Functional parameter estimation in partial differential equations

José Carlos Simon de Miranda Institute of Mathematics and Statistics University of São Paulo São Paulo, São Paulo, Brazil *email: simon@ime.usp.br*

Abstract

In this work we present a methodology of estimation of functional parameters that appear in models that are described by partial differential equations. We will focus on the following model:

$$f\frac{\partial^2 u}{\partial t^2} + g\frac{\partial u}{\partial t} + hu = \frac{\partial}{\partial x}\left[\mathcal{K}\frac{\partial u}{\partial x}\right],$$

where the parameters f, g, h and \mathcal{K} are real valued functions of the real variable x. We assume that we know N functions $v_1(x, t), ..., v_N(x, t)$ that satisfy, for each $i, 1 \leq i \leq N$, $v_i = u_i + \epsilon_i$, where u_i is a solution of the PDE and ϵ_i is small amplitude i.i.d. noise.

Keywords: Estimation of functional parameters, Dynamical systems, Partial Differential Equations.