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Parameter estimation is a difficult problem

— Two sources of uncertainty
e Measurement noise
e Disturbances that influence future behaviour
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Parameter estimation is a difficult problem

— Two sources of uncertainty
e Measurement noise
e Disturbances that influence future behaviour

Proposed parameter estimation technigues account for

both sources of uncertainty:
- Iterative Principal Differential Analysis
- Approximate Maximum Likelihood Estimation



Why Model Chemical

Reactors?
Objectives of Chemical Companies: $$$

— Produce chemicals and polymers with targeted properties
— Make different product grades efficiently in a single reactor
— Devise improved reactor operating strategies

— Bring new products to market quickly

— Develop process knowledge for trouble-shooting

Models can help companies to:

— Train operators
— Design and test automatic control schemes
— Optimize grade changeover policies

— Simulate effects of process conditions and equipment design on product
properties and production rates

— Plan experiments
— Test theories about what has gone wrong
— Capture, store and distribute knowledge



Fundamental Models
of Chemical Processes

Where do model equations come from?

e Material balances on chemical species, and
energy balances

— Modeler converts mythology and assumptions into
mathematical expressions

— Algebraic equations, ODEs, PDEs

e Additional equations that describe:
— Rates of chemical reactions
— Movement of chemical species from one phase to another



Fundamental Models
of Chemical Processes
Example - Polyethylene model for INEOS (BP Chemicals)

e 22 nonlinear ODEs
e 45 parameters

— Model predicts:
e reactant gas composition (ethylene, hexene, hydrogen)
e polymer production rate
e polymer properties
using reactant feed rates and reactor temperature

— Model for scale-up from laboratory to commercial reactors

e Use knowledge from model to reduce the number of steps and experiments
required



The Parameter Estimation Probiem
iIn Dynamic Chemical Reactor Models

e Experimental situation
— Measurements at irregular sampling times

— Results from replicate experiments vary due to
e Disturbances that enter the reactor and influence future behaviour

e Uncertainties in initial reactor conditions and input-variable
trajectories

e Model equations
— Typically 10-100 ODEs and 15-50 parameters
— Many simplifying assumptions
— Unknown initial values for some state variables



Four Replicates of a Dynamic Experiment
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« Any model that we fit through these data will result in
correlated residuals.

e In dynamic systems, random errors at one time
influence future responses.

e How should we account for this deviation from
traditional least-squares assumptions during
parameter estimation and model testing? 9



Traditional Parameter Estimation In
a Differential Equation

dx

- — y )9 y O —

o f(x,u,0), x(0)=x,

y,=x+¢  (i=1,..n) g ~N(0,02)

e Estimate the model parameters &, given noisy
observations y and known system inputs u.

e We assume: 1) model structure is perfect
2) u and x, are perfectly known

3) measurements have random error



raditional Parameter Estimation In
a Differential Equation

dx

—=f(x,u,0), x(0)=x

” S ), x(0)=x,

y,=x+¢,  (i=1,..n) g ~N(0,0?2)

e Estimate the model parameters &, given noisy
observations y and known system inputs u.

e Requires repeated numerical solution of ODE each time
the optimizer guesses new parameter values

* If initial conditions are unknown, they are estimated |
along with the parameters
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Fit an empirical curve x_(?) to the dynamic data using B-splines

- Z(y(ti) -x_ (L, IB))Z

12



Dynamic Data and B-Spline Curve
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e Fit an empirical curve x_(?) to the dynamic data using B-splines
2
= Z (Y(ti) -x_ (L, IB))

e« Determine parameter values @ to satisfy ODE as much as possible

with B fixed
J :J.(di_f(xuu 9))

14
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Fit an empirical curve x_(9) to the dynamic data using B-splines

- Z(y(ti) -x_ (L, /B))Z

Determine parameter values ¢ to satisfy ODE as much as possible

with [ fixed
J :J.(di_f(x~,u 9))

Iterate between steps 2 and 3 until convergence
15



Is IPDA any good?

No need for repeated numerical solution of ODE
— No stability problems for bad parameter values

No initial conditions required
Easy to handle non-uniformly sampled data

16



s IPDA any good?

