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Abstract

In modern data centers, the trade-off between processing speed and energy consump-
tion is an important issue. Motivated by this, we consider a queueing system in which
the service speed is a function of the workload, and in which the server switches off
when the system becomes empty, only to be activated again when the workload
reaches a certain threshold. For this system we obtain the steady-state workload dis-
tribution. We use this result to choose the activation threshold such that a certain
cost function, involving holding costs and activation costs, is minimized.

1 Introduction

In this paper we consider an M/G/1-type queueing system with the following two special
features: (i) the service speed is not constant, but a function of the workload, and (ii) the
server switches off when the system becomes empty, only to be activated again when the
workload reaches a certain threshold. In the remainder of this introduction we successively
provide a motivation for this study, present a detailed model description, discuss related
literature and give an overview of the rest of the paper.
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1.1 Motivation

Cloud service has become ubiquitous in our modern information society. Most Internet
users are familiar with some cloud service such as Dropbox, Slack, Google drive etc. These
services are supported by data centers where thousands of servers are available, consuming
a large amount of energy. Thus, it is crucial to have mechanisms balancing energy con-
sumption and performance for users. While energy saving is very important, most data
centers are still designed for peak traffic of users. As a result, in the off-peak period, most
servers are idle but still consume about 60% of their peak energy consumption [10, 14].
One simple idea is to use an ON-OFF control that automatically adjusts the number of
active servers according to the workload. In addition, dynamic scaling techniques such as
frequency scaling or voltage scaling enable individual computers to adjust their processing
speed in accordance with their workload.

These automatic scaling techniques have the advantage of balancing performance and
energy consumption. Because the energy consumption is a monotonic function of the
processing speed, less energy is consumed when the system is less congested. When the
workload is high, the processing speed is scaled up and thus, the delay performance is
improved. At the single computer (server, CPU) level, on the other hand, energy could be
saved by adjusting the processing speed of a server according to its own workload. These
considerations, featuring the important trade-off between processing speed and energy
consumption, motivate the analysis and optimization of queueing systems where the server
capacity is dynamically changed according to the workload.

Apart from the interest in power-saving computer systems, queues with variable service
speed also naturally arise in service systems with human servers. In particular, in service
systems such as call centers, staff numbers are scheduled to meet the demands of customers.
Also a human server may speed up when the workload is large, and may spend more time
on a job when the workload is small.

In this paper, we propose and analyze a queueing model that features two power-saving
mechanisms. The speed of the server is scaled according to the workload in the system.
Moreover, the server is turned off when the system is empty and is activated again once
the workload reaches a certain threshold. We obtain the distribution for the stationary
workload in the system and its mean. We also formulate an optimization problem.

1.2 Model description

The model under consideration is an M/G/1 queue with two special features (cf. Figure
1): (i) when the server is active and the amount of work present equals x > 0, the server
works at speed r(x), and (ii) when the workload has dropped to zero, the server becomes
inactive (”takes a vacation”) and remains inactive until the workload has reached some
level M > 0, after which it immediately resumes service. We denote the rate of the
Poisson arrival process by λ, and the i.i.d. (independent, identically distributed) service
requirements by B1, B2, . . . , with distribution B(·) and Laplace-Stieltjes transform (LST)
β(s). B will denote a generic service requirement. For much of the paper, we shall assume

2



that B(x) = 1− e−µx, x ≥ 0.
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Figure 1: The workload process.

The case without vacations has been the subject of several studies (see, e.g., [3] and its
references). The stability condition for that case is that (cf. [5, 6, 11]),

limsupx→∞
λE(B)

r(x)
< 1. (1.1)

Clearly, the same condition should hold in case the server takes a vacation until workload
level M is reached. From now on we assume that (1.1) holds. Below we focus on the
steady-state workload distribution V (·) and its density v(·). We also need to take into
account the steady-state workload distribution VI(·) and its density vI(·) during inactive
(vacation) periods of the server; by pI := VI(∞) we denote the probability that the server
is inactive.

