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Abstract

We explore the relationship between the (S — 1,S) inventory model and three well-known queueing
models: the Erlang loss system, the machine-repair model and a two-node Jackson network. Exploiting
this relationship allows us to obtain key performance measures of the (S —1,.5) model, like the so-called
virtual outdating time, the number of items on the shelf in steady state, the long-run rate of unsatisfied
demands and the distribution of the empty shelf period.
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1. Introduction

The (S — 1,5) inventory system [13, 14] is a
closed cyclic model of S items of which there are
j €40,1,...,S} items waiting ‘on a shelf’ (in in-
ventory), while S — j other items are on their way
to the shelf after having been ordered. In the ba-
sic model, demands for items arrive according to
a Poisson process. If a demand for an item arrives
while there is at least one item on the shelf, this
demand is immediately satisfied and under the
FIFO issuing policy that means that the oldest
item is removed from the shelf. Immediately after
that removal a new item is ordered; ordered items
enter the shelf after independent and identically
distributed leadtimes. If a demand arrives with
no items on the shelf, then this demand leaves
unsatisfied. Natural extensions of the basic model
described above allow removals from the shelf to
occur not only due to demands, but also due to
perishability, obsolescence or ”"sudden deaths” of
items. Another extension is that demands which
can not immediately be satisfied have some pa-
tience, i.e., are willing to wait a certain amount
of time.

Our (S — 1,5) analysis is based on the obser-
vation that the basic (S — 1,5) model can be
mapped one-to-one on the machine-repair model
(also called machine interference or computer-
terminal model; cf. Section 4.11 of [8] or Section
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3.9 of [9], and to a product-form queueing network
[1] with one single-server node and one infinite-
server node. The latter queueing model is also
known to be equivalent to the well-known Erlang
loss (M/G/S/S) queueing system.

Our main goals in this paper are (i) to empha-
size the relation between the (S — 1,5) inven-
tory model and a number of important queue-
ing models, in particular the relation between
the (S — 1,S5) model and the Erlang loss sys-
tem and (ii) to exploit the latter relation to ob-
tain results for key performance measures of the
(S —1,5) model: the so-called Virtual Outdating
Time (VOT), the number of items on the shelf
in steady state, the long-run rate of unsatisfied
demands and the distribution of the empty shelf
period.

The first of these performance measures was stud-
ied in [11, 12, 13] for the case of constant lead-
times.

The paper is organized as follows. In Section 2
we present a model description of the (S — 1,.5)
inventory system, and we also briefly review the
M/G/S/S model, the machine-repair model and
the two-node closed queueing network with one
single-server node and one infinite-server node;
subsequently we outline their relations. Section 3
is devoted to a discussion of the Virtual Outdat-
ing Time process {V(t),t > 0} in the (S —1,5)
model. We derive the steady-state density of V (t)
by exploiting the relation between the (S — 1, 5)
model and the Erlang loss model, using a partic-
ular result from Section 2.3 of [4] for the Erlang
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loss model. In Section 4 we discuss a variant of
the basic (S — 1,5) model: items on the shelf
can suddenly become worthless and have to be
removed from the shelf. Section 5 contains some
conclusions and suggestions for further research.

2. Preliminaries

In this section we briefly review the four
classical operations research models mentioned
above, viz., the (S — 1,.5) inventory system with
Poisson(A) demand arrival process and generally
distributed leadtimes with distribution function
G(); the Erlang loss system with Poisson(\)
arrival process and service times ~ G(-); the
machine-repair model (MRM) with lifetimes ~
G(-) and one repairman with exp(\) repair times;
and the two-node Jackson product-form network
with one exp(\) single server node and one
infinite-server node with generally distributed ser-
vice times ~ G(-). The key observation is that,
in their standard form as sketched above, these
four systems are basically equivalent; we can map
them one-to-one onto each other. For the MRM
and the two-node Jackson network this is not diffi-
cult to see, and for the Erlang loss system and the
MRM this is well-known; for (S—1, S) and Erlang
loss the relation is also straightforward, but it has
received somewhat less attention in the literature
[10, 15]. We discuss the relations between these
four models and their functionals in some more
detail in Subsection 2.5. We close the section by
mentioning variants and extensions of the stan-
dard (S — 1, S) inventory system and their equiv-
alent counterparts in the Erlang loss system, the
MRM and the two-node Jackson product-form
network. The main reasons for discussing these
relationships are (i) they will enable us to obtain
a new result for the (S —1,.5) system, and (ii) we
feel that relationships between (S —1,.5) (and its
extensions) and one or more of the three queueing
models (and their corresponding extensions) have
considerable potential.

