SFU THINKING OF THE WORLD

Dave Campbell and Russell Steele

Smooth Functional Tempering for Nonlinear Differential Equation Models

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ のQ@

$$\frac{d\mathbf{x}(t)}{dt} = D\mathbf{x}(t) = f(\mathbf{x}(t), \theta)$$

 $\Rightarrow \mathbf{x}(t) = ??$

- The goal is to estimate θ
- We observe x(t) but often there is no analytic solution to our model.
- If the initial state x(0) is known then we can numerically produce a solution S(x(0), θ, t) = x(t)

Outline

FitzHugh-Nagumo system

FitzHugh-Nagumo system

$$DV = \gamma (V - V^3/3 + R), \quad DR = -(\beta R + \alpha - V)/\gamma$$

The behaviour modeled changes with $\alpha, \beta, \gamma, V_0$, and R_0

FitzHugh-Nagumo system

401 evenly spaced points with noise $N(0, .5^2)$ and $N(0, .4^2)$. $\theta = [\alpha, \beta, \gamma] = [0.2, 0.2, 3]$ and $[V_0, R_0] = [-1, 1]$

FitzHugh-Nagumo Challenges

- Model behaviour changes drastically with parameter values.
- There is no closed form solution for the likelihood.
- The goal is to estimate θ but we need x₀ to produce a numerical solution.

The Model Set Up¹

For numerical solution $S(\theta, V_0, R_0, t)$ to equations:

$$DV = \gamma \left(V - V^3/3 + R \right), \quad DR = -(\beta R + \alpha - V)/\gamma,$$

use a likelihood of the form:

$$\mathbf{y}(t) \mid \boldsymbol{\theta}, V_0, R_0, \boldsymbol{\Sigma} \sim N\left\{\boldsymbol{S}(\boldsymbol{\theta}, V_0, R_0, t), \boldsymbol{\Sigma}\right\}.$$

- Place priors on parameters P(θ, V₀, R₀, Σ) with the goal of making inference on P(θ, V₀, R₀, Σ | y{t}).
- Lack of analytical solution implies there is no closed form for the likelihood.

¹Gelman, Bois and Jiang, (1996), JASA, 91, 1400–1412. Huang and Wu (2006), Jo. of Ap. Stat., 33, 155-174.→ () × (

Topological challenges

- Peaks correspond to (partial) data fits.
- Valleys imply that the fit deteriorates before it can improve.

・ロット (日) ・ (日)

Parallel Tempering²:

Use the sequence of *M* approximations to the posterior density:

$$P_{1}(\theta \mid y\{t\}) = P(y\{t\} \mid \theta)^{T_{1}}P(\theta)$$

$$\vdots$$

$$P_{M}(\theta \mid y\{t\}) = P(y\{t\} \mid \theta)^{T_{M}}P(\theta)$$

Where

$$0 \leq T_{1} \leq \dots \leq T_{M} = 1$$

- Run all *M* parallel MCMC chains.
- Allow parameters to swap between chains.
- Only draws from P_M are of interest.

²Geyer, 1991, "Markov Chain Monte Carlo Maximum Likelihood", in Computing Science and Statistics: Proceedings of the 23rd Symposium on the Interface.

Parallel Tempering:

Use the sequence of *M* approximations to the target posterior density:

$$P_{1}(\theta \mid y\{t\}) = P(y\{t\} \mid \theta)^{T_{1}}P(\theta)$$

$$\vdots$$

$$P_{M}(\theta \mid y\{t\}) = P(y\{t\} \mid \theta)^{T_{M}}P(\theta)$$

$$\bigoplus_{\substack{q \\ 0 \le T_{1} < \ldots < T_{M} = 1}$$

- Run all *M* parallel MCMC chains.
- Allow parameters to swap between chains.
- Only draws from P_M are of interest.

γ

Parallel Tempering

Advantages:

- 'Flatter' chains search the posterior space.
- 'Better' parameter values are easily passed onto less 'flat' chains.
- Enables steps across low probability regions.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

But:

- Flatter chains allow parameters to step into trouble
- If the prior is bad, then tempering is bad

Outline

Smooth Functional Tempering

Combine parallel tempering with insights from functional data analysis (FDA)

- Run *M* parallel MCMC chains.
- Each chain uses an approximation of the posterior
 P(θ | y{t}).
- Use a basis expansion (collocation) $\mathbf{x}(t) = \mathbf{c}' \phi(t)$ to smooth the data.

