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Abstract

We consider two infinite-server queueing models with a so-called
mixed arrival process. The arrival process is Poisson, but the ar-
rival intensity is resampled from some distribution at exponentially
distributed time intervals. First we study the case of Coxian service
times. For this infinite-server model we show how to compute all joint
moments of the arrival rate and the number of customers, both in
transient and steady state. Secondly we consider a Markov-modulated
infinite-server queue with general service times. The arrival intensity
is resampled at the state change epochs of the Markov background
process. We develop a procedure to obtain all transient moments of
the number of customers given the initial state and the initial arrival
rate.

1 Introduction

In queueing theory it is often assumed that the arrival process is a Poisson
process with a constant rate. This is not always a realistic assumption, and
hence various adaptations have been suggested to better reflect reality. We
mention three types of adaptation, in which the arrival process still maintains
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essential elements and properties of the Poisson process. Firstly, there have
been studies of queues with time-inhomogeneous Poisson arrivals [9], and
of queues with Markov-modulated arrivals in which the arrival process is
Poisson with rate λi when some underlying Markov process is in state i ([4],
Ch. XI). Secondly, there is a growing interest in queues with Cox arrival
processes. These are Poisson processes in which the time-dependent arrival
intensity, say Λ(t), itself is a stochastic process. The variance of the number
of arrivals of a Cox process in a given interval is larger than the mean (whereas
they are equal for Poisson); this phenomenon is usually called overdispersion.
In a few papers, the process {Λ(t), t ≥ 0} was taken to be a shot-noise
process. We refer to [2] for an example in insurance mathematics and to
[14] for a queueing example. Thirdly, so called mixture models have been
suggested. In such models, the arrival rate is itself a random variable with
some distribution. In the queueing literature, it is not so common to consider
mixing distributions [12], but this is different in the finance and insurance
literature; e.g., Bühlmann [6] already considered them in 1972 in the context
of credibility based dynamic premium rules. Recent studies of single server
queues with mixing are [18] (in which the random parameter is sampled once
and for all) and [13] (in which the random parameter is resampled in each
new busy period).

One class of queueing models for which generalizations of the classical
Poisson arrival process have been studied is the class of infinite-server mod-
els. Websites provide interesting applications of such systems. The arrival
rate of website visits typically is not constant in time, and could depend on
an environment (Markov modulation), or vary according to some stochastic
process that takes external events into account (e.g., shot-noise driven), or
take a new random value after some time (mixing). Numerous variants of
stochastic background processes in infinite-server queues have been studied
after the pioneering paper of O’Cinneide and Purdue [17]. Jansen et al. [11]
have considered a general càdlàg stochastic process as background process,
whereas [7], [3] and [5] were restricted to the case where the background
process is Markov. Next to the already mentioned case of an infinite-server
model with a Coxian, shot-noise driven, arrival process [14], also infinite-
server systems with the more general Hawkes, or self-exciting, input process
have recently been analyzed [8, 15].

The present paper is devoted to the study of infinite-server queues with
a mixed Poisson arrival process. We assume that, at exponential intervals, a
new value for the arrival rate is sampled. We focus on two different models.
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The first model is an MΛ/Coxn/∞ queue. Here the notation MΛ is used
to emphasize that the arrival process is a Poisson process with a random
arrival rate. Coxn indicates that the service times have a Coxian distribu-
tion with n phases. The second model allows service times to have a fully
general distribution, and furthermore allows Markov modulation: when a
Markov background process enters some state i, then a new arrival rate is
sampled from some distribution (which is clearly more general than the ordi-
nary Markov modulation, in which one always has rate λi if the background
state is i). For both models we consider transient and steady state mo-
ments of the queue length process; in the slightly simpler first model, we
even present a procedure to obtain all joint moments of the arrival rate and
the numbers of customers in each Coxian service phase.

The paper is organized as follows. Section 2 is devoted to an analysis of
the MΛ/Coxn/∞ queue. We show how all joint moments of the arrival rate
and the number of customers in each of the n Coxian phases can be computed.
In Section 3 we consider a Markov-modulated infinite-server queue, with
generally distributed service times and with mixing of the arrival rate at
modulation epochs. We demonstrate how successive queue length moments
can be determined iteratively. Section 4 contains some suggestions for further
research.

2 The MΛ/Coxn/∞ queue

In this section, we consider an infinite-server queue where the arrival param-
eter repeatedly resamples after i.i.d. (independent, identically distributed)
exponential amounts of time. We shall analyze the behavior of this queue
and make comparisons to ”standard” infinite-server queues with a fixed de-
terministic arrival parameter.

Let us first describe our model in detail. We consider an M/Coxn/∞-
queue where the arrival intensity Λ(t) at any time t ≥ 0 is a random variable.
The arrival intensity is resampled at random times generated by a Poisson
process with rate γ, and is drawn according to some distribution GΛ.

The service time distribution we consider is a Coxian with n phases (cf.
[4], p. 85). Any customer spends an exp(µ1) amount of time in phase 1. With
probability 1− p1, the service is thereafter completed. Otherwise the service
continues with the next phase, which takes exp(µ2). Again, with probability
1 − p2 the service is completed, and otherwise the service goes on. This
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procedure continues up to a maximum of n phases.
The Coxian distribution possesses useful exponential properties, while

still remaining relatively general. The parameters of a Coxian distribution
can be chosen such that it can approximate any distribution D on [0,∞)
arbitrarily closely; for any such D, there exists a sequence of Coxian distri-
butions weakly converging to D. See Section III.4 of [4] for a more detailed
discussion.

Our main object of study is the distribution of the number of customers
X(t). Throughout the paper we assume that X(0) = 0 (empty system at
time 0), which (as shown later) extends to any initial condition on X(0).

More specifically, we are interested in the distribution of the random vec-
tor (Λ(t), X1(t), ..., Xn(t)), where Xi(t) represents the number of customers
in phase i of their service at time t. To uniquely identify this distribution,

we consider here the joint transform E

(
e−sΛ(t)

n∏
i=1

z
Xi(t)
i

)
. For the analy-

sis of our model we use a differential equation method introduced in [15].
We observe (Λ(t), X1(t), ..., Xn(t)) during a small interval and thus derive a
partial differential equation (PDE) for its joint transform. Unfortunately,
we are not able to solve the PDE; however, we are able to extract from this
PDE a recursive equation in the various moments of Λ(t) and the numbers of
customers X1(t), . . . , Xn(t). Below, we first derive the PDE. We then discuss
its solvability and look at special cases. Finally, we manipulate the equation
to find a recursion that allows one to iteratively retrieve all moments of the
vector (Λ(t), X1(t), ..., Xn(t)). Special attention will be given to the steady
state vector (Λ, X1, ..., Xn) and the special Cox1 case of exponential service
times.

2.1 The differential equation

Let z be a shorthand notation for the vector (z1, ..., zn)t. The following

theorem describes a PDE for f(s, z, t) := E

(
e−sΛ(t)

n∏
i=1

z
Xi(t)
i

)
.

Theorem 2.1. The joint transform f(s, z, t) satisfies the following partial
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differential equation with boundary condition f(0, 1, t) = 1:

−γf(s, z, t) − ∂

∂t
f(s, z, t) + (1− z1)

∂

∂s
f(s, z, t) (2.1)

+
n−1∑
i=1

µi(pizi+1 − zi + 1− pi)
∂

∂zi
f(s, z, t)

+ µn(1− zn)
∂

∂zn
f(s, z, t) + γf(s, 1, t)f(0, z, t) = 0.

Proof. We exploit the fact that {(Λ(t), X1(t), . . . , Xn(t)), t ≥ 0} is a Markov
process. At some given time t, let us assume Xi(t) = ki for each i, and
Λ(t) = λ. In [t, t+ h), h ↓ 0, three things can happen: a customer completes
phase i of its service, at rate kiµi; a customer arrives, at rate λ; the arrival
parameter resamples, at rate γ. Hence

E
(
e−sΛ(t+h)

n∏
i=1

z
Xi(t+h)
i

∣∣∣Λ(t) = λ,X1(t) = k1, ..., Xn(t) = kn

)
= (1− (λ+ γ +

n∑
i=1

kiµi)h)e−sλ
n∏
i=1

zkii

+
n−1∑
i=1

kiµih

(
pie
−sλ zi+1

zi

n∏
i=1

zkii + (1− pi)e−sλ
1

zi

n∏
i=1

zkii

)

+ knµnhe
−sλ 1

zn

n∏
i=1

zkii + λhe−sλz1

n∏
i=1

zkii

+ γhE
(
e−sΛ

) n∏
i=1

zkii + o(h), h ↓ 0.

