

vrije Universiteit

amsterdam

Parameter Estimation for Human Trust in Information Sources

Trust Model

Prediction

Parameter Estimation

Parameter Estimation for Human Trust in Information Sources

Vrije Universiteit Amsterdam, Department of Artificial Intelligence, De Boelelaan 1081a, 1081 HV Amsterdam, the Netherlands, {mhoogen, swjaffry, treur}@few.vu.nl

ACCURACY

Accuracy = Correct Predictions / Observed Behaviors

METHODS

EXHAUSTIVE SEARCH METHOD

- >On each observation entire attribute search space is explored to find the vector of parameter settings with maximum accuracy.
- > Guarantees the optimal solution.

BISECTION SEARCH METHOD

>On each observation entire attribute search space is explored by halving the intervals for the parameter values to find the vector of parameter settings with maximum accuracy.

> Does not guarantee the optimal solution.

EXTENDED BISECTION SEARCH METHOD

- Find parameter setting with maximum accuracy as in **Bisection Search Method**
- > Store parameters in list of solutions for future use.
- Compare the accuracy of current parameter setting with all known solutions in the list.
- > Does not guarantee the optimal solution.

STIMULATED ANNEALING METHOD

- >Search the parameter with maximum accuracy in the neighborhood of initial parameters selected randomly.
- Neighborhood for search depends on computational budget and accuracy of parameter setting
- Neighborhood = ComputationalBudgetLeft * (1 -Accuracy)

Methods	Complexity			
Exhaustive Search	$O((10)^{\alpha\tau} NB^2)$			
Bisection Search	$O(\alpha \tau NB^2)$			
Extended Bisection Search	$O(\alpha \tau NB^2)$			
Simulated Annealing	$O(CNB^2)$			
α = No. of Parameters, τ = Precision of Estimation, N – No. of Information Sources, B – Observed Behaviors				

TIME COMPLEXITY

C = Computational Budget (for stimulated annealing)

Mark Hoogendoorn, S. Waqar Jaffry, and Jan Treur

SIMULATION AND RESULTS

Experimental Configurations for generating Human Behavior

Case	1	2	3	4	5
No. of Parameters	3	3	3	3	3
Precision (digits)	2	2	2	2	2
Information Sources	3	3	3	3	3
IS ₁ ,IS ₂ ,IS ₃ Responses	1,-1,-1	1,-1,-1	1,-1,-1	1,-1,-1	1,-1,-1
Observed Behaviors	100	100	100	100	100
Trust Decay	0.01	0.01	0.01	0.25	0.01
Trust Flexibility	0.75	0.75	0.25	0.75	0.75
Trust Autonomy	0.25	0.25	0.25	0.25	0.75
Human Initial Trust	0.00,	0.00,	0.00,	0.00,	0.00,
on Sources IS_1 , IS_2 ,	0.15,	0.05,	0.05,	0.05,	0.05,
IS ₃	0.30	0.10	0.10	0.10	0.10

Accuracy of Bisection Search Method

Number of Observed Behaviors

Maximum Percentage Accuracy of Stimulated Annealing

FORMAL ANALYSIS

P1(trace, λ): Information reduces possible solutions

If at time point t the set of observed behaviors is of size n and the number of solutions found is p1, then if at a later point in time t2 the set of observed behaviors is larger (i.e. m > n), then the number of solutions found p2 is less than or equal to p1 * λ .

Formally:

∀ t:time, n:integer, p1:integer

[state(γ , t) |= number_observed_behaviors(n) & state(γ , t) |= number_solutions(p1)] \Rightarrow [\forall t2:time, m:integer, p2:integer [[t2 > t & m > n & state(γ , t2) |= number_observed_behaviors(m) & state(γ , t2) |= number_solutions(p2)] \Rightarrow p2 \leq p1 * λ]]

CONCLUSIONS

- Computation time of the exhaustive search scales up worst, whereas the Simulated Annealing approach scales up best.
- Exhaustive search finds the most accurate settings, whereas Simulated Annealing sometimes only comes up with poor solutions.
- The bisection, and extended bisection are right in the middle: They do have a higher accuracy and are computationally less expensive.

The choice of which method to use ultimately depends on the domain.

REFERENCE

[1] Hoogendoorn, M., Jaffry, S.W., and Treur, J., "Modeling Dynamics of Relative Trust of Competitive Information Agents", In: Klusch, M., Pechoucek, M., Polleres, A. (eds.), Proceedings of the 12th International Workshop on Cooperative Information Agents, CIA'08. LNAI, vol. 5180. Springer, 2008, pp. 55-70.

Accuracy of Extended Bisection Search Method

^{120.00} 100.00 80.00 CASE-1 60.00 — CASE-2 ----- CASE-3 40.00 —— CASE-4 20.00 ----- CASE-5 0.00 5 15 25 35 45 55 65 75 85 95 Number of Observed Behaviors