2.1. The (S —1,85) inventory system

The (S—1, S) inventory system is a closed stor-
age system with S € N items, either on the shelf
or on their way to the shelf, after having been or-
dered. Demands for items arrive according to a
Poisson process with rate A. If there is no item on
the shelf, then an arriving demand leaves unsatis-
fied and is lost. If at least one item is present on
the shelf, then an arriving demand is immediately
satisfied; furthermore, instantaneously a new item
is ordered. Under the FIFO issuing policy any re-
moval from the shelf is that of the oldest item.

The leadtimes of ordered items (times between
issuing the order and arrival on the shelf) are in-
dependent, identically distributed (i.i.d.) random
variables, with general distribution function G(-)
and mean 7.

A key performance measure is the steady-state
distribution of the number of items K on the shelf:
Pr(f( =mn), n = 0,1,...,5. For reasons that
soon will become clear, we focus on K = S — K,
the number of items not on the shelf.

Another important performance measure is the
Virtual Outdating Time process V = {V(t),t >
0}. Let us consider this VOT process in more
detail. We construct the VOT from the age pro-
cesses A; = {A;(t) : t > 0} for i = 1,2,...,5,
where A; is defined such that A;(t) = z < 0 if
—x is the age of the ith item on the shelf (pro-
vided there are at least ¢ items present) and if
A;(t) = x > 0 then the ith item has been ordered
but not yet arrived at the shelf and x is its time
until arrival.

The VOT process V is formally defined by

V()= min {A;(t)}; 0<t< o0.
i=1,2,...,S

Note that this definition is independent of the
numbering of the S items. In words, V(¢) in-
dicates the age of the oldest item in the sys-
tem (among all S items) in the sense that when
V(t) =z < 0 then —z is the age of the oldest item
present on the shelf and when V' (t) = z > 0 then
the shelf is empty and x is the time until the next
arrival. In Figure 1 the process V is emphasized
by the thick line.

V()
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Figure 1: VOT for the case of S = 3 with general leadtime
T.

L; denote leadtimes; T; (U;) arrival epochs of satisfied
(unsatisfied) demands;

—W; = age of the oldest item on the shelf at epochs of
satisfied demands.

Initial condition: Just before t = 0, the shelf was empty,
but at ¢ = 0 an item arrived on the shelf.

Remark 1.

At first sight, the VOT behaves quite similar to
the workload process in the M/G/1 queue (apart
from becoming negative). However, it should be
noted that V is not a Markov process, since in the



general leadtime case some of the jump sizes may
be equal to an interarrival time that occurred in
the past. In particular, in the special case of con-
stant leadtimes each jump size (ignoring the first
few) is equal to a certain interarrival time that
occurred in the past (see also Remark 5 below).

2.2. The M/G/S/S queue

The M/G/S/S queue, also called Erlang loss
system [7], is a queueing system with Poisson(\)
arrival process, general service time distribution
function G(-) with mean 7, S servers and no wait-
ing room. An arriving customer who finds all
servers busy is lost. All interarrival and service
times are independent. Let K = {K(t) : t > 0}
be the process representing the number of cus-
tomers in the system, let K be this number in
steady state and let p,, := Pr(K = n) denote the
steady-state probability of the system having n
customers. Also let G,q,...., G, be the remain-
ing service times in steady state. Finally, we use
the notation G,(+) for the equilibrium distribution
function of G(-), i.e.,

o) = /0 1=GW g,

T

For the special case of the M/M/S/S queue, {p,}
satisfies the recursion

n+1

AP = Pnt1, n=0,...

whose solution is easily seen to be given by
(AT)™/n!
S o

5 ()il

Pn =

(1)

For future use, we mention two important facts
regarding the Erlang loss system with general ser-
vice time distribution (see [16], Section 5.11).