Straightforward calculations now yield

f(s, z, t+ h)− f(s, z, t) = h
(
− γf(s, z, t) + (1− z1)

∂

∂s
f(s, z, t)

+
n−1∑
i=1

µi(pizi+1 − zi + 1− pi)
∂

∂zi
f(s, z, t)

+ µn(1− zn)
∂

∂zn
f(s, z, t) + γf(s, 1, t)f(0, z, t)

)
+ o(h), h ↓ 0.

Dividing by h and letting h ↓ 0 leads to the PDE (2.1).
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Let the vector (Λ, X1, ..., Xn) be the steady state version of the time-

dependent (Λ(t), X1(t), ..., Xn(t)), and write f(s, z) := E(e−sΛ
n∏
i=1

zXii ). The

following corollary then immediately follows from Theorem 2.1.

Corollary.

−γf(s, z) + (1− z1)
∂

∂s
f(s, z) +

n−1∑
i=1

µi(pizi+1 − zi + 1− pi)
∂

∂zi
f(s, z)

+ µn(1− zn)
∂

∂zn
f(s, z) + γf(s, 1)f(0, z) = 0,

(2.2)

with f(0, 1) = 1.

Solving either of the equations (2.1) or (2.2) is no easy task. Both are in
the class of semilinear first order PDE’s. The usual solution approach would
therefore be the method of characteristics (see for example [20]). However,
the appearance of f(0, z, t) (and f(0, z)) also makes it a delay equation.
Hence we cannot use standard techniques to compute an exact solution.

Numerical approaches for solving partial delay differential equations have
been considered, though most often for very specific types. Finding a suit-
able method seems hard, and it remains a problem to solve (2.1) and (2.2)
either analytically or numerically.

Remark 1. Taking z1 = ... = zn = 1, Equation (2.1) becomes ∂
∂t
f(s, 1, t) =

0. Therefore the marginal transform E
(
e−sΛ(t)

)
is independent of t – and

hence so is the distribution of Λ(t). For each point in time t, Λ(t) has distri-
bution GΛ. Of course, considering Λ(t) is still valuable to analyze correlation
with Λ(t′) or Xi(t

′) for some t′ ∈ R. From now on, when we are not con-
cerned with such correlations, we simply write Λ instead of Λ(t).

Remark 2. Taking s = 0 in (2.2) yields

(1− z1)
∂

∂s
f(s, z)

∣∣∣
s=0

+
n−1∑
i=1

µi(pizi+1 − zi + 1− pi)
∂

∂zi
f(0, z)

+ µn(1− zn)
∂

∂zn
f(0, z) = 0.
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Although this equality does not seem to have a direct interpretation, it does
when we take z1 = ... = zn and subsequently take z = 1. We then get

E(Λ) =
n−1∑
i=1

µi(1− pi)E(Xi) + µnE(Xn). (2.3)

With S representing the sojourn time, one could compare this to Little’s
formula λ = E(X)/E(S) for any standard queue. Since the sojourn time
equals the service time in our infinite-server setting, 1

E(S)
is the rate at which

a service is completed. Note that

E(X)

E(S)
= E(X)

n∑
i=1

P (customer is in phase i)× (completion rate in state i)

= E(X)
n−1∑
i=1

E(Xi)

E(X)
· µi(1− pi) + E(X)

E(Xn)

E(X)
· µn

=
n−1∑
i=1

µi(1− pi)E(Xi) + µnE(Xn),

so that Little’s formula indeed holds with λ replaced by E(Λ).

2.2 Calculating moments

One important feature of a generating function or Laplace-Stieltjes transform
is the ability to quickly extract any moments for the corresponding random
variable. In this section we show that the PDE (2.1) provides enough in-
formation to do just that. More specifically, it allows us to calculate any
moment of (Λ(t), X1(t), ..., Xn(t)) by solving a recursion.

Let k denote the vector (k1, ..., kn)t. If we would have an expression for
f(s, z, t), then the (l, k)th moment could be calculated by

E
(

Λ(t)l
n∏
i=1

Xi(t)!

(Xi(t)− ki)!

)
= (−1)l

[
dl

dsl

n∏
i=1

dki

dzkii
f(s, z, t)

]
s=0,z=1

. (2.4)

Remark 3. Formally the moment should be defined as E
(

Λ(t)l
n∏
i=1

Xi(t)
ki

)
rather than E

(
Λ(t)l

n∏
i=1

Xi(t)!
(Xi(t)−ki)!

)
. However, the former can easily be ob-

tained from the latter.
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Applying these same differentiations to PDE (2.1) yields, with dmx denoting
the m-th derivative w.r.t. x:

−γdlsdk1
z1
· · ·dknznf(s, z, t)− ∂

∂t
dlsd

k1
z1
· · · dknznf(s, z, t)

+ (1− z1)dl+1
s dk1

z1
· · · dknznf(s, z, t)− k1d

l+1
s dk1−1

z1
dk2
z2
· · · dknznf(s, z, t)

+
n−1∑
i=1

µi(pizi+1 − zi + 1− pi)
∂

∂zi
dlsd

k1
z1
· · · dknznf(s, z, t)

−
n−1∑
i=1

kiµid
l
sd
k1
z1
· · · dknznf(s, z, t)

+
n−1∑
i=1

ki+1piµid
l
sd
k1
z1
· · · dki−1

zi−1
dki+1
zi

dki+1−1
zi+1

dki+2
zi+2
· · · dknznf(s, z, t)

+ µn(1− zn)
∂

∂zn
dlsd

k1
z1
· · · dknznf(s, z, t)− knµndlsdk1

z1
· · · dknznf(s, z, t)

+ γdlsf(s, 1, t)dk1
z1
· · · dknznf(0, z, t) = 0.

Now define E (l, k1, ..., kn, t) := E
(

Λ(t)l
n∏
i=1

Xi(t)!
(Xi(t)−ki)!

)
as a shorthand nota-

tion for the joint moment. When we take s = 0, z = 1 and use (2.4) we
obtain

d

dt
E (l, k1, ..., kn, t) = −

(
γ +

n∑
i=1

kiµi

)
E (l, k1, ..., kn, t)

+ k1E (l + 1, k1 − 1, k2, ..., kn, t)

+
n−1∑
j=1

pjµjkj+1E (l, k1, ..., kj−1, kj + 1, kj+1 − 1, kj+2, ..., kn, t)

+ γE(l, 0, ..., 0, t)E (0, k1, ..., kn, t) .

(2.5)

Our aim is to show that the recursive formula (2.5) allows one to itera-
tively compute all moments of (Λ(t), X1(t), ..., Xn(t)), assuming all moments
of GΛ are known. Let us first make the assumption that the system is empty
at t = 0. If not, we split Xj(t) into the customers that arrived before or after
t = 0. The contribution to Xj(t) of arrivals before time 0 can be calculated
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if we know (X1(0), ..., Xn(0)), by finding the probabilities pij(t) that a cus-
tomer who was in phase i at time 0 is in phase j at time t. Conditioning on
the case that it takes exactly u time to move from phase i to phase j,

pij(t) = pi · · · pj−1

t∫
0

j−1∑
k=i

Ck,j−1µke
−µkue−µj(t−u)du

= pi · · · pj−1

j−1∑
k=i

Ck,j−1
µk

µk − µj
(
e−µjt − e−µkt

)
.

Here Ck,j−1 =
∏

m∈{i,...,j−1}\{k}

µm
µm−µk

and
j−1∑
k=i

Ck,j−1µke
−µku is the density of a

hypo-exponential distribution (see [19], p. 310). Recall that a hypo-exponential
random variable is a sum of independent exponentials (in our case j − i ex-
ponentials with rates µi,...,µj−1 respectively). It can also be seen as a Coxian
random variable for which all continuation probabilities pk = 1.

Let Yij(t) ∼ Bernoulli(pij(t)) for i ≤ j, and let Yij,m(t), m = 1, 2, . . . be
i.i.d. copies of Yij(t). Then the fraction of customers from Xj(t) that arrived
before t = 0 equals

j∑
i=1

Xi(0)∑
m=1

Yij,m(t).

Now that we have found the fraction of customers from Xj(t) that arrived
before t = 0, let us assume for the remainder of the section that the system
is empty at time 0.

Theorem 2.2. All moments of (Λ(t), X1(t), ..., Xn(t)) can be computed using
(2.5), and have the form

E
(

Λ(t)l
n∏
i=1

Xi(t)!

(Xi(t)− ki)!

)
=

N∑
j=1

aje
−bjt, (2.6)

for some constants a1, ..., aN and nonnegative constants N, b1, ..., bN .

Proof. We provide an inductive argument. In Remark 1 we have seen that
the distribution of Λ(t) is independent of t. In particular, E(Λl(t)) is constant
in t, so the statement is true when taking k1 = ... = kn = 0.
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Let us take a look at the structure of the recursion (2.5). The derivative
of the moment with (l, k1, ..., kn) equals a linear function consisting of four
unknown components: (1) the moment itself, (2) the same moment with
k1 − 1 and l + 1, (3) the same moment with kj − 1 and kj−1 + 1 for some
j = 1, ..., n− 1, and (4) the same moment with l = 0.