Define

R(x, z) :=

∫ x

z

1

r(y)
dy, 0 ≤ z < x <∞; (1.2)

R(x, z) represents the time required to move from level x down to level z in the absence of
any arrivals. In particular, R(x) := R(x, 0) denotes the time required to empty the system
when starting at level x, in the absence of any arrivals. We assume in the sequel that
R(x) < ∞ for x < ∞; notice that this excludes the choice r(x) = rx, which is sometimes
termed the shotnoise case [13].

1.3 Related literature

Our model is related to several topics in the queueing literature. First of all, it is a special
example of a queue with vacations: the server takes a vacation when the system becomes
empty, and resumes service when the workload reaches or exceeds a certain level. In the
classical M/G/1 setting, such a D-policy has been extensively studied. We refer to [8] for
references and, in particular, for an optimality proof. For the case of switching costs and
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running costs, and with a holding cost per time unit which is a non-negative decreasing
right-continuous function of the current workload, Feinberg and Kella [8] prove that D-
policies are optimal for the average-cost-per-time-unit criterion. This means that there is
an optimal policy that either runs the server all the time or switches the server off when
the system becomes empty and switches it on when the workload reaches or exceeds some
threshold D.

Secondly, our model touches upon the topic of speed scaling. We refer to [19] for an
insightful discussion of speed scaling. Recent papers which consider single server queues
with speed scaling where the speed of the server is adjusted according to the number of
jobs in the system are, e.g., [16, 20]. Multiserver queues with ON-OFF control have been
extensively studied [9, 10, 14, 15]. In the models in those papers, each server is turned off
once it has no jobs to process and is turned on again when jobs are waiting.

Thirdly, there is an extensive literature on queues and dams with a level-dependent
outflow rate. We mention the pioneering papers [11, 12] and refer to [3] for some more
recent results and further references.

1.4 The structure of the paper

Section 2 is devoted to a study of the steady-state workload distribution. A cost minimiza-
tion problem is considered in Section 3, where also various numerical results are shown.
Section 4 contains some suggestions for further research.

2 The workload

In this section we first present integral equations for the steady-state workload density
v(·) (Subsection 2.1), while already deriving the workload density during inactive periods;
then we formally solve those integral equations (Subsection 2.2), and finally we present
a detailed solution for two special cases: exponentially distributed service requirements
(Subsection 2.3) and generally distributed service requirements with r(x) = r1x+ r0 (Sub-
section 2.4).

2.1 Integral equations for the workload density

We use the Level Crossing Technique (LCT), cf. [4, 6], which is based on the principle that,
in steady state, each level x is crossed just as often from above and from below. We need
to distinguish between x < M and x ≥M . When x ≥M , we have, with V (0) = P(V = 0)
(see also Figure 1):

r(x)v(x) = λ

∫ x

y=0

P(B > x− y)v(y)dy + λP(B > x)V (0), (2.1)

and when x < M then

r(x)(v(x)− vI(x)) = λ

∫ x

y=0

P(B > x− y)v(y)dy + λP(B > x)V (0). (2.2)
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In both cases, the righthand side represents the upcrossing rate, which seems self-explanatory
(see also Sections II.4.5 and III.5.10 of [7] for a similar integral equation for, respectively,
the ordinary M/G/1 queue and the M/G/1 queue with service speed r(x)). The lefthand
side gives the downcrossing rate. Here one has to realize that for x ∈ (0,M) there can only
be a downcrossing when the server is active; hence the term v(x) − vI(x) for x ∈ (0,M).
Let us now first determine vI(x) for x ∈ (0,M).

The density vI(x).
One can write

vI(x) = v(x|server inactive)P(server inactive), 0 < x < M,

= 0, x ≥M. (2.3)

The probability pI that the server is inactive equals the fraction of time that the server is
inactive; hence, with m0 and m1 the mean of an inactive and of an active period, we have

pI =
m0

m0 +m1

. (2.4)

It is easy to determine m0. Obviously,

m0 = 1/λ× (1 +m(M)), (2.5)

where m(x) is the renewal function, defined as m(x) := EN(x), with {N(x) := sup{n :
B1 + · · · + Bn ≤ x} (cf. Chapter 3 of [17]). The conditional workload density given that
the server is inactive also follows from renewal theory, and turns out to be closely related
to the renewal function. Introducing the density

y(x) := v(x|server inactive), (2.6)

with distribution Y (·), we shall prove the following.

