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Overview

Malaria data and model

Inference via Iterated Filtering

Results

(Joint work with Karina Laneri, Ed Ionides and Mercedes Pascual
of the University of Michigan and Menno Bouma of the London
School of Hygiene and Tropical Medicine. Data provided by
Ramesh Dhiman and Rajpal Yadav, National Malaria Research
Institute, India)
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Introduction

Malaria: 300 - 500 million cases each year, resulting in nearly
1 million deaths

Common in Sub-Saharan Africa, parts of Asia, central and
south America

Caused by the Plasmodium parasite, carried by female
Anopheles mosquitoes

Estimated economic impact USD 12 billion/year
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Our Goal

Fit and compare mechanistic models of the disease
transmission via maximum likelihood

Analyze the role of climate covariates, especially rainfall

Treat issues of parameter identifiability
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The Data
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Monthly clinical case data from Kutch, a district in the state
of Gujarat, western India, 1987-2006.
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The Data
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Challenges with malaria modeling

Malaria is a complex disease with incomplete immunity,
mosquito -human interaction and an intial symptom of
non-specific fever.

Previously developed methodology, e.g. the one for measles,
have been unable to model malaria successfully.

Mechanistic inclusion of climate covariates (e.g. rainfall) have
not been successful. Lags? Integrals? Threshold effects?

MCMC and Stochastic EM are known not to work.
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Partially Observed Markov Processes (POMP)

xt is an unobserved vector valued stochastic process (discrete
or continuous time).

It is assumed to be Markovian.
reasonable if all important dynamic processes are modeled as
part of the system.

yt is a vector of the available observations (discrete time),
assumed to be conditionally independent given xt (a standard
measurement model, which can be relaxed).

θ is a vector of unknown parameters.
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Disease Transmission Model

S E I

QR

-µSE -µEI

?

µIQ

�
µQR

6µRS

6
µRQ

?

µIS

Figure: Flow diagram for the SEIQR model with superinfection

Anindya Bhadra Malaria transmission: Modeling & Inference



Model Equations

State Model

dS

dt
= µBSN − µSE S + µIS I + µRSR − δS

dE

dt
= µSE S − µEI E − δE

dI

dt
= µEI E − µIS I − µIQ I − δI

dQ

dt
= µIQ I + µRQR − µQRQ − δQ

dR

dt
= −µRSR + µQR I − µRQR − δR

Observation Model

Mn = ρ

∫ tn

tn−1

dNEI (s)

Yn|Mn ∼ Negbin(mean = Mn, var = Mn + σ2
obsM2

n)
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Modeling the force of infection µSE (t)

µSE (t) =

∫ ∞
0

f (s)p(t − s) ds

f (t) is the effective human-human transmission rate

p(t) is a delay distribution describing the vector survival

f (t) =
I (t) + qQ(t)

N(t)
exp

{ k∑
i=1

βi si (t) + βtt + βcC (t)
}dΓ

dt

∫ t0+∆

t0

dΓ

dt
dt ∼ Gamma(∆/σ2, σ2)
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Coupled system of Levy SDEs

We consider this a special case of POMP, so our general
statistical framework applies.

Our inference method is based on numerical solution to Levy
SDEs which are similar to more standard Gaussian SDEs.

Theoretical possibility of an infinite jump in in a Levy process
does not appear to be a problem in practice.
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Plug-and-play inference

Statistical methods for pomps are plug-and-play if they
require simulation from the dynamic model but not explicit
likelihood ratios.

Bayesian plug-and-play:
1. Artificial parameter evolution (Liu and West, 2001)
2. Approximate Bayesian computation (“Sequential Monte
Carlo without likelihoods,” Sisson et al, PNAS, 2007)

Non-Bayesian plug-and-play:
3. Simulation-based prediction rules (Kendall et al, Ecology,
1999)
4. Maximum likelihood via iterated filtering (Ionides et al,
PNAS, 2006)

Plug-and-play is a VERY USEFUL PROPERTY for
investigating scientific models.
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The cost of plug-and-play

Approximate Bayesian methods and simulated moment
methods lead to a loss of statistical efficiency.

In contrast, iterated filtering enables (almost) exact
likelihood-based inference.

Improvements in numerical efficiency may be possible when
analytic properties are available (at the expense of
plug-and-play). But many interesting dynamic models are
analytically intractable.
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Iterated Filtering

Filtering: the conditional distribution of the unobserved state
vector xn given the observations up to that time,
y1, y2, . . . , yn.