Let K =
n∑
i=1

ki. We have shown above that the statement is true for

K = 0. The inductive step is split into two parts. First assume we know all
moments of order (l,K − 1) and we want to calculate all moments of order
(0, K). Note that when substituting (0, K), component 4 coincides with
component 1, and component 2 is known by assumption. From E(1, K −
1, 0, ..., 0, t), we can calculate an arbitrary moment E(0, k1, ..., kn, t) of order
(0, K) with the following scheme:

(1, K − 1, 0, ..., 0)→ (0, K, 0, ..., 0)→ (0, K − 1, 1, 0, ..., 0)

→ (0, K − 2, 2, 0, ..., 0)→ ...→ (0, k1, K − k1, 0, ..., 0)→ ...→ (0, k1, ..., kn).

Note that for each arrow, a differential equation needs to be solved.
For the second part of the induction step, we assume that all moments of

order (l′, K − 1) and (0, K) are known, and want to calculate all moments of
order (l,K). In this case, both components 2 and 4 are known by assumption.
The arbitrary moment E(l, k1, ..., kn, t) of order (l,K) can now be calculated
using the following scheme:

(l + 1, K − 1, ..., 0)→ (l,K, 0, ..., 0)→ (l,K − 1, 1, 0, ..., 0)

→ (l,K − 2, 2, 0, ..., 0)→ ...→ (l, k1, K − k1, 0, ..., 0)→ ...→ (l, k1, ..., kn).

Combining both schemes, we can iteratively find an expression for any
moment E(l, k1, ..., kn, t). All that remains is to show that the moments take
the form of (2.6). This will be done by induction on the number of iterations.

Assume all moments calculated thus far take the form of (2.6). Note
that each iteration requires the differential equation (2.5) to be solved. This
differential equation has the form

d

dt
g(t) = −Cg(t) +

M∑
m=1

ãmgm(t),

where C,M, ãm are constants of which C,M are nonnegative and gm(t) are
known functions from previous iterations. Since the gm(t) have the required
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form by assumption, it holds that

d

dt
g(t) = −Cg(t) +

M∑
m=1

ãm

Nm∑
j=1

aj,me
−bj,mt = −Cg(t) +

N ′∑
m=1

a′me
−b′mt, (2.7)

for some constants C,N ′, a′m, b
′
m of which C,N ′, b′m are nonnegative. Solving

this differential equation quickly leads to the result of the theorem.

Remark 4. It is an interesting question how many different terms a moment
consists of, given its order (l, k1, ..., kn). In other words: how large is N in
(2.6)? To answer this, note that when we solve the differential equation (2.7)
the only exponent we have not seen in previous iterations is −Ct. So N is at
most the number of possible values of C. Checking with (2.5), we conclude

that N = O

((
n∑
i=1

ki

)n)
.

In terms of computational complexity, observe that (2.5) has O(n) terms,

each one consisting of one moment. Since a moment has O

((
n∑
i=1

ki

)n)
terms, one iteration requires O

(
n ·
(

n∑
i=1

ki

)n)
operations. Note also that

we need one iteration for each moment of lesser order. Therefore, the calcu-

lation of a moment of order (l, k1, ..., kn) requires O

(
n ·
(

n∑
i=1

ki

)2n
)

opera-

tions.

Now that we have seen that all moments can be retrieved, and which form
they have, let us calculate some of these moments. This gives an idea how
the system behaves in general, and presents a quantitative way to compare
our queue to other models.

One can check that expressions from higher moments become very large
and complicated, requiring much computational effort and making analysis
hard. However, for some lower moments and special cases, we can derive
”nicer” expressions. This enables us to give intuitive explanations and per-
form proper analysis on the formulas we find.

We start with an expression for the mean number of customers.

Theorem 2.3. Let Ci,j =
j∏

m 6=i

µm
µm−µi . Given that the system is empty at
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t = 0, the mean number of customers in phase j at time t equals

E(Xj(t)) =

(
j−1∏
i=1

pi

)
E(Λ)

µj

(
1−

j∑
i=1

Ci,je
−µit

)
, j = 1, ..., n. (2.8)

Proof. Let us first consider the case j = 1. Substituting k1 = 1 and l = k2 =
... = kn = 0 gives the differential equation

d

dt
E(X1(t)) = −(γ + µ1)E(X1(t)) + E(Λ(t)) + γE(X1(t))

= −µ1E(X1(t)) + E(Λ).

With E(X1(0)) = 0, its solution is

E(X1(t)) =
E(Λ)

µ1

(
1− e−µ1t

)
. (2.9)

Therefore (2.8) holds for j = 1.
Now let j ∈ {2, ..., n}. The differential equation corresponding to kj = 1 is

d

dt
E(Xj(t)) = −(γ + µj)E(Xj(t)) + µj−1pj−1E(Xj−1(t)) + γE(Xj(t))

= −µjE(Xj(t)) + µj−1pj−1E(Xj−1(t)). (2.10)

To show that (2.8) is indeed a solution to this equation, we differentiate (2.8)
and rearrange terms, using that

µj−µi
µj

Ci,j = Ci,j−1:

d

dt
E(Xj(t)) =

(
j−1∏
i=1

pi

)
E(Λ)

j∑
i=1

µi
µj
Ci,je

−µit

=

(
j−1∏
i=1

pi

)
E(Λ)

(
j−1∑
i=1

(
1− µj − µi

µj

)
Ci,je

−µit + Cj,je
−µjt

)

=

(
j−1∏
i=1

pi

)
E(Λ)

(
−

(
1−

j∑
i=1

Ci,je
−µit

)
+

(
1−

j−1∑
i=1

Ci,j−1e
−µit

))
= −µjE(Xj(t)) + µj−1pj−1E(Xj−1(t)).

To verify that solution (2.8) to differential equation (2.10) is the desired solu-
tion, we need to show that (2.8) satisfies the boundary condition E(Xj(0)) =
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0. So what remains is to check that
j∑
i=1

Ci,j = 1. We can do this by observing

that
j∑
i=1

Ci,j =

j∑
i=1

Ci,j ·
∞∫

0

µie
−µitdt =

∞∫
0

j∑
i=1

µiCi,je
−µitdt.

As is proven in ([19], p. 309-310), the integrand is a density function of a

random variable on [0,∞). It follows that
j∑
i=1

Ci,j = 1, which concludes the

proof.

For further moments, it is necessary to find E (Λ(t)X1(t)) first. So with
l = k1 = 1 and k2 = ... = kn = 0, (2.5) gives

d

dt
E(Λ(t)X1(t)) = −(γ + µ1)E (Λ(t)X1(t)) + E(Λ2) + γE(Λ)E(X1(t))

= −(γ + µ1)E (Λ(t)X1(t)) +
µ1E(Λ2) + γE(Λ)2

µ1

− γE(Λ)2

µ1

e−µ1t.

Here we used the E(X1(t)) we found in (2.9). Combined with the boundary
condition E(Λ(0)X1(0)) = 0, the solution equals

E(Λ(t)X1(t)) =
Var(Λ)

γ + µ1

+
E(Λ)2

µ1

− E(Λ)2

µ1

e−µ1t − Var(Λ)

γ + µ1

e−(γ+µ1)t

=
E(Λ)2

µ1

(
1− e−µ1t

)
+

Var(Λ)

γ + µ1

(
1− e−(γ+µ1)t

)
.

(2.11)

Next, we use the same trick for E (X1(t) (X1(t)− 1)). The differential
equation for k1 = 2 and l = k2 = ... = kn = 0 is

d

dt
E (X1(t) (X1(t)− 1)) = −2µ1E (X1(t) (X1(t)− 1)) + 2E(Λ(t)X1(t)),

with E (X1(0) (X1(0)− 1)) = 0. This has solution

E (X1(t) (X1(t)− 1)) =
µ1E(Λ2) + γE(Λ)2

µ2
1(γ + µ1)

− 2E(Λ)2

µ2
1

e−µ1t

+
2Var(Λ)

(γ + µ1)(γ − µ1)
e−(γ+µ1)t +

γE(Λ)2 − µ1E(Λ2)

µ2
1(γ − µ1)

e−2µ1t, (2.12)
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and it follows that

Var(X1(t)) =
E(Λ)

µ1

+
Var(Λ)

µ1(γ + µ1)
− E(Λ)

µ1

e−µ1t

+
2Var(Λ)

(γ + µ1)(γ − µ1)
e−(γ+µ1)t − Var(Λ)

µ1(γ − µ1)
e−2µ1t. (2.13)

It is easily verified that γ = µ1 is not a singularity.
The correlation between Λ(t) and X1(t) follows from (2.11) and (2.13):

Cor(Λ(t), X1(t)) =
Cov(Λ(t), X1(t))√
Var(Λ)Var(X1(t))

(2.14)

=

(
1− e−(γ+µ1)t

)√
DΛµ1(γ − µ1)√

(γ + µ1)2(γ − µ1)(1− e−µ1t) +DΛ(γ + µ1)
(
γ − µ1 + 2µ1e−(γ+µ1)t − (γ + µ1)e−2µ1t

) ,

where DΛ = Var(Λ)
E(Λ)

is the dispersion index. Interestingly, the arrival process
manifests itself only through DΛ. The positive correlation that the formula
indicates makes sense, since correlation between Λ(t) and X1(t) can only
occur when Λ(t) shows variability.