Theorem 1.

Y (x) =
1 +m(x)

1 +m(M)
, 0 ≤ x ≤M. (2.7)

Proof. Remove all the active periods, to obtain a sequence of successive inactive pe-
riods. Applying LCT to the thus obtained process, equating the numbers of workload
downcrossings and upcrossings of any level x ∈ [0,M ] we obtain:

λ

∫ x

0

P(B > x− u)dY (u) =
1

m0

, 0 ≤ x ≤M. (2.8)

The righthand side of this equation reflects the event in which level M is upcrossed, which
instantaneously (because we have omitted the active periods) is followed by a jump from
above M to level 0 – and hence a downcrossing of each level x ∈ [0,M ]. This happens once
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per inactive period; hence the term 1
m0

. Divide both sides of (2.8) by λ and observe that
(e.g., using (2.8) for x = 0)

Y (0) = P(V = 0|server inactive) =
1

λm0

. (2.9)

Rewrite (2.8) into

Y (x)−Y (0) =

∫ x

0

P(B < x−u)dY (u) = P(B < x)Y (0)+

∫ x

0

P(B < x−u)y(u)du, 0 ≤ x ≤M,

(2.10)
and subsequently into

Y (x)− Y (0)

Y (0)
= P(B < x) +

∫ x

0

P(B < x− u)d
Y (u)− Y (0)

Y (0)
, 0 ≤ x ≤M. (2.11)

Comparison with the well-known renewal equation (cf. Chapter 3 of [17])

m(x) = P(B < x) +

∫ x

0

P(B < x− u)dm(u), (2.12)

shows that Y (x)−Y (0)
Y (0)

= m(x) and hence Y (x) = Y (0)(1 +m(x)). Finally use the fact that

Y (M) = 1.

Remark 2.1. In the special case in which B ∼ exp(µ), one has m(x) = µx, and hence
y(x) = µ

1+µM
; the workload during an inactive period, when positive, is uniformly dis-

tributed on (0,M).

Remark 2.2. For future use we observe that v(·) has a discontinuity in x = M , as revealed
by (2.1) and (2.2):

v(M)− v(M−) = −vI(M−). (2.13)

Remark 2.3. We close this subsection by pointing out that, in all model variants to be
studied in this paper, we have the following relation:

1

λV (0)
= m0 +m1. (2.14)

Indeed, λV (0) is the rate of a customer arriving in an empty system, and hence 1
λV (0)

is
the mean cycle time, viz., the sum of the means of an inactive period and an active period.
Since m0 is known, Formula (2.14) constitutes a relation between two important quantities:
the probability V (0) of an empty system, and the mean m1 of an active period. These
quantities will appear in most of the key workload formulas to be discussed in the sequel.
Notice in particular, combining (2.3), (2.4), (2.5), (2.7) and (2.14), that

vI(x) = V (0)m′(x), 0 ≤ x < M. (2.15)
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2.2 Solution of the integral equations

In this subsection we present a formal solution of the integral equations (2.1) and (2.2).
First rewrite these two equations into one integral equation:

v(x) =

∫ x

y=0

K(x, y)v(y)dy + L(x), (2.16)

where

K(x, y) :=
λP(B > x− y)

r(x)
, 0 ≤ y < x, (2.17)

and (using (2.14) to express the unknown constant m1 into V (0)):

L(x) := V (0)K(x, 0), x ≥M, (2.18)

L(x) := V (0)K(x, 0) + vI(x) = V (0)[K(x, 0) +m0λy(x)], x < M,

where the last equality follows from (2.5), (2.7) and (2.15). Integral equation (2.16) is a
Volterra integral equation of the second kind. The classical Picard iteration ([18], Chapter
I) results in the following formal solution in terms of an infinite series of convolutions.
Define recursively

Kn(x, y) :=

∫ x

y

K(x, z)Kn−1(z, y)dz, 0 < y < x, n = 2, 3, . . . ,

where K1(x, y) := K(x, y). Then the Picard iteration applied to (2.16) yields

v(x) = L(x) +

∫ x

y=0

K(x, y)[L(y) +

∫ y

z=0

K(y, z)v(z)dz]dy

= ... = L(x) +
∞∑
n=1

∫ x

0

Kn(x, y)L(y)dy. (2.19)

