ ↓ 0. For arbitrary ∆ there are

exceptions which are discussed in Section 3.2. For this policy we

obtain explicit expressions for the expected delay and, when ∆ ↓ 0,

for the delay distribution in general settings.

3.1 The delta-probe policy
An exact analysis of the delta-probe policy for arbitrary ∆ seems

out of reach. Even in the simple setting with d = N = 2 andM = 2

the analysis appears to be intractable. Hence, we will mostly resort

to simulation to gain insight in the performance of this policy; the

results are presented in Section 4.

As ∆ approaches zero, this policy becomes more tractable though.

Indeed, when ∆ ↓ 0, the behavior reduces to that in an

M/G1,G2, ...,GN /N systemwith a JSW(d) policy, whereGi denotes

the generic service times of server i , but with one exceptional

property in case of at least two idle servers. In this case the actual

job is always assigned to the fastest server among these idle servers,

instead of uniformly at random. From simulation it is seen that this

property does not significantly influence the performance, i.e., the

expected latency, at high load, since the servers are then almost

always non-idle. When d = N this model can equivalently be

thought of as an M/G1,G2, ...,GN /N system with a centralized

queue, again with the above-mentioned exception. The stability

condition for this model is obviously given by

ρ :=
λ∑N

n=1

1

E[Gn]

< 1. (1)

Remark 2. In the setting where d = N = 2 and ∆ ↓ 0, the delta-
probe policy can be exactly analysed via the approach given in [12].

Remark 3. For identically distributed service speeds, d = N and
∆ ↓ 0, the behavior reduces to that in an M/G/N queue. For the
latter system there are several approximations known for the expected
latency, see [6] for a simple approximation.

3.2 The delta-probe preemption policy
The delta-probe preemption policy with positive ∆ turns out to be

more tractable than the delta-probe policy. Below we analyze its

delay performance, but first two comments are in order.

(i) For notational convenience, we assume that the server speeds

satisfy rim , rkm for all 1 ≤ i , k ≤ N , 1 ≤ m ≤ M . In Remark 4

we discuss how this assumption can be relaxed at the expense of

somewhat more elaborate notation.

(ii) In the analysis we assume that each job is assigned to the fastest

server for that job. This assumption holds exactly for d = N , and

results in a very accurate approximation for d < N , where the

following issue arises. As ∆ ↓ 0, the d sampled servers always start

simultaneously with the service of the probe task, and therefore

the fastest server completes that probe task first. However, if a new

job arrives during the service of a probe task, and there is overlap

between the sets Zold and Znew of d sampled servers of the old job

and of the new job, then the probe task of the new job does not get

priority over the probe task of the old job. Hence at some servers

that new probe task will not immediately be initiated, whereas it

might already start on other servers that do not belong to Zold .
Thus it may happen that the new job is not assigned to the fastest

server. However, this event happens with small probability for ∆
sufficiently small (and it cannot happen when d = N). In Section 4

we corroborate the accuracy of the approximation (ignoring this

event) via simulation.

Let us now determine the expected latency of an arbitrary job

at an arbitrary server, say server i . Observe that the workload at

server i behaves exactly like the workloadVi in a particularM/G/1

queue (there is dependence between the speeds of the N servers,

but because the slowdown factors of successive jobs are chosen

independently, successive run times on an arbitrary server are

independent). It has an arrival rate

ηi =
λd

N
,

and generic run time Gi , to be specified below, and load ρi :=

ηiE[Gi]; hence, fromM/G/1 theory (cf. [11]),

E[Vi] =
ηiE[G

2

i]

2(1 − ρi)
. (2)

By the PASTA property, E[Vi] also equals the expected amount of

work found by an arriving job. Below we first evaluate E[Vi], and
subsequently use that expression to obtain the expected latency

E[Ti] of a job that is actually served at server i . Let GB
i denote

the total run time of probe plus job, of size ∆ + X , given that the

job is indeed executed on server i . Then a flow balance argument

(expected latency equals E[Vi] + E[G
B
i] plus the expected amount

of high-priority work arriving at server i during Ti) implies

E[Ti] = E[Vi] + E[G
B
i] + ηiE[Di]E[Ti],

Delta probing policies for redundancy Toulouse’18, December 2018, France

where Di denotes the time that ∆ is in service at server i (before
one of the d replicas of ∆ is finished). Hence

E[Ti] =
E[Vi] + E[G

B
i]

1 − ηiE[Di]
. (3)

We will successively determine all the components of (2) and (3).