Figure 1: Cor(Λ(t), X1(t)) for µ1 = 1, γ = 2 and DΛ = 2.

As is visible in Figure 1, there appears to be a time where the correlation
is maximal. This will be the time tmax that enough customers could have
arrived to show correlation, but a large fraction of X1(tmax) still originates
from the current Λ (and not from previous ones).
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2.3 Steady state

In this subsection we consider the steady state behavior of the infinite-
server queue, again focussing on a recursion for the joint moments of arrival
rate and numbers of customers in phases 1, . . . , n. Let E (l, k1, ..., kn) :=

E
(

Λl
n∏
i=1

Xi!
(Xi−ki)!

)
. Letting t → ∞ in (2.5) yields the following steady state

recursion:

E (l, k1, ..., kn) =
1

γ +
n∑
i=1

kiµi

(
k1E (l + 1, k1 − 1, k2, ..., kn) (2.15)

+
n−1∑
j=1

pjµjkj+1E (l, k1, ..., kj−1, kj + 1, kj+1 − 1, kj+2, ..., kn)

+ γE(l, 0, ..., 0)E (0, k1, ..., kn)

)
.

Note that an iteration step only requires some basic operations, whereas in
the transient case each iteration required a differential equation to be solved.

Let us find the steady state mean number of customers in phase j. Taking
kj = 1 (and everything else 0) yields

E(Xj) =
pj−1µj−1

µj
E(Xj−1), j = 2, 3, . . . ; E(X1) =

E(Λ)

µ1

.

This simple recursion results in

E(Xj) =
E(Λ)

µj

j−1∏
i=1

pi, j = 1, ..., n, (2.16)

which of course we could also have found from (2.8) letting t→∞.

Remark 5. Recall that the mean number of customers in an ordinary
M/M/∞-queue is λ

µ
, the arrival rate divided by the departure rate. For-

mula (2.16) represents something similar: the expected arrival rate over the

departure rate in phase j. To see this, note that with
j−1∏
i=1

pi being the prob-

ability that a customer reaches phase j, E(Λ)
j−1∏
i=1

pi is the expected arrival
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rate of phase j.

With the steady state mean at hand, Formula (2.8) has a nice interpretation.
We consider the steady state number of customers who are in phase j (given
in (2.16)), and distinguish the fraction that has been in the system for at least
t time, and the fraction that has not. Where the steady state mean consists of
both fractions, the transient mean (2.8) only consists of the second (assuming
an empty system at time 0). Now note that a customer in phase j has gone
through j exponential phases (1 up to j−1 completely and the past part of an
exponential phase j). So the second fraction is proportional to the probability
that j exponential phases are traversed before time t. According to Formula

(2.8), this probability should be

(
1−

j∑
i=1

j∏
m6=i

µm
µm−µi e

−µit

)
. Indeed, this is

precisely the distribution function of a hypo-exponential random variable.
Another quantity that is greatly simplified by considering steady state is

Cov(Λ, Xj). For this we take l = kj = 1 in (2.15) and find

E(ΛXj) =
1

γ + µj
(pi−1µi−1E(ΛXj−1) + γE(Λ)E(Xj)) ,

such that

Cov(Λ, Xj) =
1

γ + µj
(pi−1µi−1Cov(Λ, Xj−1) + pi−1µi−1E(Λ)E(Xj−1)− µiE(Λ)E(Xj))

=
pi−1µi−1

γ + µj
Cov(Λ, Xj−1), j = 2, 3, . . . ,

returns a simple recursion. Observe also that

Cov(Λ, X1) = E(ΛX1)− E(Λ)E(X1)

=
E(Λ2)

γ + µ1

+
γ

γ + µ1

E(Λ)E(X1)− E(Λ)E(X1) =
Var(Λ)

γ + µ1

,

hence the solution is

Cov(Λ, Xj) =
Var(Λ)

γ + µj

j−1∏
i=1

piµi
γ + µi

, j = 1, ..., n. (2.17)

This formula also provides an interesting interpretation. Recall that µ
γ+µ

is the probability that an exponential time with rate µ is shorter than an
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exponential time with rate γ. Therefore,
j−1∏
i=1

piµi
γ+µi

is the probability that a

customer traverses j−1 service phases before the arrival parameter resamples.
The appearance of this probability is intuitive, since the current Λ can only
influence the current Xj if customers generated from this Λ arrive in phase
j before a new Λ is drawn.

Next, we check the variance of the number of customers in phase 2. To
do this we substitute k2 = 2 in (2.15). In the calculation we also use (2.17)
for j = 2 and (2.12) for t→∞:

E(X2(X2 − 1)) =
p1µ1

µ2

E(X1X2)

=
p1µ1

µ2(µ1 + µ2)
E(ΛX2) +

p2
1µ

2
1

µ2(µ1 + µ2)
E(X1(X1 − 1))

=
p1µ1

µ2(µ1 + µ2)

(
p1µ1Var(Λ)

(γ + µ1)(γ + µ2)
+
p1E(Λ)2

µ2

)
+

p2
1µ

2
1

µ2(µ1 + µ2)

µ1E(Λ2) + γE(Λ)2

µ2
1(γ + µ1)

=
p2

1µ1(γ + µ1 + µ2)Var(Λ)

µ2(µ1 + µ2)(γ + µ1)(γ + µ2)
+
p2

1E(Λ)2

µ2
2

,

so that

Var(X2) =
p2

1µ1(γ + µ1 + µ2)Var(Λ)

µ2(µ1 + µ2)(γ + µ1)(γ + µ2)
+
p1E(Λ)

µ2

. (2.18)

Now we can calculate the correlation

Cor(Λ, X2) =

p1µ1Var(Λ)
(γ+µ1)(γ+µ2)√

p1Var(Λ)
µ2

(
E(Λ) + p1µ1(γ+µ1+µ2)Var(Λ)

(µ1+µ2)(γ+µ1)(γ+µ2)

)
= µ1

√
p1µ2(µ1 + µ2)DΛ

(γ + µ1)2(γ + µ2)2(µ1 + µ2) + p1µ1(γ + µ1)(γ + µ2)(γ + µ1 + µ2)DΛ

.

In the special case that µ1 = µ2 = µ, we have
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Cor(Λ, X2) =
µ

γ + µ

√
2p1µDΛ

2(γ + µ)2 + p1(γ + 2µ)DΛ

.

To compare, we let t→∞ in (2.14) to get Cor(Λ, X1):

Cor(Λ, X1) =

√
DΛµ1

(γ + µ1)2 +DΛ(γ + µ1)
. (2.19)

In case the service rates are equal (i.e. µ1 = µ2 = µ) it holds that

Cor(Λ, X1)

Cor(Λ, X2)
=
γ + µ

µ

√
2(γ + µ)2 + p1(γ + 2µ)DΛ

2p1 ((γ + µ)2 +DΛ(γ + µ))

=

√
2(γ + µ)3 + 2p1µ2DΛ + p1(γ2 + 3γµ)DΛ

2p1µ2(γ + µ) + 2p1µ2DΛ

≥ 1,

because p1 ≤ 1. An immediate consequence from this calculation is that
Cor(Λ, X1) ≥ Cor(Λ, X2) when the service rates are equal. This is not sur-
prising, since customers “generated” by the current arrival rate Λ immedi-
ately arrive in phase 1, but take some time before entering phase 2 (if they
remain in the system after phase 1). So earlier phases have a more direct
connection with the current arrival rate.

The inequality does not necessarily hold for different service rates. To
see this, note that when p1 is high and µ1 is high compared to µ2 and γ,
customers spend more time in phase 2 than in phase 1 before the arrival
parameter resamples.

Let us finally take a look at X1 + X2, which is the total number of cus-
tomers for n = 2. Its mean and variance can easily be computed, but its
correlation with Λ is less straightforward. To find it, we first have to deter-
mine Cov(X1, X2). This is done by taking k1 = k2 = 1 in (2.15), and using
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the moments given in (2.17), (2.12) and (2.16):

Cov(X1, X2) = E(X1X2)− E(X1)E(X2)

=
1

µ1 + µ2

E(ΛX2) +
p1µ1

µ1 + µ2

E (X1(X1 − 1))− E(X1)E(X2)

=
1

µ1 + µ2

(Cov(Λ, X2) + E(Λ)E(X2))

+ lim
t→∞

p1µ1

µ1 + µ2

E (X1(t)(X1(t)− 1))− E(X1)E(X2)

=
p1(γ + µ1 + µ2)Var(Λ)

(γ + µ1)(γ + µ2)(µ1 + µ2)
.