One can follow the approach of [12] and use the bound K(x, y) ≤ λ
r(x)

to show inductively

that Kn+1(x, y) ≤
(
∫ x
y

λ
r(u)

du)n

n!
λ
r(x)

. That implies the convergence of the infinite sum in

(2.19).
What remains to be done is to find the unknown constant V (0). This can be done by

using the normalizing condition
∫∞
0
v(x)dx+ V (0) = 1.

Although one thus in principle obtains an expression for v(·), this solution is a rather
formal one, expressed in terms of an infinite sum of non-explicit convolutions. Therefore we
restrict ourselves in the next subsections to two special cases, for which we aim to derive
more explicit expressions for v(·), viz., (i) the case of exponentially distributed service
times, and (ii) the case of r(x) = r1x+ r0.
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2.3 Solution of the integral equations in the case of exponentially
distributed service requirements

In this subsection we assume that B(x) = 1− e−µx. After multiplication by eµx, Formula
(2.1) reduces to

r(x)eµxv(x) = λ

∫ x

y=0

eµyv(y)dy + λV (0), x ≥M, (2.20)

which after differentiation and straightforward calculations yields:

v′(x) =
λ− µr(x)− r′(x)

r(x)
v(x), x ≥M. (2.21)

Hence, remembering that R(x) =
∫ x
0

1
r(y)

dy, and introducing the yet unknown constant C:

v(x) = C
eλR(x)−µx

r(x)
, x ≥M. (2.22)

We now turn to (2.2). In the case of exponentially distributed service requirements, we
already observed in Subsection 2.1 that v(x|server inactive) is constant. Hence also vI(x)
is constant: vI(x) = vI(0), 0 ≤ x < M . After multiplication by eµx, Formula (2.2) reduces
to

r(x)eµxv(x) = λ

∫ x

y=0

eµyv(y)dy + λV (0) + r(x)eµxvI(0), x < M, (2.23)

which after differentiation and straightforward calculations yields:

v′(x) =
λ− µr(x)− r′(x)

r(x)
v(x) + vI(0)(

r′(x)

r(x)
+ µ), x < M. (2.24)

Using variation of constants to solve this inhomogeneous first-order differential equation,
we obtain for x < M :

v(x) = C∗
eλR(x)−µx

r(x)
+ vI(0)

∫ x

y=0

(
r′(y)

r(y)
+ µ)eλR(x,y)−µ(x−y) r(y)

r(x)
dy

=
eλR(x)−µx

r(x)
[C∗ + vI(0)

∫ x

y=0

(r′(y) + µr(y))e−λR(y)+µydy]. (2.25)

We still need to determine several unknown constants: V (0), vI(0) and the two constants
C and C∗. For this, we have the following equations:
(i) The normalizing condition:

∫∞
0
v(x)dx+ V (0) = 1.

(ii) Formula (2.15) for x = 0 yields vI(0) = µV (0).
(iii) It follows from (2.2) for x = 0 that r(0)[v(0) − vI(0)] = λV (0), while (2.25) implies
that r(0)v(0) = C∗; hence

C∗ = λV (0) + r(0)vI(0) = V (0)[λ+ µr(0)]. (2.26)
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(iv) Finally we use the discontinuity of v(·) in M , as described in Remark 2.2. After a
lengthy calculation, C follows from (2.13), (2.22) en (2.25):

C = V (0)[λ+ λµ

∫ M

0

e−λR(y)+µydy]. (2.27)

The fact that v(x) is both for x < M and x > M linearly expressed in V (0) makes it
relatively straightforward to determine that remaining unknown V (0) from the normalizing
condition.

The following theorem summarizes our results of this subsection. The expression for
v(x), x < M was obtained by using (2.25) and (2.26) and performing a partial integration.