1. Insensitivity. p, is insensitive to G(-) in
the sense that the number of customers in
the system depends on G(-) only through
its mean; i.e., formula (1) remains valid for
M/G/S/S.

2. Conditional independence.

PriK =n;Gp; <zy,i=1,...,n] = anGe(xi).
i=1

(2)
Thus, given K = n, the remaining service
times G,1,..., Gy, are conditionally identi-
cally distributed and independent; moreover,
each remaining service time has the equilib-
rium distribution.

The insensitivity property (1) with respect to
G(-) depends on having Poisson arrivals, but this
result can be generalized to a ‘Poisson-like’ arrival
process in which the arrival rate A\, is a function of
the number of customers in system, n = 0,1, ..., S.
This is the arrival process for the ‘birth’ part of a
birth and death process. In this case, the above
insensitivity property and Formula (2) still hold
(see [16] p. 273), while p,, now satisfies the recur-
sion

n+1
)\npn = . Pn+1,

n=0,1,....5 — 1.
We return to this extension in Section 4.

2.8. The machine-repair model

The MRM, also called the machine interference
model or the computer-terminal model (cf. [9],
Section 3.9), describes a system of S machines
which are subject to breakdown and repair. A
machine is operative during a random time with
distribution G(-) and mean 7, but then it breaks
down and is sent to a repairshop. This repairshop
has R repairmen, who individually serve broken
machines FCFS, with exp(\)-distributed service
times. A repaired machine immediately goes back
into operation. All involved operative and repair
time periods are independent. In the classical
case, R = 1. Then the steady-state distribution
of the number of operative machines is given by
(1), regardless of the distribution function G(-).
One way to see this is to view the machine-repair
model with one repairman as a two-queue closed
Jackson network, with a single server queue (the
repair queue) and an infinite-server queue, and
use classical product-form results [1, 6]; see the
next subsection. Another special case is R = S;
in that case, the machine-repair model may ob-
viously be viewed as a two-queue closed Jackson
network with two infinite-server queues.

2.4. The two-node Jackson network

Consider a closed queueing network consisting
of two nodes and with a fixed number of S cus-
tomers. Node 1 has a single server, who is serving
customers in order of arrival, with ii.d. exp(}\)
service times. Node 2 is an infinite-server system
with generally distributed service times ~ G(-)
with mean 7. It is well-known [1] that the steady-
state probability p(S —n,n) of having S —n cus-
tomers in node 1 and (hence) n customers in node
2 is given by the product form, forn =0,1,...,5,

1 7™
p(S —n,n) = e Oyt
Zf:o(%)s_i%: Zf:o()‘T)i/i!

3)



Once again the insensitivity with respect to the
distribution function G(:), apart from its mean,
manifests itself.

2.5. Relations between the models

In this subsection we summarize the transla-
tions which have to be made to relate the (S—1, 5)
system to the three fundamental queueing models
M/G/S/S, MRM and the 2-node closed Jackson
network with a single-server node and an infinite-
server node. Crucial are the following observa-
tions.

I. MRM and the two-queue closed Jackson net-
work with a single exponential server and an
infinite-server (or S-server) queue with general
service times are equivalent; each lifetime in the
MRM can be viewed as a service time in the
infinite-server node.

II. As is well-known, the M/G/S/S Erlang loss
system with Poisson(\) arrival process and gen-
eral ~ G(-) service times can be mapped one-to-
one onto the machine-repair model with S ma-
chines, general ~ G(-) lifetimes and one repair-
man with exp(\) repair times. One can identify
the service times in M/G/S/S with the lifetimes
in MRM, and then it is seen in particular that the
Markov process represented by the vector of the
number of busy servers together with the residual
service times in M/G/S/S has exactly the same
steady-state distribution as the vector of the num-
ber of working machines together with the resid-
ual lifetimes in MRM. That joint steady-state dis-
tribution is given in (2).