Smooth Functional Tempering

The idea:

 Approximate the numerical solution with a data smooth using coefficients c

$$s(\theta, t) \approx x(t) = \mathbf{c}' \phi(t)$$

 Use a model based smoothing penalty to ensure fidelity to the DE model

Smooth Functional Tempering

The idea:

 Approximate the numerical solution with a data smooth using coefficients c

$$s(\theta, t) \approx x(t) = \mathbf{c}' \phi(t)$$

 Use a model based smoothing penalty to ensure fidelity to the DE model

Now define a tempering strategy based on a sequence of smoothing parameters

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ の < @

• Build a sequence of *M* models with $\lambda_1 < \ldots < \lambda_M \leq \infty$.

$$y(t) \mid \mathbf{x}(t), \sigma^{2} \sim N(\mathbf{x}(t), \sigma^{2})$$
$$\pi(\theta) \propto \exp\left\{-\lambda_{m} \int_{t} (D\mathbf{x}(v) - f(\mathbf{x}(v), \theta))^{2} dv\right\} p_{1}(\theta)$$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

• Build a sequence of *M* models with $\lambda_1 < \ldots < \lambda_M \leq \infty$.

$$y(t) \mid \mathbf{x}(t), \sigma^2 \sim N(\mathbf{x}(t), \sigma^2)$$
$$\pi(\theta) \propto \exp\left\{-\lambda_m \int_t (D\mathbf{x}(v) - f(\mathbf{x}(v), \theta))^2 dv\right\} p_1(\theta)$$

- This induces a density on x(t) without requiring us to sample c.
- The induced density on x(t) decreases as x(t) strays from The DE solution.
- The rate of decrease depends on λ_m .

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ のQ@

• Build a sequence of *M* models with $\lambda_1 < \ldots < \lambda_M \leq \infty$.

1

. . .

$$\mathbf{y}(t) \mid \mathbf{x}(t), \sigma^2 \sim N(\mathbf{x}(t), \sigma^2)$$

 $\pi(\theta) \propto \exp\left\{-\lambda_m \int_t (D\mathbf{x}(v) - f(\mathbf{x}(v), \theta))^2 dv\right\} p_1(\theta)$

Using big λ_M makes **x**(t) arbitrarily close to the DE solution.

But:

- We avoid numerically solving the DE.
- And we remove dependence on **x**₀.

A D > A P > A D > A D >

э

Posterior Cross Section

left (Parallel Tempering), right (Smooth Functional Tempering)

When $\mathbf{x}(0)$ is of interest.

Sometimes we want inference on θ and \mathbf{x}_0 .

• In that case use the sequence $\lambda_1 < \ldots < \lambda_M = \infty$.

$$y(t) \mid \mathbf{x}(\mathbf{x}_0, t), \sigma^2 \sim N\Big(\mathbf{x}(\mathbf{x}_0, t), \sigma^2\Big)$$
$$\pi(\theta, \mathbf{x}_0) \propto \exp\left\{-\lambda_m \int_t \Big[D\mathbf{x}(\mathbf{x}_0, v) - f(\mathbf{x}(\mathbf{x}_0, v), \theta)\Big]^2 dv\right\} p_1(\theta) p_2(\mathbf{x}_0)$$

Include x₀ in the mode

When $\mathbf{x}(0)$ is of interest.

Sometimes we want inference on θ and \mathbf{x}_0 .

• In that case use the sequence $\lambda_1 < \ldots < \lambda_M = \infty$.

$$\mathbf{y}(t) \mid \mathbf{x}(\mathbf{x}_0, t), \sigma^2 \sim N\Big(\mathbf{x}(\mathbf{x}_0, t), \sigma^2\Big)$$

$$\pi(\boldsymbol{\theta}, \mathbf{x}_0) \propto \exp\left\{-\lambda_m \int_t \left[D\mathbf{x}(\mathbf{x}_0, \boldsymbol{v}) - f(\mathbf{x}(\mathbf{x}_0, \boldsymbol{v}), \boldsymbol{\theta})\right]^2 d\boldsymbol{v}\right\} p_1(\boldsymbol{\theta}) p_2(\mathbf{x}_0)$$

- Include **x**₀ in the mode
- as λ → ∞ using a b-spline basis,
 x(x₀, t) | θ → s(x₀, θ, t) using a Runga-Kutta numerical solver

When $\mathbf{x}(0)$ is of interest.

Sometimes we want inference on θ and \mathbf{x}_0 .