Iterated filtering: an algorithm which uses a sequence of
solutions to the filtering problem to maximize the likelihood
function over unknown model parameters.
(Ionides, Bretó & King. PNAS, 2006)

If the filter is plug-and-play (e.g. using standard sequential
Monte Carlo methods) this is inherited by iterated filtering.
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Key ideas of iterated filtering

Bayesian inference for time-varying parameters becomes a
solveable filtering problem. Set θ = θn to be a random walk
with

E [θn|θn−1] = θn−1

Var(θn|θn−1) = σ2

The limit σ → 0 can be used to maximize the likelihood for
fixed parameters.
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Theoretical basis for iterated filtering

Theorem 1. (Ionides, Bretó & King, PNAS, 2006)
Suppose θ0, C and y1:N are fixed and define

θF
n = E [θn|y1:n]

V P
n = Var(θn|y1:n−1)

Assuming sufficient regularity conditions for a Taylor series

expansion, limσ→0
∑N

n=1 (V P
n )
−1

(θF
n − θF

n−1) = ∇`(θ)
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Theoretical basis for iterated filtering

Theorem 2. (Ionides, Bhadra & King, (arXiv:0902.0347v1))
Let θ̃F

n,m and Ṽ P
n be the sequential Monte Carlo estimates of θF

n,m

and V P
n respectively with number of particles Jm. If τm → 0 and

τmJm →∞, then under suitable regularity assumptions

lim
m→∞

E

[ N∑
n=1

(Ṽ P
n,m)−1(θ̃F

n,m − θ̃F
n−1,m)

]
= ∇`(θ)

lim
m→∞

τm
2JmVar

( N∑
n=1

(Ṽ P
n,m)−1(θ̃F

n,m − θ̃F
n−1,m)

)
< ∞
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Theoretical basis for iterated filtering

Theorem 3. (Ionides, Bhadra & King, (arXiv:0902.0347v1))
Let τm → 0 and τmJm →∞,

∑
m am =∞, am → 0 and∑

m a2
mJ−1

m τ2
m <∞. define a recursion by,

θ̂m+1 = θ̂m + am

N∑
n=1

(Ṽ P
n,m)−1(θ̃F

n,m − θ̃F
n−1,m)

Then under suitable regularity assumptions for stochastic
approximation (Kushner and Clark, 1978), limm→∞ θ̂m = θ̂, the
MLE, with probability 1.
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Debate over the role of climate factors

(Hay et al., Nature, 2002) think the epidemic cycles are
generated by the disease dynamics itself, without external
forcing.

(Zhou et al., PNAS, 2004, Pascual et al., Proc. Royal Society
Interface, 2007) think external drivers such as temperature
and rainfall play a role.

Previous analyses have been based on more limited data from
Eastern African highlands, which are desert fringes.

The data from India also come from a desert region and help
us answer these scientific questions.
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Role of rainfall

Recall the force of infection term-

µSE (t) =

∫ ∞
0

f (s)p(t − s) ds

f (t) =
I (t) + qQ(t)

N(t)
exp

{ k∑
i=1

βi si (t) + βtt + βcC (t)
}dΓ

dt

For us, C (t) = max(R(t)− 200, 0), where R(t) is the
accumulated rainfall at time t over past 6 months.

This introduces a threshold effect of rainfall, i.e. rainfall over
a certain threshold is conducive to malaria transmission.

Observed correlation in the data: correlation between Rainfall
(summed over May to August) and Cases (summed over
September to December) = 0.78
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Application of iterated filtering to the malaria model :
Model comparison

model log-likelihood

SEIR -1275
SEIR with rainfall -1268

SEIQR with superinfection -1274
SARIMA (1, 0, 1)X (1, 0, 1)12 -1330

Table: Table of log-likelihoods of the fitted model

The full model seems to be unidentifiable. From now we deal
with just the first two.

Including rainfall properly in the model improves the
likelihood.
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Simulations from the model with rainfall
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Cases, deterministic skeleton (ODE) from fit with rainfall
as a covariate, 10th and 90th percentiles of SDE model.

Simulations from the initial values for a long interval of 20
years look remarkably similar to the data

Anindya Bhadra Malaria transmission: Modeling & Inference



Simulations from the model without rainfall
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Cases, deterministic skeleton (ODE) from fitted model
without rainfall, 10th and 90th percentiles of SDE model.

Simulations, in particular the timing of the peaks, look very
different from the data
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Capturing the observed correlation in the simulations

−1.0 −0.5 0.0 0.5 1.0

0.0
0.5

1.0
1.5

2.0

correlation

De
ns

ity

Density plot of correlation between Rainfall (summed over
May to August) and Cases (summed over September to
December) from the model with rainfall and without rainfall

Broken black line is the observed correlation in the data
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Duration of immunity
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The profile plot suggests an average duration of immunity of 1
year.

Possibly too short to generate interannual variability
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Conclusion

Plug-and-play statistical methodology permits likelihood-based
analysis of stochastic dynamic models. This enables inference
on a very flexible class of models that was impossible so far.

General-purpose statistical software for partially observed
Markov processes is available in the pomp package for R (on
CRAN).

This technique allows us to investigate the role of climate
covariates on malaria while taking into account intrinsic
disease dynamics.
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Thank you!

These slides are available at
http://www.sitemaker.umich.edu/anindya
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