Theorem 2.

v(x) = µV (0) + V (0)
eλR(x)−µx

r(x)
λ(1 + µ

∫ x

y=0

e−λR(y)+µydy), x < M, (2.28)

v(x) = V (0)
eλR(x)−µx

r(x)
λ(1 + µ

∫ M

y=0

e−λR(y)+µydy), x ≥M, (2.29)

with

V (0)−1 = 1 + µM +

∫ M

x=0

eλR(x)−µx

r(x)
λ(1 + µ

∫ x

y=0

e−λR(y)+µydy)dx

+

∫ ∞
x=M

eλR(x)−µx

r(x)
λ(1 + µ

∫ M

y=0

e−λR(y)+µydy)dx. (2.30)

2.4 Solution of the integral equations in the case of linear service
speed

In this subsection we allow the service requirements to be generally distributed, but we
assume the service speed to be linear: r(x) = r1x + r0, where r0, r1 > 0. Notice that the
stability condition (1.1) is always fulfilled, and that the condition that R(x) < ∞ for all
finite x is also fulfilled. We apply Laplace transformation to (2.1) and (2.2), introducing

φ(s) :=

∫ ∞
x=0

e−sxv(x)dx (2.31)

=

∫ M−

x=0

e−sxv(x)dx+ e−sM(v(M)− v(M−)) +

∫ ∞
x=M

e−sxv(x)dx, Re s ≥ 0.

It follows from (2.1) and (2.2) that

−r1
d

ds
φ(s) + r0φ(s) = λ

1− β(s)

s
φ(s) + λ

1− β(s)

s
V (0) + γ(s), (2.32)
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where we introduce γ(s) :=
∫M
x=0

e−sx(r1x + r0)vI(x)dx. According to (2.15) we have
vI(x) = V (0)m′(x). Hence γ(s) is known up to the yet unknown V (0):

γ(s) = V (0)

∫ M

x=0

e−sx(r1x+ r0)m
′(x)dx =: V (0)δ(s). (2.33)

Solving the inhomogeneous first-order differential equation (2.32) yields, with D a yet
unknown constant:

φ(s) = e
r0
r1
s− λ

r1

∫ s
0

1−β(u)
u

du
[D−V (0)

∫ s

v=0

[
λ

r1

1− β(v)

v
+

1

r1
δ(v)]e

− r0
r1
v+ λ

r1

∫ v
0

1−β(u)
u

du
dv]. (2.34)

We still need to determine two unknown constants: V (0) andD. Noticing that lims→∞φ(s) =
0 gives

D = V (0)

∫ ∞
v=0

[
λ

r1

1− β(v)

v
+

1

r1
δ(v)]e

− r0
r1
v+ λ

r1

∫ v
0

1−β(u)
u

du
dv. (2.35)

Indeed, it is easy to see that the exponential in (2.34), e
r0
r1
s− λ

r1

∫ s
0

1−β(u)
u

du
, tends to ∞ for

s→∞, because the r0
r1
s term dominates for large s:

|
∫ s

0

1− β(u)

u
du| ≤

∫ 1

0

|β(u)− β(0)

u
|du+

∫ s

1

1

u
du ≤ EB + ln(s).

The normalizing condition states that φ(0) + V (0) = 1, and hence

D = 1− V (0). (2.36)

We thus obtain one linear equation in the remaining unknown V (0). The following theorem
summarizes our results of this subsection.

Theorem 3.

φ(s) = e
r0
r1
s− λ

r1

∫ s
0

1−β(u)
u

du
V (0)

∫ ∞
v=s

[
λ

r1

1− β(v)

v
+

1

r1
δ(v)]e

− r0
r1
v+ λ

r1

∫ v
0

1−β(u)
u

du
dv], (2.37)

with

V (0)−1 = 1 +

∫ ∞
v=0

[
λ

r1

1− β(v)

v
+

1

r1
δ(v)]e

− r0
r1
v+ λ

r1

∫ v
0

1−β(u)
u

du
dv]. (2.38)