III. In the same way one can map the (S—1, 5) in-
ventory system with general ~ G(+) leadtimes and
Poisson(\) demand one-to-one onto the MRM:
The oldest item on the shelf in (S — 1,5) is
taken by the next arriving demand after exp(\)-
distributed amount of time, corresponding to the
machine that broke down the longest time ago
being repaired after the same exp()\)-distributed
amount of time; and an item returns to the shelf
after a leadtime ~ G(-), corresponding to a life-
time of a machine.

The above constructions imply the equivalence
of all four models. Hence, the joint steady-state
distribution of the number of items not on the
shelf and their residual leadtimes is also given by
(2).

Below we explicitly relate key quantities of the
four models to one another, paying in particular
attention to the VOT process V. Table 1 contains
an overview of these relations.

The first two rows of the table speak for them-
selves: these concern the generally distributed
service/life/leadtimes and the exponential
rates. The third row concerns a quantity

K € {0,1,...,S5}: this is the number of items
not on the shelf for (S — 1,5), the number
of busy servers in M/G/S/S, the number of
working machines in MRM and the number of
customers at the infinite-server queue in the
two-node Jackson network. The last two rows
are somewhat less straightforward. They concern
in particular the Virtual Outdating Time of
(S8 —1,5), i.e., the age of the oldest item on the
shelf when K < S and the time until the first
item arrives on the shelf when the shelf is empty
(K = S). The table gives the translation of these
quantities to M/G/S/S, MRM and the two-node
Jackson network.

Remark 2

One could also consider generalizations of the (S—
1,5) model, like patience of the customers who
demand items, and perishability of items on the
shelf; these translate into generalizations of the
M/G/S/S model and of the MRM model (and
the 2-node Jackson network, which we disregard
for the moment).

In Section 4 we shall study the case of sud-
den deaths in (S — 1,5). This corresponds in
M/G/S/S to the case that an idle server receives
a job after exp(§) (next to the ordinary Poisson
arrival process). In MRM any machine in the re-
pairshop leaves the shop after exp(§), even if it
has not yet been repaired; a new machine is in-
stantaneously bought.

Outdating (perishability) in (S — 1,5) corre-
sponds in M/G/S/S to the case in which a server
who has been idle for longer than a given (random
or deterministic) time is instantaneously given
a job to do. In MRM a machine has a finite
”patience” in the repairshop; if that patience is
exceeded, it leaves the repairshop and instanta-
neously a new machine is bought.

Patience of demands in (S—1, S) corresponds in
M/G/S/S to the case that an arriving customer
who finds all servers busy is willing to wait a while
(his patience time); this becomes the M/G/S+G
model. In MRM, there seems to be no natural
counterpart to this.

3. The VOT process

In this section we formulate and prove the main
theorem of the paper; it gives the steady-state
density f(:) of the VOT process {V(¢),t > 0}
that was introduced in Subsection 2.1. From the
VOT all important performance measures of the
(8—1,5) inventory model can be derived. As seen
in Subsection 2.1, we need to distinguish between
the cases K = S and K < S.



(S-1,9) M/G/S/S MRM closed SSQ + ISQ
G(-) leadtime service time life time service time ISQ
A demand rate arrival rate repair rate service rate SSQ
K # items not on the shelf | # busy servers # working machines | # in ISQ
—V if K < S | age oldest item on shelf time longest idle server | time job in repair past sojourn time of

has been idle has been in shop customer in service in SSQ

VitK=S time till next arrival time till next time till next time till next service

on shelf service completion breakdown completion in ISQ

Table 1: Relations among the models

Theorem 1. The steady-state density f(-) of the
VOT is given by

) = ()\T)S/S' S(1—=G. (¢ S—ll_G<x)
)= oS Gula)
x>0,

f(x) = ! rere AT = x))Sﬂ, z < 0.