Lety denote the vector (y1,y2, ...,yd) and let SN denote all possible

combinations of the d sampled servers, which is defined as SN =

{y ∈ Nd : 1 ≤ y1 < y2 < . . . < yd ≤ N }. Here, y ∈ SN specifies to

which d servers the probes are assigned. Observe that at a specific

server we can distinguish three types of arrivals:

1 An arrival for which a probe is dispatched to the server of interest

and also the job itself is executed by this server – so the server

serves ∆ + X ,

2 An arrival for which a probe is dispatched to the server of interest

but the job itself is executed at another server – so the server

only serves (part of) ∆,
3 An arrival where the d probes are dispatched to d other servers.

Note that only job arrival types 1 and 2 contribute to the workload

of this specific server.

Arrival rates
If we denote the arrival rates of types 1 and 2 at server i by λ+i and

λ−i , respectively, then

λ+i =
λ(N
d
) ∑
y∈SN

M∑
m=1

pm1
+
i,ym , (4)

and

λ−i =
λ(N
d
) ∑
y∈SN

M∑
m=1

pm1
−
i,ym ,

where 1
+
i,ym is the indicator function that server i is the fastest for

this specific job:

1
+
i,ym = 1{rim=max{ry

1
m,ry

2
m, ...,rydm }}, (5)

and

1
−
i,ym = 1{rim,max{ry

1
m,ry

2
m, ...,rydm }, i ∈{y1,y2, ...,yd }} . (6)

Notice that λ+i + λ
−
i =

λd
N = ηi .

Run times
The run time of a type-1 job, i.e., a job that is actually executed by

server i , has j-th moment, for j = 1, 2, . . . ,

E[(GB
i)

j] =
∑

y∈SN

M∑
m=1

p+i,ym
E[(∆ + X)j]

max{ry1m , ry2m , ..., rydm }j
,

where

p+i,ym =
pm1

+
i,ym∑

w ∈SN
∑M
l=1

pl1
+
i,w l

.

The arrival of a type-2 job only brings the additional ∆ probe to

server i . Let us denote the time spent by server i on the probe of

an arriving type-2 job as D−
i . Then its j-th moment, j = 1, 2, . . . , is

given by

E[(D−
i)

j] =
∑

y∈SN

M∑
m=1

p−i,ym
∆j

max{ry1m , ry2m , ..., rydm }j
,

where

p−i,ym =
pm1

−
i,ym∑

w ∈SN
∑M
l=1

pl1
−
i,w l

.

We still need to determine E[Di] in (3) and E[Gi] and E[G
2

i]

for (2). Remembering that Di is the time spent by server i on a

probe of an arbitrary arrival of type 1 or 2 (not distinguishing

between them), we have

E[Di] =
1(N
d
) ∑
y∈SN

M∑
m=1

pm∆1{i ∈{y1,y2, ...,yd }}

max{ry1m , ry2m , ..., rydm }
.

Now consider the generic run time Gi of an arbitrary arrival as-

signed to server i . It is either a type-1 job, with run time GB
i , or a

type-2 job, with run time D−
i . Hence

E[Gi] =
λ+i

λ+i + λ
−
i
E[GB

i] +
λ−i

λ+i + λ
−
i
E[D−

i],

and

E[G2

i] =
λ+i

λ+i + λ
−
i
E[(GB

i)
2] +

λ−i
λ+i + λ

−
i
E[(D−

i)
2].

We have now obtained expressions for all the ingredients of (3),

and hence the expected latency E[Ti] follows. Finally, the expected
latency of an arbitrary job is given by

E[T] =
N∑
i=1

λ+i
λ
E[Ti],

(notice that

∑
λ+i = λ), under the stability condition

ρi < 1, i = 1, 2, ...,N . (7)

Remark 4. When the assumption of non-equal server speeds within
the realizations of the joint speed distribution is not satisfied, the
maximum of the ryim in Equations (5) and (6) may no longer be
unique. It is no longer true that the service of a job will only be
completed on the (one) server which has the fastest speed among the
d sampled servers. In the case of a non-unique maximum, the job is
dispatched uniformly at random to one of the servers for which this
maximum is attained. Therefore, one can simply replace 1+i,ym by
ϕ+i,ym which equals the right-hand side of Equation (5) divided by the
number of servers for which this maximum is attained and replace
1
−
i,ym by ϕ−i,ym which equals ϕ−i,ym = 1{i ∈{y1,y2, ...,yd }} − ϕ+i,ym .

Negligible ∆ probe
When ∆ approaches zero, the analysis of server i reduces to that of

a standardM/G/1 queueing model. Observe that only arrivals of

type 1 introduce workload at server i .
The arrival intensity at server i is given by Equation (4). The run

time when executed by server i has j-th moment, j = 1, 2, . . . ,

E[(GB
i)

j] =
∑

y∈SN

M∑
m=1

p+i,ym
E[X j]

max{ry1m , ry2m , ..., rydm }j
.

