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dx(t)
dt

= Dx(t) = f
(

x(t),θ
)

⇒ x(t) =??

The goal is to estimate θ

We observe x(t) but often there is no analytic solution to
our model.
If the initial state x(0) is known then we can numerically
produce a solution S(x(0),θ, t) = x(t)
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FitzHugh-Nagumo system

DV = dV
dt = γ

(
V − V 3/3 + R

)

DR = dR
dt = − (βR + α− V ) /γ

Numerical Solution to the ODE using:

θ = [α, β, γ] = [0.2, 0.2, 3] and [V0, R0] = [−1, 1]
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FitzHugh-Nagumo system

DV = γ
(

V − V 3/3 + R), DR = −(βR + α− V )/γ

The behaviour modeled changes with α, β, γ, V0, and R0
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FitzHugh-Nagumo system

DV = γ
(
V − V 3/3 + R

)
, DR = − (βR + α− V ) /γ

401 evenly spaced points with noise N(0, .52) and N(0, .42).
θ = [α, β, γ] = [0.2, 0.2, 3] and [V0, R0] = [−1, 1]
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FitzHugh-Nagumo Challenges

Model behaviour changes drastically with parameter
values.
There is no closed form solution for the likelihood.
The goal is to estimate θ but we need x0 to produce a
numerical solution.
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The Model Set Up1

For numerical solution S(θ, V0, R0, t) to equations:

DV = γ
(

V − V 3/3 + R
)

, DR = −(βR + α− V )/γ,

use a likelihood of the form:

y(t) | θ, V0, R0,Σ ∼ N {S(θ, V0, R0, t),Σ} .

Place priors on parameters P(θ, V0, R0,Σ) with the goal of
making inference on P(θ, V0, R0,Σ | y{t}).
Lack of analytical solution implies there is no closed form
for the likelihood.

1Gelman, Bois and Jiang, (1996), JASA, 91, 1400–1412.
Huang and Wu (2006), Jo. of Ap. Stat., 33, 155-174.
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Topological challenges

Peaks correspond to (partial) data fits.
Valleys imply that the fit deteriorates before it can improve.
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Parallel Tempering2:

Use the sequence of M approximations to the posterior density:

P1(θ | y{t}) = P(y{t} | θ)T1P(θ)
...

PM(θ | y{t}) = P(y{t} | θ)TM P(θ)

Where
0 ≤ T1 < . . . < TM = 1

Run all M parallel MCMC chains.
Allow parameters to swap between chains.
Only draws from PM are of interest.

2Geyer, 1991, "Markov Chain Monte Carlo Maximum Likelihood", in
Computing Science and Statistics: Proceedings of the 23rd Symposium on
the Interface.
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Parallel Tempering:

Use the sequence of M approximations to the target posterior
density:

P1(θ | y{t}) = P(y{t} | θ)T1P(θ)
...

PM(θ | y{t}) = P(y{t} | θ)TM P(θ)

Where
0 ≤ T1 < . . . < TM = 1

Run all M parallel MCMC chains.
Allow parameters to swap between chains.
Only draws from PM are of interest.
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Parallel Tempering

Advantages:
’Flatter’ chains search the posterior space.
‘Better’ parameter values are easily passed onto less ’flat’
chains.
Enables steps across low probability regions.
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But:
Flatter chains allow parameters to step into trouble
If the prior is bad, then tempering is bad
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Smooth Functional Tempering

Combine parallel tempering with insights from functional data
analysis (FDA)

Run M parallel MCMC chains.
Each chain uses an approximation of the posterior
P(θ | y{t}).
Use a basis expansion (collocation) x(t) = c′φ(t) to
smooth the data.
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Smooth Functional Tempering

The idea:

Approximate the numerical solution with a data smooth
using coefficients c

s(θ, t) ≈ x(t) = c′φ(t)

Use a model based smoothing penalty to ensure fidelity to
the DE model

Now define a tempering strategy based on a sequence of
smoothing parameters
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Smooth Functional Tempering

The idea:

Approximate the numerical solution with a data smooth
using coefficients c

s(θ, t) ≈ x(t) = c′φ(t)

Use a model based smoothing penalty to ensure fidelity to
the DE model

Now define a tempering strategy based on a sequence of
smoothing parameters
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Build a sequence of M models with λ1 < . . . < λM ≤ ∞.

y(t) | x(t), σ2 ∼ N
(

x(t), σ2
)

π(θ) ∝ exp
{
−λm

∫

t
(Dx(v)− f (x(v),θ))2 dv

}
p1(θ)

This induces a density on x(t) without requiring us to
sample c.
The induced density on x(t) decreases as x(t) strays from
The DE solution.
The rate of decrease depends on λm.
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Build a sequence of M models with λ1 < . . . < λM ≤ ∞.

y(t) | x(t), σ2 ∼ N
(

x(t), σ2
)

π(θ) ∝ exp
{
−λm

∫

t
(Dx(v)− f (x(v),θ))2 dv

}
p1(θ)

Using big λM makes x(t) arbitrarily close to the DE
solution.