(2.20)

Then with (2.17), (2.13), (2.18) and (2.20), we find

Cor(Λ, X1 +X2) =
Cov(Λ, X1) + Cov(Λ, X2)√

Var(Λ) (Var(X1) + Var(X2) + 2Cov(X1, X2))

= (γ + p1µ1 + µ2) (2.21)

×
√

µ1µ2(µ1 + µ2)DΛ

(γ + µ1)(γ + µ2) ((p1µ1 + µ2)(γ + µ1)(γ + µ2)(µ1 + µ2) + µ1µ2γDΛ + (p1µ1 + µ2)2(γ + µ1 + µ2)DΛ)
.

Note that when p1 = 0, customers never reach phase 2. It is easy to check
that in that case, it indeed holds that Cor(Λ, X1 +X2) = Cor(Λ, X1).

2.4 MΛ/M/∞
In this section we give a few results for the special Coxian case where the
service time distribution is exponential with parameter µ. An easy way to
recover the main results is by observing that this service time distribution
can be obtained by taking p1 = ... = pn−1 = 0 and µ1 = µ. We then find

−γf(s, z)+(1−z)
∂

∂s
f(s, z)+µ(1−z)

∂

∂z
f(s, z)+γf(s, 1)f(0, z) = 0 (2.22)

as the partial differential equation for the joint transform of (Λ, X) and

E

(
Λl X!

(X − k)!

)
=

k

γ + kµ
E

(
Λl+1 X!

(X − k + 1)!

)
+

γ

γ + kµ
E
(
Λl
)
E

(
X!

(X − k)!

)
(2.23)
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as the recursion for moments. The observant reader may have noticed that
all pi, i > 1 are irrelevant when p1 = 0, because customers can only be in
phase 1. The extended assumption is made to more easily copy results from
Coxian service times.

If Λ ∼ exp(θ) we can derive an expression for the form of any moment.

Theorem 2.4. Let Λ ∼ exp(θ). Then the recursion (2.23) has solution

E

(
Λl X!

(X − k)!

)
=

l!

θl+k
k∏
i=1

(γ + iµ)

k∑
j=0

cj(l, k)

(
γ

µ

)k−j
, (2.24)

where c0(l, k) = 1, ck(l, k) = k!(l+k)!
l!

and cj(l, k) satisfies the recursion

cj(l, k) = k(l+ 1)cj−1(l+ 1, k−1) + cj(1, k−1), j = 1, ..., k−1. (2.25)

For a proof by induction, we refer to [16]. Let us here only check that
(2.25) has a solution. The key observation is that the second argument low-
ers in each step of the recursion. Note that when we express cj(l, k) into
coefficients of the form cj′(l

′, k − 1) by using (2.25), we have either j′ = 0,
j′ ∈ {1, ..., k− 2} or j′ = k− 1. In the first and third case, the value is given,
and in the second case we can use (2.25) again. Repeating this procedure
k− 1 times leaves us with only unknown terms with k = 1. Since j ≤ k, the
remaining coefficients are of the form c0(l′, 1) and c1(l′, 1). These are both
known, so the recursion ends after k − 1 steps.

As we have seen, the mean number of customers is similar in M/M/∞ and
MΛ/M/∞, the only difference being that the fixed arrival rate λ is replaced
by the expected arrival rate E(Λ). Mixing turns out to have a larger effect
on the variance. Where without mixing, the variance of X is equal to the
mean, our model has

Var(X) =
E(Λ)

µ
+

Var(Λ)

µ(γ + µ)
, (2.26)

as a consequence of (2.13) by taking µ1 = µ and t → ∞. The first term is
the variance without mixing, and the second is caused by the variability of
the arrival rate. It is therefore no surprise that the second term is linear in
Var(Λ).
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Heemskerk, van Leeuwaarden and Mandjes [10] provide another inter-
esting comparison for the variance. They consider the same model, the only
difference being deterministic resample intervals with common length ∆. For
the variance of the number of customers Heemskerk et al. [10] obtain

Var(XH) =
E(Λ)

µ
+

(
1− e−µ∆

)
Var(Λ)

(1 + e−µ∆)µ2
, (2.27)

where XH denotes the steady state number of customers in this model.
For a fair comparison between (2.26) and (2.27) we take γ = 1

∆
, such

that the mean resample interval lengths of both models agree. It clearly
holds that Var(X) > Var(XH) if and only if 1

γ+µ
> 1−e−µ∆

µ(1+e−µ∆)
. Hence

Var(X) > Var(XH) if and only if 1 + 2µ∆ > eµ∆ (so µ∆ . 1.25).

(2.28)

One might expect that randomness of resample interval lengths leads to more
variability in X. Surprisingly, this result shows that is not always true.

For a good image of the distribution of X, we use a simple simulation.
Keeping track of the number of customers in the MΛ/M/∞, the results for
simulating up to t = 106 can be seen in Figure 2.

Figure 2: Histogram estimating the distribution of X, with Λ ∼ U(0, 6) and
γ = µ = 1.
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Note that with Λ ∼ U(0, 6) and γ = µ = 1, we have E(X) = 3 and
Var(X) = 4.5. On a single run, the simulation rarely returns an error of
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more than 0.01 for each quantity. For more details regarding the simulation,
see [16].

The last quantity we analyze regarding the steady state vector (Λ, X) is
the correlation between Λ and X. It is given by (2.19), replacing µ1 by µ as
is explained at the start of this section.

Figure 3: Cor(X,Λ) for DΛ = 1 and γ = 0.5.

In Figure 3 we see that the correlation is low both when the service rate
is very low or very high. This can be explained as follows: for the correlation
to be high, on the one hand the service rate should not be too high since we
want customers generated by the current Λ to stay as long as possible. On
the other hand, the service rate should not be so low that ”old” customers
from previously sampled Λ stay in the system for too long. The correlation

turns out to be maximal for µ =
√
γ2 + γ

DΛ
, attaining the value

Cor(X,Λ) =

√√√√√
√

γ(1+DΛγ)
DΛ

DΛ

(
2γ2 + γ

DΛ
+ 2γ

√
γ2 + γ

DΛ

)
+
(
γ +
√
γ2 + γ

DΛ

)
=

√
1

2
√
DΛγ(1 +DΛγ) + 2DΛγ + 1

.

Notice its dependence only on DΛγ.
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We close this section with a brief discussion of scaling limits. We consider
a scaling of the arrival rate Λ(t) with a factor N together with a scaling of
the resample rate γ with factor Nα. The value of α determines which rate
speeds up faster. If α > 1, the arrival rate changes very often, while if α < 1,
the arrival rate rarely changes relative to the number of arrivals. We check
the behavior of the MΛ/M/∞ under this scaling and discuss the effect of the
value of α. We follow the idea of Heemskerk et al. ([10], p. 8-12), in which
they consider a model with the arrival parameter resampling after a fixed
time ∆.

Let X(N) be the steady state number of customers under the correspond-
ing scaling. Then we easily see that

E
(
X(N)

)
=
NE(Λ)

µ
,

and from (2.26) that

Var
(
X(N)

)
=
NE(Λ)

µ
+

N2Var(Λ)

µ (Nαγ + µ)

∼ NE(Λ)

µ
+
N2−αVar(Λ)

µγ

(2.29)

when N tends to infinity. This can be compared to the asymptotic variance
of Heemskerk et al. [10]. Denoting by X

(N)
H the number of customers in their

model, they find

Var
(
X

(N)
H

)
∼ NE(Λ)

µ
+

∆N2−αVar(Λ)

2µ
. (2.30)

In both models, the variance increases as the average length of a resample
interval ( 1

γ
and ∆) increases. However, for the variances to be equal, it must

be that 1
γ

= ∆
2

. In other words, our more random model needs twice as many
resamples to obtain the same asymptotic variance.

From (2.29), the limiting behavior of the variance is

Var
(
X(N)

)
∼ NE(Λ)

µ
1{α≥1} +

N2−αVar(Λ)

µγ
1{α≤1}. (2.31)

Let β = max{1, 2 − α}. The asymptotic behavior suggests the following
central limit theorem.
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Conjecture 2.5. Assume all moments of Λ are finite. If N →∞, then

X(N) − E
(
X(N)

)
√
Nγ

→ N(0, σ2), (2.32)

with σ2 = E(Λ)
µ
1{α≥1} + Var(Λ)

µγ
1{α≤1}.

The statement of the conjecture is very similar to Theorem 2.1 from
[10]. However, in the proof they use that the resample interval lengths are
constant. This property is critical in the proof, making it hard to prove
our conjecture using the same idea. Nonetheless, it is expected that the
statement holds in our model as well.