Remark 2.4. If r1 = 0, our system reduces to an ordinary M/G/1 queue with a server
which is switched off when the system becomes empty and gets activated again when the
workload reaches a certain threshold (D-policy, cf. [8]). It readily follows from (2.32) (where
the first term disappears for r1 = 0) that φ(s) now becomes the product of the workload
LST in an ordinary M/G/1 queue and an additional term that relates to the off-periods;
such decomposition results are well-known in the literature of queues with vacations.
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Remark 2.5. A tedious but straightforward calculation verifies that the results of Theo-
rems 2 and 3 agree when r(x) = r1x + r0 and B(x) = 1 − e−µx. One first takes Laplace
transforms in (2.28) and (2.29), obtaining

φ(s)

V (0)
=

∫ M

x=0

µe−sxdx+ λ

∫ ∞
x=0

e−(s+µ)x
( r1x+r0

r0
)
λ
r1

r1x+ r0
dx

+ λµ

∫ M

y=0

eµy(
r1y + r0

r0
)
− λ
r1 dy

∫ ∞
x=y

e−(s+µ)x
( r1x+r0

r0
)
λ
r1

r1x+ r0
dx. (2.39)

One partial integration in the last integral of (2.39) gives a cancellation against the first
term in the righthand side. Subsequently the transformation r1x+r0

r1y+r0
= v+µ

s+µ
leads to the

expression in (2.37).

Remark 2.6. From (2.34), using that EV = −φ′(s)|s=0, it follows that

EV = −r0
r1

(1− V (0)) +
λEB
r1

(1− V (0)) +
λEB
r1

V (0) +
1

r1

∫ M

x=0

(r1x+ r0)vI(x)dx

=
λEB − r0

r1
+ V (0)[

r0
r1

+
1

r1

∫ M

x=0

(r1x+ r0)m
′(x)dx]. (2.40)

In the special case of exp(µ) service times, m′(x) = µ and we have:

EV =
λ− µr0
µr1

+ V (0)[
r0
r1

(1 + µM) +
1

2
µM2]. (2.41)

3 Cost optimization

Suppose that two types of costs are involved in the operation of the system: holding costs
ch per time unit for each unit of work present in the system, and switching costs cs for
each time the server is switched on. We are interested in choosing M such that the system
costs are minimized. Hence we consider the following minimization problem (cf. (2.14)):

MinimizeM chEV + cs
1

m0 +m1

= chEV + csλV (0). (3.1)

In addition, the system might receive profits from each amount of work that is being served.
However, we can ignore that profit, as it does not depend on the choice of M .

We focus on the case, studied in Subsection 2.4, in which r(x) = r1x + r0. It follows
from (2.41) that our optimization problem becomes:

MinM ch
λEB − r0

r1
+ chV (0)[

r0
r1

+
1

r1

∫ M

x=0

(r1x+ r0)m
′(x)dx] + csλV (0), (3.2)
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which amounts to minimizing, w.r.t. M , the function

f(M) := V (0)[
chr0
r1

+
ch
r1

∫ M

x=0

(r1x+ r0)m
′(x)dx+ csλ]; (3.3)

here V (0) depends on M , and is given by (2.38).
The derivative of f(M) w.r.t. M should be zero, and hence M should satisfy

ch
r1

(r1M + r0)m
′(M) = V (0)[csλ+

chr0
r1

+
ch
r1

∫ M

0

(r1x+ r0)m
′(x)dx]

×
∫ ∞
0

1

r1
e−vM(r1M + r0)m

′(M)e
− r0
r1
v+ λ

r1

∫ v
0

1−β(u)
u

du
dv. (3.4)

Let us now restrict ourselves to the case of exp(µ) service times. Then (3.4) reduces to

chµ

r1
(r1M + r0) = V (0)[csλ+ ch

r0
r1

+
chµ

r1
(
r1
2
M2 + r0M)]

× (M +
r0
r1

)µ

∫ ∞
0

e−vMe
− r0
r1
v
(
µ+ v

µ
)
λ
r1 dv. (3.5)

Here 1/V (0) simplifies to

1

V (0)
= 1 +

∫ ∞
0

(
λ

r1

1

µ+ v
+
µ

r1

∫ M

0

e−vx(r1x+ r0)dx

)
e
− r0
r1
v
(
µ+ v

µ
)
λ
r1 dv. (3.6)

Remark 4.1. Matters simplify further if we assume that

λ = r1. (3.7)

By interchanging the two integrals in (3.6), we then obtain an explicit expression for V (0):

1

V (0)
= 1 +

r1
µr0

+ µM + ln
r0
r1

+M
r0
r1

. (3.8)

Remark 4.2. It should be observed that, if we take r0 = 0, then the first integral in
the right-hand side of (3.6) diverges, giving V (0) = 0. The explanation is that, when the
service speed is r1x, the system never becomes zero.