The expected waiting time of a job at server i is equal to

E[Wi] =
ρiE[RGB

i
]

1 − ρi
,

Toulouse’18, December 2018, France Y. Raaijmakers et al.

where

ρi = ηiE[Gi] = λ+i E[G
B
i] and E[RGB

i
] =
E[(GB

i)
2]

2E[GB
i]
.

Hence the expected latency of an arbitrary job is given by

E[T] =
N∑
i=1

λ+i
λ

(
E[Wi] + E[G

B
i]
)
.

Since in this case the analysis of server i reduces to that of an

M/G/1 queueing system, we can use classical results for theM/G/1

queue to obtain the Laplace-Stieltjes transform (LST) of the waiting

time and the latency of a job at server i:

W̃i (s) =
(1 − ρi)s

λ+i B̃i (s) + s − λ+i
, T̃i (s) = W̃i (s)B̃i (s),

where B̃i (s) denotes the LST of the run time GB
i . The LST of the

waiting time of an arbitrary job is

W̃ (s) =
N∑
i=1

λ+i
λ
W̃i (s),

and the LST of the latency is

T̃ (s) =
N∑
i=1

λ+i
λ
T̃i (s).

4 NUMERICAL RESULTS
In Section 3.2 we analyzed the delay performance of the delta-probe

preemption policy, both for strictly positive and negligible ∆. To
offer further insight in the performance of this policy, as well as

the delta-probe policy, we present in this section numerical results

which illustrate the advantages and the limitations of both policies.

Note that in most settings only the delta-probe preemption policy

can be exactly analyzed and therefore we use simulation where

needed to compare the policies. The 95% confidence intervals of

the simulation are within the line.

We extensively discuss the S&X model (Section 4.1), scenarios

with non-identically distributed server speeds (Section 4.2), the

scaling behavior (Section 4.3) and the scenario of non-exponential

job size distributions (Section 4.4). Due to the general model setup

and large number of parameters the range of possible scenarios is

vast, and an exhaustive study is simply infeasible. In this section

we focus on a representative sample of scenarios, and numerical

results for some interesting extensions to the scenarios discussed

here are relegated to Appendix A.

4.1 S&X model
As mentioned in Section 2, the S&X model introduced in [7] is sub-

sumed within our workload model. In [7] a particular distribution

of the slowdown Si (or the reciprocal of the server speed Ri in
our setup) is proposed, called the Dolly(1, 12) distribution (given in

Table 1), which was measured empirically in [1]. Here, we compare

the various policies for this specific setting.

Figure 2: Expected latency (obtained by simulation) as a
function of d in the S&X model, when N = 1000, λ = 700,
X ∼ hyperexponential with E[X] = 1/4.7 and squared coef-
ficient of variation C2

X = 10, and 1/Ri ∼ Dolly(1, 12) (see Ta-
ble 1) with E[1/Ri] = 4.7 for i = 1, . . . ,N . Both figures relate
to the same setting, but the bottom figure is zoomed in on
an expected latency between 0 and 1.

Table 1: The Dolly(1, 12) empirical server speed distribution.
The speed 1/Ri ranges from 1 to 12, with mean 4.7

1/Ri 1 2 3 4 5 6 7 8 9 10 11 12

Prob. 0.23 0.14 0.09 0.03 0.08 0.10 0.04 0.14 0.12 0.021 0.007 0.002

Figure 2 shows the expected latency as function of the parameter

d , and reveals some remarkable behavior. First of all, observe that

in the c.o.c. redundancy policy adding more replicas to the system

will eventually increase the workload, since the speed is bounded

by 1, and therefore increases the expected latency. This behavior

is more thoroughly discussed in [7]. Interestingly, for the delta-

probe-d policies with ∆ = 0.1 the same ‘bathtub shape’ can be

observed. For the delta-probe policy with ∆ = 0.1 the increase in

expected latency happens only beyond d = 40 (not shown in the

figure). The reason for this difference is that in the delta-probe

preemption policy (almost) all probe tasks are (partly) executed

by the d sampled servers due to the preemptive-resume priority,

whereas in the delta-probe policy at least one probe task is executed

by the sampled servers and it may very well be that the other probe

tasks are abandoned before initiation. In this setting the delta-probe

policy performs so well that even with ∆ = 0.1 it outperforms, for

Delta probing policies for redundancy Toulouse’18, December 2018, France

Figure 3: Expected latency (obtained by simulation) as a
function of r21 = r23 when d = N = 2, λ = 0.5, X ∼ Exp(1)
and where the server speeds are r11 = r12 = 1, r13 = r14 = 0.1

and r22 = r24 = 1, with corresponding probabilities p1 = p2 =

p3 = p4 = 0.25.

d < 20, the delta-probe preemption policy with ∆ ↓ 0. Also observe

that the graphs for both delta-probe-d policies with ∆ ↓ 0 and the

RIQ policy have the same ‘ski’ slope, which indicates that additional

replicas do not create any additional workload in the system. The

reason is that both delta-probe-d policies and the RIQ policy, in the

case of non-idle servers, only introduce a single replica into the

system. Finally, it can be observed that the delta-probe-d policies

clearly outperform the RIQ policy in terms of expected latency.