S5 Oyt (S
(4)

Proof. Let us first determine f(x) when z >
0, i.e., when K = S. Recall that, if K(t) = S
(no items on the shelf at time ¢) then V'(¢) is the
time until the next arrival at the shelf, so it is
equal to the minimum of the residual leadtimes
of all the S items which are presently on their
way to the shelf. It follows from Formula (2) for
the joint distribution of the number of customers
in the M/G/S/S system and their residual service
times, in combination with the equivalence results
between (S —1,5) and M/G/S/S as discussed in
the previous section, that

Pr(V > z|K = 8) = (1 — Go(z))®, >0, (5)
and hence
fz|K =8) = S(l—Ge(x))S”l%G(x), x> 0.

(6)
Multiplying by Pr(K = S), as given in the Er-
lang loss system, yields the first assertion of the
theorem.

Let us now determine f(z) when = < 0, i.e.,
when K < S. If K(t) < S then —V(¢) is
the age of the oldest item on the shelf. We
again rely on the equivalence between (S — 1,.5)
and M/G/S/S. In the M/G/S/S terminology,
—V is the time the longest idle server has been
idle. The crucial observation now is the follow-
ing. As proven by Cohen [4] (see in particu-
lar p. 70) for the M/G/S/S model, the pro-
cess {(K(t),D(t),nD(t)),i =0,1,...,K(t),t €
(—00,00)}, with ¢ (¢) and 7 (t) denoting the
residual and past service time of the ith customer
in service, is reversible when it is stationary. If
we now reverse time in M/G/S/S, then the joint
distribution of the number of busy servers and

the time the longest idle server has been idle be-
comes the joint distribution of the number of busy
servers and the time until the last idle server be-
comes busy. The latter time is Erlang(S — &, A)
distributed if there are k busy servers. Here we as-
sume that an arriving customer is taken into ser-
vice by the server who has been idle the longest;
just as, in (S —1,5), a demand takes the oldest
item on the shelf. Using (2) and time reversal we
now obtain, for £k =0,1,...,5 —1 and x < 0:

Pr(K =k, V > 1)
LI ‘
TSmO

Accordingly, for k = 0,1,...,5 — 1 and z < 0,
with f(x) denoting the joint density of the VOT
process and number not on the shelf,

ADF/RL | (SAw)S

W =55 e sk
and
S—1 S—1 (AT /E! . (—Ag)S—k-1
’“Z:Ofk :z:: o(AT) /! . (S—k—1)
S — e A —2)*

X, (il g S—1 )
(]
Remark 3

The reversibility result from Cohen [4] that was
used in the proof actually is a subresult, part of
his lengthy but essentially elementary proof of
the important insensitivity result for the number
of customers in M/G/S/S. Cohen ends the
corresponding chapter with the statement "It
is of great interest to investigate whether the
approach used here in the investigation of the
M/G/K loss system can be used also for those
other models.” (S —1,.5) turns out to be such a
model.

Remark 4
It is easily checked that f(-) as given in Theo-
rem 1 is a density. Indeed f(z) > 0 for all z,




(An)%/s1 .
o)/t
and integration over x < 0 gives (after recogniz-
. NP SE (O
ing the Erlang(S,\) distribution): W

ieg (AT) /4!
Hence [ f(x)dz = 1. It should also be noticed
that plugging in z = 0 in either of the two
equations of (4) gives the same result. Indeed,
f(0—) = f(0+), since 0 is a point of continuity of
the VOT.

while integration over x > 0 gives

Remark 5

It may be tempting to consider the following alter-
native derivation of the density f(-) of the VOT.
We give the argument for the case of constant
leadtimes, referring to Figure 2.

Figure 2: VOT for the case of S = 3 with constant lead-
time 7

Apply the so-called Level-Crossing Technique
(LCT), cf. [3, 5], to the V() process. According
to LCT, the long-run average number of down-
crossings of any level x equals the long-run aver-
age number of upcrossings of . Our claim is that
this leads to the following identity:

fla)= [ agw)