• In that case use the sequence $\lambda_1 < \ldots < \lambda_M = \infty$.

$$y(t) \mid \mathbf{x}(\mathbf{x}_0, t), \sigma^2 \sim N(\mathbf{x}(\mathbf{x}_0, t), \sigma^2)$$

$$\pi(\boldsymbol{\theta}, \mathbf{x}_0) \propto \exp\left\{-\lambda_m \int_t \left[D\mathbf{x}(\mathbf{x}_0, \boldsymbol{v}) - f(\mathbf{x}(\mathbf{x}_0, \boldsymbol{v}), \boldsymbol{\theta})\right]^2 d\boldsymbol{v}\right\} p_1(\boldsymbol{\theta}) p_2(\mathbf{x}_0)$$

- Include **x**₀ in the mode
- as λ → ∞ using a b-spline basis,
 x(x₀, t) | θ → s(x₀, θ, t) using a Runga-Kutta numerical solver
- *Mth* model is equivalent to:

$$y(t) \mid \mathbf{x}_0, \theta, \sigma^2 \sim N(s(\mathbf{x}_0, \theta, t), \sigma^2)$$

 $\pi(\theta) \sim p_1(\theta)$

・ロット (雪) (日) (日)

ъ

left (Parallel Tempering), mid (Smooth Functional Tempering with \mathbf{x}_0) right (Smooth Functional Tempering without \mathbf{x}_0)

Bimodal FitzHugh-Nagumo density

$$DV = |\gamma| (V - V^3/3 + R), \quad DR = -(\beta R + \alpha - V) / |\gamma|$$

Assume that all parameters except γ are known and fixed and $P(\gamma) = Uniform(-15, 15)$

Tempering is required to sample from both modes.

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

Posterior Densities

SFT1, **PT** SFT2 (no *X*₀).

Samples from the $m = 1^{st}$ (the flattest) of the parallel chains using largest λ_1 that enables $\gamma = \pm 3$ modes to be sampled

left (Parallel Tempering), mid (Smooth Functional Tempering (SFT1) with \mathbf{x}_0) right (Smooth Functional Tempering (SFT2) without \mathbf{x}_0)

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Quality of the λ_M chain approximation

Using 50,000 posterior iterations and the metric:

$$D(P_{num}, P_{samp}) = \int \left[P_{numeric}(\gamma \mid \mathbf{y}) - P_{sampled}(\gamma \mid \mathbf{y}) \right]^2 d\gamma$$

Quality of the λ_M chain approximation

Using 50,000 posterior iterations and the metric:

$$D(P_{num}, P_{samp}) = \int \left[P_{numeric}(\gamma \mid \mathbf{y}) - P_{sampled}(\gamma \mid \mathbf{y}) \right]^2 d\gamma$$

D(P_{num}, P_{parallel tempering}) = .0356
 with **x**₀; D(P_{num}, P_{SFT}) = .0251

(日) (日) (日) (日) (日) (日) (日)

Quality of the λ_M chain approximation

Using 50,000 posterior iterations and the metric:

$$D(P_{num}, P_{samp}) = \int \left[P_{numeric}(\gamma \mid \mathbf{y}) - P_{sampled}(\gamma \mid \mathbf{y}) \right]^2 d\gamma$$

- $D(P_{num}, P_{parallel \ tempering}) = .0356$
- with \mathbf{x}_0 ; $D(P_{num}, P_{SFT}) = .0251$
- without **x**₀; *D*(*P*_{num}, *P*_{SFT}) = 3.94

Note: without \mathbf{x}_0 , uses less information than the other methods in this example.

Smooth Functional Tempering

Autocorrelation of Samples from Bimodal problem

Autocorrelation for Uniform and χ^2 based priors, SFT1 –, PT – and SFT2 (with x_0) ...

Autocorrelation of Samples from the negative (L) and positive (R) modes of the Bimodal problem

Autocorrelation for Uniform and χ^2 based priors (top and bottom resp.), SFT1 –, PT –– and SFT2 (with x_0) ...

FitzHugh Nagumo with a bad prior

$$DV = \gamma (V - V^3/3 + R), \quad DR = -(\beta R + \alpha - V)/\gamma$$

ヘロト ヘロト ヘビト

Using a one parameter model with the prior N(14,2)

・ロト ・ 聞 ト ・ ヨ ト ・ ヨ ト

ъ

FitzHugh Nagumo with a bad prior

$$DV = \gamma \left(V - V^3/3 + R \right), \quad DR = - \left(\beta R + \alpha - V\right)/\gamma$$

Using a one parameter model with the prior N(14,2)

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ のQ@

Conclusion

- Faster mixing less time sampling unimportant minor modes
- Improved basin of attraction by smoothing out the posterior topology.
- Faster convergence.
- Reduces or removes the impact of initial system states.
- Produces Inference on ODE solution and smooth deviations thereof.
- Benefits from feature matching and data fitting.
- Works even when there are unobserved system components