4.2 Non-identical server speeds
We now present results for scenarios where the server speeds are

non-identically distributed and possibly correlated, which is not

covered by the S&X model. First we look at the scenario where the

marginal random variables of the joint server speed distribution are

independent. Then the scenario of possibly correlated marginals

is considered. Note that for the delta-probe preemption policy the

analysis in Section 3.2 is used. The latency of the other policies is

evaluated via simulation.

4.2.1 Independent server speeds. Figure 3 shows the expected
latency for the various policies as a function of r21. One can observe

that for a server speed r21 closer to zero the expected latency in-

creases and the simulation reveals that some policies, i.e., the c.o.c.

redundancy and RIQ policy, are not stable for r21 = 0.2. When com-

paring the stability condition of the delta-probe-d policies for ∆ ↓ 0,

cf. Equations (1) and (7), it can be derived that the delta-probe and

the delta-probe preemption policy are stable for r21 > 0.189 and

r21 > 0.154, respectively. Thus the delta-probe preemption policy

with ∆ ↓ 0 has a larger stability region for this specific scenario.

Figure 3 also depicts that the delta-probe preemption policy has

a lower expected latency than the delta-probe policy with ∆ ↓ 0.

The performance of the RIQ policy is clearly the worst, due to

the unbalanced speeds and relatively high load. (Unbalanced here

means that the differences of the speeds within a realization of the

joint server speed distribution (r1m , . . . , rNm),m = 1, . . . ,M , are

large.) Surprisingly, the performance of the c.o.c. redundancy and

Figure 4: Expected latency (obtained by simulation) as a
function of the slow speed ri j with i , j, when d = 2, M = N ,
λ = 0.5, X ∼ Exp(1), rii = 1 for i = 1, . . . ,N , and N = 2 (top)
and N = 4 (bottom). Here a specific job is fast on one server
and slow on the other server(s).

delta-probe policy is (fairly) similar. Figure 6 in Appendix A shows

the same scenario but with unequal probabilities.

4.2.2 Possibly correlated server speeds. Here, we look at a system
with job classes, i.e., the scenario where the i-th job class is fast on

server i but slow on the other server(s). Jobs belong to each of the

classes with equal probability. For the interested reader we refer

to Figure 7 in Appendix A, which shows the scenario where jobs

belong to each of the classes with unequal probabilities.

Figure 4 shows the expected latency as function of the slower

server speed. It can be concluded that, in the case of job classes

and d = N = 2, the delta-probe preemption policy has a lower

expected latency than the c.o.c. redundancy policy, which is in line

with Remark 1. Furthermore, it can be seen that the delta-probe

policy outperforms the delta-probe preemption policy in the case of

balanced speeds and vice versa for unbalanced speeds. One of the

reasons is that in the delta-probe policy the actual job is assigned

to the server based on current workload, not taking into account

the speed of this specific server. For balanced speeds this is not a

limitation since all speeds are approximately equal. However, for

unbalanced speeds this may imply that the speed of the jobwould be

much higher if it was assigned to another server. In the delta-probe

preemption policy a job is assigned to the fastest server (which

can be beneficial for unbalanced speeds), but not using the second

Toulouse’18, December 2018, France Y. Raaijmakers et al.

Figure 5: Expected latency (obtained by simulation) as a
function of the probe size ∆ for the same scenario as Figure 4
(bottom, N = 4) with server speeds ri j = 0.5 and ri j = 0.25,
i , j.

fastest speed for balanced speeds can have an adverse influence on

the latency performance. Figures 8 and 9 in Appendix A show the

scenario with job classes and N large, i.e., N = 1000.

For d = 2 and N = 4 all the policies have approximately the same

expected latency. Comparing the simulation and the analysis for

the delta-probe preemption policy with ∆ = 0.1 demonstrates that

the analysis, while not exact, is within the 95% confidence intervals

of the simulation.

To further investigate the difference between the analysis and

the simulation for d < N , i.e., the setting where the analysis is

not exact, we plotted both as a function of ∆. Figure 5 depicts the
simulation against the analytically derived expected latency value

for the same setting as in Figure 4 but now for increasing ∆. The
accuracy of the analysis mainly depends on two factors. One is the

value of ∆, as the probability of overlap between Zold and Znew
increases with ∆ (see comment (ii) in Section 3.2). When this event

occurs there is a discrepancy between the fastest and the actual

realized speed. The other factor is the difference between the speeds,

since a large difference means that the error made could also be

large.