T— T 51
7__710) f(w)dw,
(10)
where A(w) = A for w < 0 and A(w) = 0 oth-
erwise. Indeed, the lefthand side of (10) is the
downcrossing rate of level x. We now explain the
righthand side. First of all, if V"= w > 0 then
the shelf is empty and there can be no upcrossing:
A(w) = 0. Now assume the shelf is not empty.
When the items are ordered according to their re-
maining shelf lifes we have A;(t) < --- < Ag(?),
where A;(t) = V(t). Suppose that ¢ is a demand
arrival time. By conditioning on the age of the
oldest item on the shelf (V(t—) = w < 0), we
know that there were exactly S — 1 arrivals in the
interval (t — (7 —w), ). Hence, when V (t—) = w,
the upcrossing rate of level x is A(w) = A times
the conditional probability that the first arrival
time in (t—(7—w), t) is larger than t—(z—w) given
that the S-th arrival takes place at time t. Now
suppose for a moment that these arrival times fol-
low a Poisson process. Then we can use a well-
known property of the Poisson process: the S —1
arrival epochs in the interval (t — (7 — w),t) are

—xo<r<T,

uniformly distributed on that interval. Hence the
probability that the first of these arrival epochs
occurs after t — (z — w) is given by

T—X S—1
(T—w) '

Moreover, PASTA (Poisson Arrivals See Time Av-
erages) would allow us to assume that the work-
load at these jump epochs has density f(-). This
results in (10).

However, one has to be very careful with this
reasoning. In particular, observe that there are
S — 1 admitted demand arrivals in an interval of
length 7 — w, but we know that all arrivals in the
last w time units were admitted, because V(t) < 0
during those time units — whereas we do not know
whether all arrivals in the earlier part of the time
interval were admitted. Furthermore, the VOT is
not a Markov process; every jump size (after the
third arrival in Figure 2) is an interarrival time
that occurred in the past. This suggests that a
more delicate argument is required to use the LCT
here. It seems vaguely reminiscent of phenomena
in the above-discussed related queueing models.
For example, for the Erlang loss model Bonald
[2] has shown that the insensitivity w.r.t. the ser-
vice time distribution beyond its mean even holds
when the assumption of a Poisson arrival process
is extended in the following way: users generate
sesstons according to a Poisson process, and each
session is composed of a random finite number of
calls and idle periods. Furthermore, in product-
form Jackson networks with feedback, nodes have
been shown to behave like M/M/c queues even
though their arrival process is not Poisson [6].

Note that, when following the above argument,
the LCT equation (10) can be extended to the
case of general functions A(w). It then takes the
form

min(z,0) F—x L
@ = [ w1 ),

where A(z) = [*_ Mw)dw.

Remark 6

Despite what was observed at the end of Remark
5, the LCT relation (10) appears to be valid. In-
deed, first consider this equation for z < 0. In-
troducing

9(z) = (f(j))s

equation (10) is translated into

g(x) = )\/I g(w)dw, =z <0, (12)

— 00



which after differentiation with respect to x yields
g(z) = C1e*® for some constant C;, when z < 0.
We thus easily retrieve expression (4) for f(z),
z <0.

Next consider (10) for > 0. Since A(w) = 0 for
w > 0, we obtain

0

g(x) = )\/ g(w)dw, x>0, (13)
—0o0

yielding g(x) = Cy and f(z) = Co(T — )51 for

some constant Cs, when =z > 0. Realizing that,

in this case of constant leadtimes, Ge(z) = x/7,

0 < z < 7, we easily retrieve expression (4) for
f(z), x > 0.

There are other relevant measures and func-
tionals for (S — 1,.5) than the law of the number
of items on the shelf and the VOT. Among them
are the rate of the unsatisfied demand A* and the
distribution of the emptiness period I, i.e., the
time period that the shelf is empty. We consider
them below.

The rate of the unsatisfied demand. Recall that
the event {V > 0} is equivalent to the event
{K = S} and A\*/\ is the long-run proportion of
unsatisfied demands. However, a demand is un-
satisfied if and only if it arrives when the shelf is
empty. Thus the long run average proportion of
unsatisfied demands is equal to the steady-state
probability that the shelf is empty. By the equiva-
lence with the Erlang loss system, that probability
is given by pg in (1). We thus obtain by PASTA:

-1

S j
i=0 I

S! J

Note that 1/\* is the expected length of the time
between successive unsatisfied demands.

The distribution of the emptiness period. Again
exploiting the relation between (S —1,.5) and the
M/G/S/S system, we easily determine a — new,
to the best of our knowledge — result for the dis-
tribution function Uy(-) of the emptiness period.