3 Mixing in Markov-Modulated

Infinite-Server Queues

In this section, we consider a Markov-modulated infinite-server queue. The
Markov background process moves through a finite number of states N =
{1, ..., n}; be aware that this n has nothing to do with the number of phases in
the Coxian distribution considered in the previous section. While the process
is in state i ∈ N , it takes an exponential amount of time with parameter
γi before the state changes. When it does, it has probability pij to move to

state j. Of course, pij ≥ 0 for each (i, j) ∈ N × N and
n∑
j=1

pij = 1 for each

i ∈ N . Note that the Markov process behaves independently of the queue
and acts only as a generator.

In state i ∈ N , customers arrive according to a Poisson process with
random rate Λi, drawn according to a probability density function gΛi(·).
This rate is drawn at the start of the current state, and resampled once
the state changes again; the arrival parameter also resamples if the Markov
process moves to the same state. Bi is the service time of a customer arriving
when the background process is in state i.

The difference with other Markov-modulated queueing models lies within
the random parameter Λi. In standard Markov-modulated queues, the in-
terarrival times have a fixed distribution depending on i; most commonly an
exponential distribution with rate λi. In our case, when we apply mixing,
the interarrival time distribution is exponential with a random rate Λi.
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Remark 6. Observe that the workload of a customer is only dependent on
the state in which it enters the system, not necessarily on the current state.
In case the state of the background process changes before the customer ends
its service, service continues with the service time drawn from the previous
state.

In this section, we present the idea of [5] applied to our concept of mixing
the arrival parameter. First we develop a differential equation that shows
similarities with (2.1) from the MΛ/Coxn/∞ queue. Like in the previous
section, we indicate how this differential equation can be used to obtain
queue length moments.

3.1 The differential equation

We follow a similar approach as in [5], Section 3. Let S(t) ∈ N be the
state of the Markovian background process at time t. Also, let X̄i,λ(t) be
the number of customers at time t given X(0) = 0, S(0) = i and Λ(0) = λ.
Assuming an empty system at time zero is, for the same reason as in Section
2.2, not very restrictive. Say for example that there are m customers at
time zero. Each of those can be characterized by the state it arrived in
and its residual service time. With this information we can calculate the
probabilities q1, ..., qm that the corresponding customer is still in the system
at time t. Let Zj(t) ∼ Bernoulli(qj) for j = 1, ...,m. Then the total number

of customers at time t equals X̄i,λ(t) +
m∑
j=1

Zj(t).

Consider the small time interval (0, h). Define fi,λ(z, t) := E(zX̄i,λ(t)). To
remove the condition Λ(0) = λ, we define X̄i(t) as the number of customers
at time t given X(0) = 0 and S(0) = i. Moreover, let fi(z, t) = E(zX̄i(t)) =
∞∫
0

gΛi(λ)E(zX̄i,λ(t))dλ be the corresponding generating function. It is easily

seen that

fi,λ(z, t) =
(

1 + λh(z − 1)P (Bi ≥ t)
)

×
(
hγi

n∑
j=1

pijfj(z, t− h) + (1− hγi)fi,λ(z, t− h)

)
+ o(h),
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which yields the differential equation

γi

n∑
j=1

pijfj(z, t)− γifi,λ(z, t)−
∂

∂t
fi,λ(z, t) + λ(z − 1)P (Bi ≥ t)fi,λ(z, t) = 0.

(3.1)
Removing the condition Λ(0) = λ then gives

γi

n∑
j=1

pijfj(z, t)−γifi(z, t)−
∂

∂t
fi(z, t)+(z−1)P (Bi ≥ t)E

(
Λifi,Λi(z, t)

)
= 0.

(3.2)
This last formula has some interesting consequences. For example, by

letting t→∞, we find the steady state formula

E(zX̄i(∞)) =
n∑
j=1

pijE(zX̄j(∞)).

Note that after an infinite amount of time, the state of the background

process at t = 0 should be irrelevant. Since
n∑
j=1

pij = 1, the above equality

indeed holds.
Another interesting situation occurs when n = 1, so that the system

is always in state 1. Note that this is a generalization of our previous
MΛ/Coxn/∞ model, the service times now having a fully general distribu-
tion. Equation (3.2) in this case becomes

∂

∂t
f1(z, t) = (z − 1)P (B1 ≥ t)E

(
Λ1f1,Λ1(z, t)

)
.

Also taking the derivative with respect to z and taking z = 1 gives

d

dt
E(X̄1(t)) = P (B1 ≥ t)E(Λ1),

which, with the condition that E(X̄1(0)) = 0, yields

E(X̄1(t)) = E(Λ1)

t∫
0

P (B1 ≥ u)du.
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Taking B1 ∼ exp(µ1) here, for example, gives

E(X̄1(t)) =
E(Λ1)

µ1

(
1− e−µ1t

)
. (3.3)

This formula of course agrees with Formula (2.9) for the mean number of
customers in phase 1 of the MΛ/Coxn/∞ queue. When only considering
customers in the first phase of a Coxian distribution, successive phases are
irrelevant since there are infinitely many servers. Therefore, both models

describe the MΛ/M/∞, and X̄1(t)
d
= X1(t) when the background process

has only one state and B1 ∼ exp(µ1).

3.2 Calculating moments

In the MΛ/Coxn/∞ from Section 2, we saw that despite being unable to find
the generating function, we could use the differential equation to compute
all moments. We will do the same here with the Markov-modulated queue,
both with and without the initial condition on Λ(0).

To obtain factorial moments, we take from (3.1) the kth derivative with
respect to z in z = 1:

d

dt
E

(
X̄i,λ(t)!(

X̄i,λ(t)− k
)
!

)
= −γiE

(
X̄i,λ(t)!(

X̄i,λ(t)− k
)
!

)
+ γi

n∑
j=1

pijE

(
X̄j(t)!(

X̄j(t)− k
)
!

)

+ kλP (Bi ≥ t)E

(
X̄i,λ(t)!(

X̄i,λ(t)− k + 1
)
!

)
. (3.4)

Doing the same with (3.2) gives

d

dt
E

(
X̄i(t)!(

X̄i(t)− k
)
!

)
= −γiE

(
X̄i(t)!(

X̄i(t)− k
)
!

)
+ γi

n∑
j=1

pijE

(
X̄j(t)!(

X̄j(t)− k
)
!

)

+ kP (Bi ≥ t)

∞∫
0

gΛi(λ)λE

(
X̄i,λ(t)!(

X̄i,λ(t)− k + 1
)
!

)
dλ. (3.5)

Theorem 3.1. All moments E

(
X̄i,λ(t)!

(X̄i,λ(t)−k)!

)
and E

(
X̄i(t)!

(X̄i(t)−k)!

)
can be it-

eratively computed for all k ∈ N.
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Proof. Note that Equation (3.5) can be seen as a system of linear differential
equations

d

dt

−−−−→
E(k, t) = A

−−−−→
E(k, t) +

−→
c(t), (3.6)

where

•
−−−−→
E(k, t) is the n-dimensional vector consisting of E

(
X̄1(t)!

(X̄1(t)−k)!

)
up to

E

(
X̄n(t)!

(X̄n(t)−k)!

)
,

• A is a matrix with entries aij = γipij for i 6= j and aii = γi(pii−1), and

• c(t)i = kP (Bi ≥ t)
∞∫
0

gΛi(λ)λE

(
X̄i,λ(t)!

(X̄i,λ(t)−k+1)!

)
dλ.

In the same way, (3.4) can be viewed as n separate differential equations

d

dt
E

(
X̄i,λ(t)!(

X̄i,λ(t)− k
)
!

)
= −γiE

(
X̄i,λ(t)!(

X̄i,λ(t)− k
)
!

)
+ c(λ, t)i, i = 1, ..., n,

(3.7)
with

c(λ, t)i = γi

n∑
j=1

pijE

(
X̄j(t)!(

X̄j(t)− k
)
!

)
+kλP (Bi ≥ t)E

(
X̄i,λ(t)!(

X̄i,λ(t)− k + 1
)
!

)
.

The main idea is that when we solve the equations in the right order,
the c(t)i and c(λ, t)i are known from previous iterations. If these quantities
are known, we can find any moment by solving Equations (3.6) and (3.7) via
ordinary differential equation methods.

We now proceed to show a sufficient calculation order to complete the
proof, by induction. For k = 1, we have c(t)i = P (Bi ≥ t)E(Λi), en-
abling us to calculate E

(
X̄i(t)

)
for i = 1, ..., n with (3.6). Now, c(λ, t)i =

γi
n∑
j=1

pijE
(
X̄j(t)

)
+ P (Bi ≥ t)λ is known such that with (3.7) we can also

find E
(
X̄i,λ(t)

)
.