4.3 Scaling behavior of the delta-probe-d
policies

In this section we highlight how the performance of the delta-probe

preemption policy with ∆ ↓ 0 scales with growing N and possibly

d as function of λ. We consider two scenarios: in Table 2 the value

of d is fixed and in Table 3 the ratio between d and N is fixed, both

for increasing N .

In Table 2 the scaling behavior for the delta-probe preemption

policy with ∆ ↓ 0 can be seen for fixed d . For the other policies
this table shows that for this specific setting the smaller system

(N = 10) already gives a good approximation for the bigger system

(N = 1000). Table 3 again shows the scaling behavior for the delta-

probe preemption policy with ∆ ↓ 0, but now for a fixed ratio

between d and N . Observe that for this policy, in the specific setting

of Tables 2 and 3, the value of d does not influence the expected

latency since all servers have the same speed. Thus all in all, jobs

Table 2: Expected latency (obtained by simulation) for the
setting: d = 4, equal server speeds ri1 = 1, i = 1, . . . ,N , and
X ∼ Exp(1).

policy

N = 10, N = 50, N = 100, N = 1000,

λ = 6 λ = 30 λ = 60 λ = 600

delta-probe, ∆ ↓ 0 1.07 1.04 1.04 1.04

delta-probe, ∆ = 0.1 1.21 1.16 1.16 1.16

delta-probe pre., ∆ ↓ 0 2.50 2.50 2.50 2.50

delta-probe pre., ∆ = 0.1 6.29 6.20 6.20 6.17

RIQ 1.63 1.50 1.49 1.47

c.o.c. redundancy not stable

Table 3: Expected latency (obtained by simulation) for the
setting: d/N = 0.2, equal server speeds ri1 = 1, i = 1, . . . ,N ,
and X ∼ Exp(1).

policy

N = 10, N = 50, N = 100, N = 1000,

λ = 6 λ = 30 λ = 60 λ = 600

delta-probe, ∆ ↓ 0 1.28 1.00 1.00 1.00

delta-probe, ∆ = 0.1 1.47 1.11 1.10 1.10

delta-probe pre., ∆ ↓ 0 2.50 2.50 2.50 2.50

delta-probe pre., ∆ = 0.1 3.84 not stable

RIQ 1.79 1.43 1.40 1.37

c.o.c. redundancy 2.09 not stable

are uniformly assigned to the servers, independent of d . Table 3
also illustrates a limitation of the delta-probe preemption policy,

i.e., in case of d large (almost) all probe tasks are (partly) executed

by the d-sampled servers which makes the system unstable. For

the interested reader we refer to Table 6 in Appendix A, which

illustrates the scaling behavior in a scenario with unequal server

speeds.

In almost all the numerical experiments so far the job sizes are

assumed to be exponentially distributed.

4.4 General job sizes distributions
In this section the impact of the job size distribution is studied. Note

that for the c.o.c. redundancy policy in the IR model it is known,

see [8], that the expected latency decreases when the variability of

the run time distribution increases. Moreover, increasing d reduces

the expected latency (it is even possible that for large d the system

becomes stable while it is not stable for small d).
We now present simulation results to gain further insight in the

influence of the job size distribution on the expected latency of the

various policies in our setup. As noted earlier, it is not feasible to

exhaustively examine all possible settings because of the large num-

ber of system parameters. However, additional experiments (not

reported here) indicate that the present results are representative

of typical settings.

In Table 4 it can be seen that, for the same setting, all the policies

perform worse, in terms of expected latency, when the job size

distribution is heavier tailed. For the delta-probe preemption policy

this statement is consistent with the analysis since the expected

latency at server i , cf. Equation (3), depends (given the first mo-

ment) on the second moment of the job size, which is larger for

distributions with a heavier tail.

Delta probing policies for redundancy Toulouse’18, December 2018, France

Table 4: Expected latency (obtained by simulation) for vari-
ous job size distributions in the setting: d = 2, N = 3, M = 2,
r11 = 1, r12 = 0.5 r21 = 0.5, r22 = 0.8, r31 = 0.8, r32 = 1,
p1 = p2 = 0.5, E[X] = 1 and λ = 0.9.

policy lognormal exponential uniform deterministic

delta-probe, ∆ ↓ 0 1.49 1.46 1.41 1.38

delta-probe, ∆ = 0.1 1.68 1.64 1.59 1.56

delta-probe pre., ∆ ↓ 0 2.05 1.80 1.56 1.44

delta-probe pre., ∆ = 0.1 2.54 2.22 1.94 1.79

RIQ 2.08 1.87 1.68 1.58

c.o.c. redundancy 2.36 2.10 1.83 1.68

Table 5: Expected latency (obtained by simulation) for vari-
ous job size distributions in the setting: d = N = 3, M = 2,
r11 = 1, r12 = 0.5 r21 = 0.5, r22 = 0.8, r31 = 0.8, r32 = 1,
p1 = p2 = 0.5, E[X] = 1 and λ = 0.9.