3.1 Numerical examples

We plot some graphs to show the behavior of the cost function as a function of the threshold
M .

In our numerical experiments, we fix the arrival rate: λ = 1 and show the effect of other
parameters on the cost function. Intuitively, on the one hand, a large threshold M leads
to a larger workload in the system since the inactive period is longer. On the other hand,
a large threshold may prevent frequent switching and thus may reduce the switching cost.
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Thus, it is expected to have an optimal M which balances the two types of costs. In all our
numerical experiments, the cost function was convex, and we found a unique optimal M .
However, we have not yet been able to analytically show convexity of the cost function inM .

Case 1: Cost function vs. M for various r0
Figure 2 displays the cost function against the threshold M for several values of r0;
r0 = 1, 5, 10. Other parameters are as follows: ch = 0.1, cs = 1, µ = 1, r1 = 10. No-
tice the above-mentioned convexity of the curves, guaranteeing that there is an optimal M
that minimizes the cost function. We also observe that the optimal M is almost insensitive
to r0 in this case. A close inspection shows that the optimal M slightly increases with r0.

Case 2: Cost function vs. M for various r1
Figure 3 displays the cost function against the threshold M for several values of r1;
r1 = 0.1, 0.5, 1. Parameters are fixed as follows: ch = 0.1, cs = 1, µ = 1, r0 = 1. The
optimal value of M for a larger r1 is seen to be bigger than that for a smaller r1.

Case 3: Cost function vs. M for various µ
In this case, we display the cost function against the threshold M for various values of µ.
Fixed parameters are as follows: ch = 0.1, cs = 1, r0 = 1. Figure 4 is for the case r1 = 0.1
while Figure 5 is for the case r1 = 10. We observe from Figures 4 and 5 that the optimal
value of M increases with µ.

Numerical insights. Extensive numerical results suggest that the cost function is a con-
vex function of M , so that there exists an optimal value of the threshold M . Furthermore,
not surprisingly, the optimal threshold increases with r0, r1 and µ. A rigorous proof of the
convexity of the cost function in the threshold M is left for future work.

4 Conclusion and suggestions for further research

Motivated by the trade-off issue between processing speed and energy consumption in data
centers, we have studied a queueing system in which the service speed is a function of the
workload, and in which the server switches off when becoming idle, only to be activated
again when the workload reaches a certain threshold. We have derived the (LST of the)
workload distribution, and we have used an expression for its mean to determine the
threshold level that minimizes a certain cost function.

Topics on our research agenda include:
(i) A further study of the cost minimization problem, in which we also would like to tackle
the question whether the cost function is convex. We furthermore wish to extend our cost
function, taking power consumption as a function of processing speed into account.
(ii) A study of the active period distribution and the distribution of a full cycle, consisting
of an inactive and subsequent active period. It should be observed that the length of an
active period depends on the length of the preceding inactive period, but that the length
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Figure 2: Cost function for Case 1: ch = 0.1, cs = 1; various r0.
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Figure 3: Cost function for Case 2: ch = 0.1, cs = 1; various r1.
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Figure 4: Cost function for Case 3: ch = 0.1, cs = 1, r1 = 0.1; various µ.
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Figure 5: Cost function for Case 3: ch = 0.1, cs = 1, r1 = 10; various µ.
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of an inactive period does not depend on the length of the preceding active period; hence
the distribution of the sum of the lengths of an inactive and subsequent active period in
general differs from the distribution of the sum of the lengths of an active and subsequent
inactive period.
(iii) We are presently analyzing the model variant in which the processing speed r(x) is
piecewise constant (r(x) = ri when the workload is lying in an interval Ji, i = 1, 2, . . . ),
and in which the service requirement distribution B(·) is phase-type. This is a case for
which it seems to be possible to obtain quite explicit results.
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