Suppose we know all moments of order k − 1. Then c(t)i can be found

by assumption, so we can solve the system (3.6) to find E

(
X̄i(t)!

(X̄i(t)−k)!

)
for
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i = 1, ..., n. With these quantities found and the induction hypothesis, note
that now also c(λ, t)i are known. By solving (3.7), the proof is complete.

The next step will be calculating some specific moments with Equations
(3.4) and (3.5). Specifying the service time distributions allows for expres-
sions without integrals, so let us assume from now that Bi ∼ exp(µi) for
i = 1, ..., n. The exponential distribution is a natural choice and gives simple
expressions.

Note that we already found E(X̄1(t)) for n = 1 in (3.3). We proceed
with finding the mean, conditioned on Λ(0) = λ, and the variance for n = 1.
After that we move on to n = 2.

With k = 1 and (3.3), differential equation (3.4) reads

d

dt
E
(
X̄1,λ(t)

)
= −γ1E

(
X̄1,λ(t)

)
+ γ1E

(
X̄1(t)

)
+ λP (B1 ≥ t)

= −γ1E
(
X̄1,λ(t)

)
+
γ1E(Λ1)

µ1

+

(
λ− γ1E(Λ1)

µ1

)
e−µ1t.

One can easily check that, with boundary condition E
(
X̄1,λ(0)

)
= 0,

E
(
X̄1,λ(t)

)
=
E(Λ1)

µ1

+
µ1λ− γ1E(Λ1)

µ1(γ1 − µ1)
e−µ1t − λ− E(Λ1)

γ1 − µ1

e−γ1t.

Some interpretation of this formula can be obtained when we write it as

E
(
X̄1,λ(t)

)
=
E(Λ1)

µ1

(
1− e−µ1t

)
+
e−µ1t − e−γ1t

γ1 − µ1

(λ− E(Λ1)). (3.8)

We recognize the first term as the formula for E
(
X̄1(t)

)
. The second term

is a nonnegative number times the difference between the conditioned start-
ing arrival parameter λ and its expectation E(Λ1). In other words, the
difference in the mean queue size conditioned on Λ(0) = λ or Λ(0) = Λ1,
is linear in λ − E(Λ1). It is evident that when t > 0, E

(
X̄1,λ(t)

)
≥

E
(
X̄1(t)

)
if and only if λ ≥ E(Λ1), with equality if and only λ = E(Λ1).

It also follows from (3.8) that the difference between E
(
X̄1,λ(t)

)
and

E
(
X̄1(t)

)
is largest at t = ln(γ1)−ln(µ1)

γ1−µ1
. The existence of a maximum is

intuitive: at t = 0, the system still has to set up, and when t → ∞, the
value of Λ(0) has become irrelevant. In both of these cases it holds that
E
(
X̄1,λ(t)

)
= E

(
X̄1(t)

)
.
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Formula (3.8) also holds for the MΛ/Coxn/∞ setting, in the sense that
E(X1(t)|Λ(0) = λ) = E

(
X̄1,λ(t)

)
(see the end of Subsection 3.1). The

approach of Section 2 does not enable us to find moments conditioned on
Λ(0), so this is an interesting observation.

Moving on to moments of second order, we take k = 2 in (3.5) and find

d

dt
E
(
X̄1(t)

(
X̄1(t)− 1

))
= 2P (B1 ≥ t)

∞∫
0

gΛi(λ)λE
(
X̄1,λ(t)

)
dλ

= 2e−µ1t

∞∫
0

gΛ1(λ)λ

(
E(Λ1)

µ1

+
µ1λ− γ1E(Λ1)

µ1(γ1 − µ1)
e−µ1t − λ− E(Λ1)

γ1 − µ1

e−γ1t

)
dλ

=
2E(Λ1)2

µ1

e−µ1t +
2µ1E(Λ2

1)− 2γ1E(Λ1)2

µ1(γ1 − µ1)
e−2µ1t − 2Var(Λ1)

γ1 − µ1

e−(γ1+µ1)t.

The only solution with E
(
X̄1(0)

(
X̄1(0)− 1

))
= 0 is

E
(
X̄1(t)

(
X̄1(t)− 1

) )
=
µ1E(Λ2

1) + γ1E(Λ1)2

µ2
1(γ1 + µ1)

− 2E(Λ1)2

µ2
1

e−µ1t

+
γ1E(Λ1)2 − µ1E(Λ2

1)

µ2
1(γ1 − µ1)

e−2µ1t +
2Var(Λ1)

(γ1 − µ1)(γ1 + µ1)
e−(γ1+µ1)t,

(3.9)

and hence

Var(X̄1(t)) =
E(Λ1)

µ1

+
Var(Λ1)

µ1(γ1 + µ1)
− E(Λ1)

µ1

e−µ1t

− Var(Λ1)

µ1(γ1 − µ1)
e−2µ1t +

2Var(Λ1)

(γ1 − µ1)(γ1 + µ1)
e−(γ1+µ1)t.

(3.10)

This is in agreement with (2.13); see also the end of Subsection 3.1.

We proceed by studying the variance when the starting arrival rate is
fixed, i.e. Λ(0) = λ. Using Formula (3.5) for k = 2 yields

d

dt
E
(
X̄1,λ(t)

(
X̄1,λ(t)− 1

))
= −γ1E

(
X̄1,λ(t)

(
X̄1,λ(t)− 1

))
+ γ1E

(
X̄1(t)

(
X̄1(t)− 1

) )
+ 2λe−µ1tE

(
X̄1,λ(t)

)
.

Observe that the latter two terms are known from (3.9) and (3.8), hence
we have a solvable linear differential equation. As usual, we set the boundary
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condition at E
(
X̄1,λ(0)

(
X̄1,λ(0)−1

))
= 0, leading to E

(
X̄1,λ(t)

(
X̄1,λ(t)−1

))
and subsequently to

Var
(
X̄1,λ(t)

)
= E

(
X̄1,λ(t)

)
+

Var(Λ1)

µ1(γ1 + µ1)

+

(
2Var(Λ1)

µ1(γ1 − 2µ1)
− 2 (λ− E(Λ1))2

µ1(γ1 − 2µ1)

)
e−γ1t

+

(
− γ1Var(Λ1)

µ1(γ1 − µ1)(γ1 − 2µ1)
+

γ1 (λ− E(Λ1))2

(γ1 − µ1)2(γ1 − 2µ1)

)
e−2µ1t

+

(
− 2γ1Var(Λ1)

µ1(γ1 − µ1)(γ1 + µ1)
+

2γ1 (λ− E(Λ1))2

µ1(γ1 − µ1)2

)
e−(γ1+µ1)t

− (λ− E(Λ1))2

(γ1 − µ1)2
e−2γ1t. (3.11)

Notice here that the initial arrival intensity only appears as λ− E(Λ1), and
that γ = µ1 and γ = 2µ1 are removable singularities.

So far, we have only obtained explicit expressions for moments in the
Markov-modulated queue with the background process having only one state.
In order to better analyze the effect of the background process on the queue,
we now consider an example with n = 2. This should give an impression of
the behavior of the Markov-modulated queue with multiple states.

For n = 2, k = 1, (3.6) takes the form

d

dt

(
E
(
X̄1(t)

)
E
(
X̄2(t)

)) =

(
−γ1p12 γ1p12

γ2p21 −γ2p21

)(
E
(
X̄1(t)

)
E
(
X̄2(t)

))+

(
E(Λ1)e−µ1t

E(Λ2)e−µ2t

)
,

since p11 − 1 = −p12 and p22 − 1 = −p21. We can solve this system with the
eigenvalue method, see for example [21]. Define π := γ1p12 + γ2p21 as the
sum of the state transition rates. It is easily seen that the eigenvectors of

the system are

(
1
1

)
and

(
γ1p12

−γ2p21

)
with eigenvalues 0 and −π respectively.

Therefore, the solution is(
E
(
X̄1(t)

)
E
(
X̄2(t)

)) =

(
1 γ1p12

1 −γ2p21

)(
y1(t)
y2(t)

)
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with

d

dt

(
y1(t)
y2(t)

)
=

(
0 0
0 −π

)(
y1(t)
y2(t)

)
+

(
1 γ1p12

1 −γ2p21

)(
E(Λ1)e−µ1t

E(Λ2)e−µ2t

)
.

The latter is a pair of separate linear differential equations. Solving these,
substituting in the above solution and again using the boundary condition
E(X̄1(0)) = E(X̄2(0)) = 0, yields

E(X̄1(t)) =
γ2p21E(Λ1)

πµ1

(
1− e−µ1t

)
+
γ1p12E(Λ2)

πµ2

(
1− e−µ2t

)
+
γ1p12E(Λ1)

π
· e
−µ1t − e−πt

π − µ1

− γ1p12E(Λ2)

π
· e
−µ2t − e−πt

π − µ2

,

E(X̄2(t)) =
γ2p21E(Λ1)

πµ1

(
1− e−µ1t

)
+
γ1p12E(Λ2)

πµ2

(
1− e−µ2t

)
− γ2p21E(Λ1)

π
· e
−µ1t − e−πt

π − µ1

+
γ2p21E(Λ2)

π
· e
−µ2t − e−πt

π − µ2

.