policy lognormal exponential uniform deterministic

delta-probe, ∆ ↓ 0 1.27 1.25 1.23 1.21

delta-probe, ∆ = 0.1 1.43 1.41 1.38 1.36

delta-probe pre., ∆ ↓ 0 2.11 1.82 1.55 1.41

delta-probe pre., ∆ = 0.1 2.80 2.40 2.04 1.87

RIQ 2.27 1.99 1.74 1.62

c.o.c. redundancy 13.43 10.0 6.95 5.45

Comparing Tables 4 and 5 indicates that only the delta-probe

policy shows performance gains, in terms of expected latency, when

increasingd . For all the other policies the expected latency increases.
For the delta-probe preemption policy this is due to the fact that,

in case of d = N , no jobs are assigned to the slowest server and for

the c.o.c. redundancy policy this behavior is consistent with the

’bathtub shape’ observed in Section 4.1.

5 CONCLUSION AND SUGGESTIONS FOR
FURTHER RESEARCH

In this paper we proposed two delta-probe-d policies, i.e., the delta-

probe policy and delta-probe preemption policy. The main idea

behind these policies is that an additional probe task is launched to

find the server that is the fastest for a particular job or has the small-

est current workload, depending on the specific policy. In contrast

to the c.o.c. redundancy policy, the use of probes ensures that there

is only one server working on the actual job. For the delta-probe

preemption policy explicit expressions for the expected latency,

the stability condition and the delay distribution can be obtained,

for generally distributed job sizes. For the delta-probe policy the

problem of finding explicit expressions for the key performance

measures, in general scenarios, seems out of reach.

Both delta-probe-d policies tend to outperform the c.o.c. redun-

dancy policy with the same value of d in terms of expected latency.

More specifically, this statement is proved for the delta-probe pre-

emption policy for d = N and ∆ negligible and it is proved that this

policy has a larger stability region. Our results show that the delta-

probe preemption policy not always outperforms the delta-probe

policy or vice versa. The relative performance mainly depends on

two factors: how balanced the server speeds are and how high the

load is. Usually, for (nearly) balanced server speeds the delta-probe

policy outperforms the delta-probe preemption policy while for

(highly) unbalanced speeds it is the other way around. The reason

is that in the delta-probe policy the actual job is assigned to the

server based on current workload, without paying attention to the

speeds. For balanced speeds this is not a limitation since all speeds

are approximately equal but for unbalanced speeds this may imply

that the speed of the job would be much faster on another server.

In the delta-probe preemption policy a job is assigned to the fastest

server (which can be beneficial for unbalanced speeds), but not

using the second fastest server for balanced speeds can have an

adverse influence on the latency performance. However, the load

plays a significant role as well, since in case of unbalanced speeds

and high load it may be beneficial to use the slower servers and

not only the fastest server for a specific job. Hence, in this regime

the stability region of the delta-probe policy is larger than for the

delta-probe preemption policy. Thus, there are regions where only

one of the two policies is stable, or none, even though there exist

alternative policies that do achieve stability.

For both delta-probe-d policies the server speed distribution is of

significant importance and observing this server speed, indirectly

via the probes, is the key idea behind these policies. However, this

also raises the question whether it is possible to learn the server

speed distribution, e.g., in scenarios where some servers are always

faster than others, so that the ∆ probes are superfluous after a

certain time. Another interesting extension of the delta-probe-d
policies is to allow for a random ∆. In case the probes are identically

distributed over the d replicas we expect that the analysis still

holds. However, in case the ∆ are independent and non-identically

distributed over the d replicas, the analysis should be adapted. This

extension is closely related to a model that involves using the probe

task as a noisy estimate for the server speed. This would relax the

assumption that the probe task experiences the same server speed

as the actual job and could be more realistic in practice.

The server speeds for a particular job in our workload model are

allowed to be inter-dependent and this in turn allows for affinity

relations between jobs and different servers. In our future research

we could consider a workload model that is even more general, i.e.,

a workload model that also allows for dependency between the

speeds for consecutive jobs at the same server.

5.1 Combination of both delta-probe-d policies
As mentioned above, the delta-probe policy performs best in some

settings whereas the delta-probe preemption policy performs better

in other settings. Ultimately, one wants to combine the benefits

of both delta-probe-d policies to have a policy that performs well

across all situations and possibly even achieves maximum stability.