But:
We avoid numerically solving the DE.
And we remove dependence on x0.
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Posterior Cross Section

left (Parallel Tempering), right (Smooth Functional Tempering)
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When x(0) is of interest.

Sometimes we want inference on θ and x0.
In that case use the sequence λ1 < . . . < λM =∞.

y(t) | x(x0, t), σ2 ∼ N
(

x(x0, t), σ2
)

π(θ, x0) ∝ exp
{
−λm

∫

t

[
Dx(x0, v)− f (x(x0, v),θ)

]2
dv

}
p1(θ)p2(x0)

Include x0 in the mode

as λ→∞ using a b-spline basis,
x(x0, t) | θ → s(x0,θ, t) using a Runga-Kutta numerical
solver
Mth model is equivalent to:

y(t) | x0,θ, σ2 ∼ N
(

s(x0,θ, t), σ2
)

π(θ) ∼ p1(θ)
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When x(0) is of interest.
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left (Parallel Tempering), mid (Smooth Functional Tempering
with x0) right (Smooth Functional Tempering without x0)
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Bimodal FitzHugh-Nagumo density

DV =| γ |
(
V − V 3/3 + R

)
, DR = − (βR + α− V ) / | γ |

Assume that all parameters except γ are known and fixed and
P(γ) = Uniform(−15, 15)

Tempering is required to sample from both modes.
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Posterior Densities

SFT1, PT SFT2 (no X0).
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Samples from the m = 1st (the flattest) of the parallel chains
using largest λ1 that enables γ = ±3 modes to be sampled

left (Parallel Tempering), mid (Smooth Functional Tempering
(SFT1) with x0) right (Smooth Functional Tempering (SFT2)
without x0)
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Quality of the λM chain approximation

Using 50,000 posterior iterations and the metric:

D(Pnum, Psamp) =

∫ [
Pnumeric(γ | y)− Psampled(γ | y)

]2
dγ

D(Pnum, Pparallel tempering) = .0356
with x0; D(Pnum, PSFT ) = .0251
without x0; D(Pnum, PSFT ) = 3.94

Note: without x0, uses less information than the other methods
in this example.
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Quality of the λM chain approximation

Using 50,000 posterior iterations and the metric:

D(Pnum, Psamp) =

∫ [
Pnumeric(γ | y)− Psampled(γ | y)

]2
dγ

D(Pnum, Pparallel tempering) = .0356
with x0; D(Pnum, PSFT ) = .0251

without x0; D(Pnum, PSFT ) = 3.94
Note: without x0, uses less information than the other methods
in this example.



Neurophysiology Example Standard Bayesian Tools Smooth Functional Tempering

Quality of the λM chain approximation

Using 50,000 posterior iterations and the metric:

D(Pnum, Psamp) =

∫ [
Pnumeric(γ | y)− Psampled(γ | y)

]2
dγ

D(Pnum, Pparallel tempering) = .0356
with x0; D(Pnum, PSFT ) = .0251
without x0; D(Pnum, PSFT ) = 3.94

Note: without x0, uses less information than the other methods
in this example.
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Autocorrelation of Samples from Bimodal problem

Autocorrelation for Uniform and χ2 based priors, SFT1 −, PT
−− and SFT2 (with x0) ...
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Autocorrelation of Samples from the negative (L) and
positive (R) modes of the Bimodal problem

Autocorrelation for Uniform and χ2 based priors (top and
bottom resp.), SFT1 −, PT −− and SFT2 (with x0) ...



Neurophysiology Example Standard Bayesian Tools Smooth Functional Tempering

FitzHugh Nagumo with a bad prior

DV = γ
(
V − V 3/3 + R

)
, DR = − (βR + α− V ) /γ

Using a one parameter model with the prior N(14,2)



Neurophysiology Example Standard Bayesian Tools Smooth Functional Tempering

FitzHugh Nagumo with a bad prior

DV = γ
(
V − V 3/3 + R

)
, DR = − (βR + α− V ) /γ

Using a one parameter model with the prior N(14,2)



Neurophysiology Example Standard Bayesian Tools Smooth Functional Tempering

Conclusion

Faster mixing - less time sampling unimportant minor
modes
Improved basin of attraction by smoothing out the posterior
topology.
Faster convergence.
Reduces or removes the impact of initial system states.
Produces Inference on ODE solution and smooth
deviations thereof.
Benefits from feature matching and data fitting.
Works even when there are unobserved system
components
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