(3.12)

Quantities in (3.12) that should be recognized are

• γ2p21

π
and γ1p12

π
, the long term fractions of finding the Markov process

in state 1 and 2, respectively.

• E(Λi)
µi

(1− e−µit), the mean number of customers when the Markov pro-

cess is always in state i (i = 1, 2).

• e−µit−e−πt
π−µi , a nonnegative quantity that increases whenever π or µi in-

creases (i = 1, 2).

With these equations we can also find some other relevant quantities. For
example, suppose that the state at time 0 is not known, but the background
process is in steady state. Then P (S(0) = 1) = γ2p21

π
and P (S(0) = 2) =

γ1p12

π
, so it follows that the mean number of customers at time t is

γ2p21

π
E(X̄1(t)) +

γ1p12

π
E(X̄2(t))

=
γ2p21E(Λ1)

πµ1

(
1− e−µ1t

)
+
γ1p12E(Λ2)

πµ2

(
1− e−µ2t

)
.

(3.13)

Another consequence of (3.12) is the steady state mean
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E(X̄) =
γ2p21E(Λ1)

πµ1

+
γ1p12E(Λ2)

πµ2

. (3.14)

Keep in mind that there is no subscript needed, since in steady state it does
not matter in which state we started. In the formula we see the steady state
mean of each individual state, multiplied by the fraction that the correspond-
ing state was active. The fact that the steady state mean is just the sum of
these parts, underlines that customers from different states do not interfere
with each other.

Let us now consider E(X̄|S = 1): the steady state expected number of
customers given the background process is in state 1. Before we can give
an expression, we have to define X̃i as the portion of the current customers
that arrived when the state was i. Distinction between X̃1 and X̃2 is relevant
because customers that arrived in a different state will have a different service
rate. For instance, the first term of (3.14) is the mean number of customers
with service rate µ1.

Now define T1 as an arbitrary time in steady state when the background
process moves from state 1 to state 2. Also, let T2→1 be the last time before T1

that the state changed from 2 to 1. We split X̃1(T1) into the customers that
arrived before or after T2→1, and then condition on the value of T1 − T2→1.
It holds that

E
(
X̃1(T1)

)
= E

(
X̃1(T2→1)

)
· P (B1 ≥ T1 − T2→1) + E

(
X̄1(T1 − T2→1)

)
=

∞∫
0

γ1p12e
−γ1p12t

(
E
(
X̃1(T2→1)

)
e−µ1t + E

(
X̄1(t)|S(u) = 1 for all u ∈ [0, t]

))
dt

=

∞∫
0

γ1p12e
−γ1p12t

(
E
(
X̃1(T2→1)

)
e−µ1t +

E(Λ1)

µ1

(
1− e−µ1t

))
dt

=
γ1p12

γ1p12 + µ1

E
(
X̃1(T2→1)

)
+
E(Λ1)

µ1

(
1− γ1p12

γ1p12 + µ1

)
.
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Let T2 and T1→2 be the symmetric versions of T1 and T2→1. We then have

E
(
X̃1(T2)

)
= E

(
X̃1(T1→2)

)
· P (B1 ≥ T2 − T1→2)

=

∞∫
0

γ2p21e
−γ2p21tE

(
X̃1(T1→2)

)
e−µ1tdt =

γ2p21

γ2p21 + µ1

E
(
X̃1(T1→2)

)
.

A useful observation here is that T1
d
= T1→2 and T2

d
= T2→1, since in each

case, both times represent a steady state time at the end of a period of one
state. As a result we have a system of two linear equations. The solution is

E
(
X̃1(T1)

)
=

(γ2p21 + µ1)E(Λ1)

(π + µ1)µ1

, E
(
X̃1(T2)

)
=
γ2p21E(Λ1)

(π + µ1)µ1

. (3.15)

Notice the absence of E(Λ2) and µ2, caused by the fact that customers from
different states do not influence each other.

Let TS=1 be an arbitrary steady state time with S(TS=1) = 1. We will

show that E
(
X̃1(T1)

)
= E

(
X̃1(TS=1)

)
= E(X̃1|S = 1). Note that we can

view the Markov background process as a Poisson process with rate γ1p12,
and we can view its events as periods where the state is 2. We assume
those periods take 0 time, so that the rate at which an event happens is
always γ1p12. A nice property of the Poisson process is that when we pick
an arbitrary point in time (TS=1), the amount of time since the last event
is exponentially distributed with parameter γ1p12. The same holds for T1,

so X̃1(TS=1)
d
= X̃1(T1), hence in particular E(X̃1|S = 1) = E

(
X̃1(T1)

)
=

(γ2p21+µ1)E(Λ1)
(π+µ1)µ1

.

As a quick sanity check, we calculate E(X̃1), the steady state mean num-
ber of customers that arrived when the background process was in state 1
(i.e. the customers that have service rate µ1). As mentioned, this should
give the first term of (3.14). The calculation below verifies this:

E(X̃1) = E(X̃1|S = 1) · P (S = 1) + E(X̃1|S = 2) · P (S = 2)

=
(γ2p21 + µ1)E(Λ1)

(π + µ1)µ1

· γ2p21

π
+
γ2p21E(Λ1)

(π + µ1)µ1

· γ1p12

π
=
γ2p21E(Λ1)

πµ1

.

For symmetry reasons, (3.15) can be transformed into

E
(
X̃2(T1)

)
=
γ1p12E(Λ2)

(π + µ2)µ2

, E
(
X̃2(T2)

)
=

(γ1p12 + µ2)E(Λ2)

(π + µ2)µ2

. (3.16)
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Now we are finally ready to find the mean total number of customers condi-
tioned on the current state:

E
(
X̄|S = 1

)
= E

(
X̃1(T1)

)
+ E

(
X̃2(T1)

)
=
γ2p21E(Λ1)

(π + µ1)µ1

+
γ1p12E(Λ2)

(π + µ2)µ2

+
E(Λ1)

π + µ1

,
(3.17)

and analogously,

E
(
X̄|S = 2

)
=
γ2p21E(Λ1)

(π + µ1)µ1

+
γ1p12E(Λ2)

(π + µ2)µ2

+
E(Λ2)

π + µ2

. (3.18)

Given the complexity of calculations with two states, formulas for general
n will be costly to derive analytically. However, if one assumes that the
Markov process is in steady state at time 0, one can use a shortcut found
by Blom et al. [5] for the mean number of customers. It is based on the

well-known rate-in = rate-out balance equation
n∑
i=1

πiγipij = πjγj, πi being

the steady state probabilities for each state.
To find the mean number of customers in this case, we take k = 1 in

(3.5), multiply by πi and sum over i. This results in

d

dt

n∑
i=1

πiE
(
X̄i(t)

)
= −

n∑
i=1

πiγiE
(
X̄i(t)

)
+

n∑
i=1

πiγi

n∑
j=1

pijE
(
X̄j(t)

)
+

n∑
i=1

πiP (Bi ≥ t)E(Λi) =
n∑
i=1

πiP (Bi ≥ t)E(Λi),

and hence

n∑
i=1

πiE
(
X̄i(t)

)
=

n∑
i=1

πiE(Λi)

t∫
0

P (Bi ≥ u) du. (3.19)

With relatively easy methods, we found a general formula for the mean.
For instance, n = 2 and exponential service times yields (3.13), which was
significantly harder to find as we had to solve a system of differential equa-
tions. The disadvantage of the quicker method is that it gives no information
about the case where the starting state S(0) is fixed.
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4 Discussion and future work

We have considered two infinite-server queueing models with a mixed arrival
process. For the MΛ/Coxn/∞ model with exponential resample times we
showed how to compute all joint moments of the arrival rate and the number
of customers, both in transient and steady state. For a Markov-modulated
queue with general service times we gave a procerdure to obtain all moments
of the number of customers given the initial state and the initial arrival rate.

Since moments define a distribution, finding a way to compute them is
a significant step towards finding the exact queue size distribution, even
though we could not find a closed formula for all moments. Possible future
research may include finding the exact distributions of the considered random
variables. From our point of view, a way to do this is solving the partial
differential equation corresponding to that model.

In related papers about infinite-server queues, a considerable amount of
work has been done regarding scaling limits and large deviation principles
[3, 5, 10, 11]. It is likely that similar results can be proven for our models,
cf. Conjecture 2.5.

Finally, it would be interesting to study the M/M/∞ queue in which not
the arrival rate but the service rate is described by a stochastic process. That
infinite-server queue seems less amenable to a recursive approach.
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