The idea behind such a combined delta-probe policy is that the first

probe task ∆1 is used to infer the speeds of the d sampled servers

and that the second probe task ∆2 is used to gauge the workload on

each of the d sampled servers. Here, the ∆1 has preemptive-resume

priority both over the actual jobs and the ∆2, whereas the ∆2 does

not have priority over the actual job.

Such a combined policy can potentially also extend the stability

regions of the individual delta-probe-d policies. Closely related to

this is the Mindrift routing rule introduced in [19], which assigns

Toulouse’18, December 2018, France Y. Raaijmakers et al.

an arriving job to a server

i ∈ arg min

i ∈y
ri jV

A
i ,

where VA
i is the current workload at server i upon arrival and

y ∈ SN are the sampled servers. In [19] it is proved that, if all

servers are sampled, this routing rule achieves maximum stability

and is optimal in the sense that it minimizes the workload in heavy

traffic. This means that the Mindrift routing policy achieves stabil-

ity whenever the necessary conditions for that are satisfied. With

the combined delta-probe-d policy the aim is to somehow mimic

this routing policy with the knowledge of the server speeds and

workload (obtained by ∆1 and ∆2, respectively) and thus extend

the stability region with respect to both individual delta-probe-d
policies.

ACKNOWLEDGMENTS
This research was partly funded by the NWO Gravitation Pro-

gramme NETWORKS, Grant Number 024.002.003

REFERENCES
[1] G. Ananthanarayanan, A. Ghodsi, S. Shenker, I Stoica (2013). Effective straggler

mitigation: Attack of the clones. Proc. NSDI 2013 185-198.
[2] M.F. Aktas, P. Peng, E. Sojanin (2017). Effective straggler mitigation: Which clones

should attack and when? ACM SIGMETRICS Perf. Eval. Rev. 45 (2) 12-14.
[3] M.F. Aktas, P. Peng, E. Sojanin (2017). Straggler mitigation by delayed relaunch of

tasks. ACM SIGMETRICS Perf. Eval. Rev. 45 (3) 224-331.
[4] U. Ayesta, T. Bodas, I. Verloop (2018). On a unifying product form framework for

redundancy models. Technical report HAL-01713937.

[5] T. Bonald, C. Comte (2017). Balanced fair resource sharing in computer clusters.

Perf. Eval. 116 70-83.

[6] G.P. Cosmetatos (1976). Some approximate equilibrium results for the multi-server

queue. Oper. Res. Quart. 27 615-620.

[7] K. Gardner, M. Harchol-Balter, A. Scheller-Wolf, B. Van Houdt (2017). A better

model for job redundancy: Decoupling server slowdown and job size. IEEE/ACM
Trans. Netw., 25 (6) 3353-3367.

[8] K. Gardner, M. Harchol-Balter, A. Scheller-Wolf, M. Velednitsky, S. Zbarsky (2017).

Redundancy-d : The power ofd choices for redundancy.Oper. Res. 65 (4) 1078-1094.
[9] K.S. Gardner, S. Zbarsky, S. Doroudi, M. Harchol-Balter, E. Hyytia, A. Scheller-Wolf

(2015). Reducing latency via redundant requests: Exact analysis. ACM SIGMETRICS
Perf. Eval. Rev. 43 (1) 347-360.

[10] K.S. Gardner, S. Zbarsky, S. Doroudi, M. Harchol-Balter, E. Hyytia, A. Scheller-

Wolf (2016). Queueing with redundant requests: Exact analysis. Queueing Systems
83 (3-4) 227-259.

[11] L. Kleinrock (1965). A conservation law for a wide class of queueing disciplines.

Naval Res. Logist. Quart. 12 181-192.

[12] C. Knessl, B.J. Matkowsky, Z. Schuss, C. Tier (1990). An integral equation ap-

proach to the M/G/2 queue. Oper. Res. 38 (3) 506-518.
[13] M. Mitzenmacher (2001). The power of two choices in randomized load balancing.

IEEE Trans. Parallel Distrib. Systems 12 1094-1104.

[14] D. Mukherjee, S. Borst, J. van Leeuwaarden, P. Whiting (2016). Universality of

power-of-d load balancing schemes. ACM SIGMETRICS Perf. Eval. Rev. 44 (2) 36-38.
[15] F. Poloczek, F. Ciucu (2016). Contrasting effects of replication in parallel systems:

From overload to underload and back. ACM SIGMETRICS Perf. Eval. Rev. 44 (1)
375-376.

[16] N.B. Shah, K. Lee, K. Ramchandran (2017). The MSD queue: Analysing the latency

performance of erasure codes. IEEE Trans. on Infor. Theory 63 (5) 2822-2842.
[17] N.B. Shah, K. Lee, K. Ramchandran (2016). When do redundant requests reduce

latency? IEEE Trans. Commun. 64 (2) 715-722.
[18] M.S. Squillante, C.H. Xia, D.D. Yao, L. Zhang (2001). Threshold-based priority

policies for parallel-server systems with affinity scheduling. Proc. American Control
Conf. 4 2992-2999.