Theorem 2.
Ur(z) =1— (1 = Ge(x))71(1 = G(z)), z>0.

Proof. The equivalence between (S — 1,5) and
M/G/S/S implies that Ur(x) is the distribution
of the uninterrupted time all S servers are busy
in M/G/S/S. When a customer arriving at an
M/G/S/S system finds only one server idle, a pe-
riod starts in which all S servers are busy. The

time this period lasts is the minimum of that cus-
tomer’s full service time and the residual service
times of all other S — 1 customers. Using PASTA
and the conditional independence of the residual
service times and of the number of busy servers,
cf. (2), the result follows. m

4. Sudden deaths

In this section we consider the (S —1,.5) inven-
tory system with general leadtime distribution,
with the following special feature: items leave the
shelf either by demand satisfaction (Poisson()\)),
or due to a sudden death (exp(§) per item).

Let us first restrict ourselves to the case with
only sudden death, so without demand. The
(S—1,.5) model now is equivalent with a machine-
repair model with S (i.e., ample) repairmen, each
with repair rate £&. This MRM, in its turn, is obvi-
ously equivalent to a closed queueing network con-
sisting of two infinite-server nodes. The distribu-
tion of the number of working repairmen clearly is
binomial: we have S independent alternating re-
newal processes, with alternating general lifetime
and exponential repair phases. This is a special
case of a product-form queueing network, which
is known to be insensitive [1]. If one also adds
the Poisson demand feature, it becomes a Jackson
network with one infinite server with general ser-
vice time distribution function G(-), and one sin-
gle server with state-dependent service rate n€+ A
when there are n customers at the single server.
This two-node closed queueing network also is a
special case of a product-form queueing network,
and again it is insensitive [1]; see also Theorem 15
on p. 323 of [16].

The equivalence between the (S — 1,5) inven-
tory system and the MRM with ample repairmen,
and with the two-node queueing network, com-
bined with the above-mentioned insensitivity, im-
mediately leads to the steady-state distribution
of the number of items on the shelf in (S — 1, .5).
For the case without demand, we get this via the
argument of having insensitivity and then writing
down the following balance equations for the case
of exponential leadtimes:
the probabilities p,, := Pr(K = n), with K the
number not on the shelf, are the solution of the
balance equations

1
(S = n)pn = “pups,  n=0,1,.,85 1.
T
(15)
Solving (15) with the normalizing condition

25:0 pn = 1 we indeed get the binomial distri-



bution: for n =0,1,...,.5,

() ()

Note that we could also have used the above argu-
ment of having S independent alternating renewal
processes.

If one allows both sudden death and demand,
the balance equations in the exponential case be-
come

(S—n)e+A)pn = 251

Pn+1, n:O71u"'7S_17

(17)
whose solution is given by

n n (S—n+9)f+ A
Pn =T Pol_L.=1 %,

where

-1

S n "
po = ;%Hizl((s—””)ﬁ“)

However, due to the insensitivity property the
above result still holds if the leadtimes have a
general distribution with mean 7.

5. Conclusions and suggestions for further
research

In this paper we have explored, and exploited,
the relationship between the (S — 1, 5) inventory
model and three well-known queueing models: the
Erlang loss system, the machine-repair model and
a two-node Jackson network. This relationship
allowed us to obtain performance measures like
the density of the virtual outdating time and the
distribution of the empty shelf period.

It would be interesting to consider variants and
generalizations of (S — 1,.5), and to investigate
whether one can again exploit the relation to
queueing models. Examples are (i) perishability
or outdating of items, (ii) patience of demands,
and (iii) value of the system — here one takes
the sum of the values of the items according to
their ages, young items being more worth than
old items. We already briefly commented on
(i) and (ii) in Remark 2. The most interesting
avenue to explore might be the case of patience of
demands in (S —1,.5), as it is a very relevant case
while there is a rich literature for its multiserver
counterpart, the M/G/S + G queue. Another
fascinating topic for further research is the
applicability of the Level Crossing Technique, as
briefly discussed in Remark 5.
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