[19] A.L. Stolyar (2005). Optimal routing in output-queued flexible server systems.

Prob. Eng. Inf. Sc. 19 141-189.

[20] A. Vulimiri, P.B. Godfrey, R. Mittal, J. Sherry, S. Ratnasamy, S. Shenker (2013).

Low latency via redundancy. Proc. ACM CoNEXT 2013 283-294.
[21] N.D. Vvedenskaya, R.L. Dobrushin, F.I. Karpelevich (1996). Queueing system

with selection of the shortest of two queues: An asymptotic approach. Problemy
Peredachi Informatsii 32 15-27.

A ADDITIONAL NUMERICAL RESULTS
In this appendix we present additional results for the performance

of the various policies in specific scenarios. These scenarios are

mostly extensions of the scenarios that have already been discussed

in Section 4. For example, the scenario in Figure 6 is similar to that

in Figure 3 but now the server speeds are not equally probable. The

scenario in Figure 7 is similar to that in Figure 4, but now the jobs

belong to the various classes with unequal probabilities. Observe

that the extension of unequal probabilities does not significantly

change the performance of the various policies in Figures 6 and 7.

Figures 8 and 9 study the performance in the scenario with job

classes and N large, i.e., where a specific job is fast on half of the N
servers and slow on the other servers, and N = 1000. This scenario

is not presented in Section 4, but notice that the performance of the

various policies, especially in Figure 9, is similar to that in Figure 2.

Last, we show with Table 6 that the scaling behavior, discussed

in Section 4.3, is not limited to equal server speeds. The essence is

that each server still has the same generic run time, compared to

the smaller system.

Delta probing policies for redundancy Toulouse’18, December 2018, France

Figure 6: Expected latency (obtained by simulation) as a
function of r21 in the setting as Figure 3 but with correspond-
ing probabilities p1 = 0.5625, p2 = p3 = 0.1875 and p4 = 0.0625.

Figure 7: Expected latency (obtained by simulation) as a
function of the slow speed ri j with i , j in the setting as
Figure 4 but with probabilities p1 = 0.75 and p2 = 0.25 for
N = 2 (top), and p1 = 0.5, p2 = 0.25, p3 = 0.125 and p4 = 0.125

for N = 4 (bottom). Here a specific job is fast on one server
and slow on the other server(s).

Figure 8: Expected latency (obtained by simulation) as a
function of the slow speed rslow when d = 2, N = 1000,
λ = 500, X ∼ Exp(1), ri1 = 1, ri2 = rslow for i = 1, . . . ,N /2

and r j1 = rslow, r j2 = 1 for j = N /2 + 1, . . . ,N . Here a specific
job is fast on half the servers and slow on the other servers.

Figure 9: Expected latency (obtained by simulation) as a
function of d , when N = 1000, λ = 500, X ∼ Exp(1), ri1 = 1,
ri2 = 0.5 for i = 1, . . . ,N /2 and r j1 = 0.5, r j2 = 1 for
j = N /2 + 1, . . . ,N . Here a specific job is fast on half the
servers and slow on the other servers.

Table 6: Expected latency (obtained by simulation) for the
setting: d = 2, ri1 = ri2 = 1, ri3 = ri4 = 0.5 for i = 1, . . . ,N /2,
r j1 = r j3 = 0.5, r j2 = r j4 = 1 for j = N /2 + 1, . . . ,N and corre-
sponding probabilities p1 = p2 = p3 = p4 = 0.25.

policy

N = 10, N = 50, N = 100, N = 1000,

λ = 3 λ = 15 λ = 30 λ = 300

delta-probe, ∆ ↓ 0 1.58 1.58 1.57 1.57

delta-probe, ∆ = 0.1 1.79 1.77 1.77 1.76

delta-probe pre., ∆ ↓ 0 2.09 2.09 2.09 2.09

delta-probe pre., ∆ = 0.1 2.62 2.61 2.61 2.61

RIQ 2.05 2.01 2.00 2.00

c.o.c. redundancy 1.99 1.86 1.85 1.84

	Abstract
	1 Introduction
	2 System description and workload model
	2.1 Redundancy-d policies
	2.2 Delta-probe-d policies

	3 Delay performance of the delta-probe-d policies
	3.1 The delta-probe policy
	3.2 The delta-probe preemption policy

	4 Numerical results
	4.1 S&X model
	4.2 Non-identical server speeds
	4.3 Scaling behavior of the delta-probe-d policies
	4.4 General job sizes distributions

	5 Conclusion and suggestions for further research
	5.1 Combination of both delta-probe-d policies

	References
	A Additional numerical results