No need for repeated numerical solution of ODE
— No stability problems for bad parameter values

No initial conditions required
Easy to handle non-uniformly sampled data

During the parameter-estimation step, minimize residuals between
spline curve and fundamental model using the differentiated form of
the model

J, =jf(%—f(x~,u,9)) dt Model error

to

During the spline-fitting step, minimize deviations from the data

;=2 (Y(t)-x_(t, )Y j[——f(x u@)j Measurement
error 17



An Epiphany

e IPDA is equivalent to selecting ¢ and £ simultaneously to minimize:

1= () -5, ) +zj[——f(x..,ue)j
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An Epiphany

e IPDA is equivalent to selecting ¢ and £ simultaneously to minimize:

1= () -5, ) +/1j(——f(x..,u<9)j

e This is the solution, but what is the underlying statistical problem?
e What is an appropriate value of A?

e What happens in multi-response problems?

e What if some states aren’'t measured?

e How can we enforce known initial conditions?

19



AMLE, a Proposed Parameter-Estimation
Technique for Stochastic DEs

§=f<x,u,9> X(0) = x;
yile.@ (i=1,...n) g ~N(0,02)

E(n()n(t-7))=06(z)

e TwoO noise sources
— Measurement noise

— Stochastic process disturbances that can account for
e Uncertainties in u
e Unknown or unmeasured inputs
e Structural imperfections in model

20



Random Process Disturbance
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AMLE, a Proposed Parameter Estimation
Technique for Stochastic DEs
dx_
— =Sl 0@, x.(0)=x
V, =Xx_, +§& (i=1,...n)
e Qur approach:

— Assume that the solution to the differential equations can be
represented using B-splines or other basis functions:

x(t) = x=(1) = 20,0,

dx_(1)
i Is used to convert ODEs into algebraic equations \)




Approximate Maximum-Likelihood
Estimation

Assume the solution of the dynamic system can be well approximated
by B-splines with unknown coefficients 3

Estimate the fundamental model parameters 6 and the unknown
spline coefficients 3

— Select @ and £ to minimize

Weighting factor

v . ( dv () \2
J = —x._ ) =X f(x_(),u(?),0) | dt
20 l)@L 00,0
H_/ — —~ —
Deviations from data Deviations from model

Objective function arises from maximizing conditional joint density
function of the states and measurements, given the parameters

23



What Weighting to Use?

n

=

Heuristically
— A large A is appropriate when
e Model is accurate and data are noisy

— A small A is appropriate when
e Data are good and model is inaccurate

J = Z( —Xx._ mj(dx (t)—f(x~(t),u(t),0)j dt

24



What Weighting to Use?

J=3 (. f 4 (dx;h(f) — £ (), u(o) e)) i

e Heuristically
— A large A is appropriate when
e Model is accurate and data are noisy

— A small A is appropriate when
e Data are good and model is inaccurate

o2 Very large A corresponds to
lopt =— traditional least-squares parameter
0 estimation, which assumes a perfect

model and no disturbances o5



Objective Function for a Multivariate
Example with Known Variances

1 2 1 ‘s dx 2
J:O_—’iljz:;‘(yl(tmlj)_xl..(tmlj)) +Qlto(d];—f1(xl~,xz~,u,9)J dt
2
AN © 1t (d
+ %;(yZ(thj)_x2~(tm2j)) +ta‘[o( :; —fz(x1~,x2~,u,9)j dt

Straightforward to write J for models with
many ODEs (or DAEs) and for problems
with unmeasured states 26



Reactor Example with Nonstationary
Disturbance in Material Balance

fi—fz £(CTu0)+wry,  C(0)=1569 (kmol/m?®)
; T _ .70 T(0) = 34137 (K
£ I permon, (0)=34137 (K)
~—————— —_— ¢ dW 3
Co T 5:773 w(0) =0 (kmol/m°/t)

n(t)=C()+&() (i=1..,64)
»(t)=T()+& )  (j=1..213)

w could be a drifting flow rate or feed

concentration disturbance (or a leak) %



Reactor Example

e Objective function for parameter estimation is:

%i(yl(tml,-)—a(tml, S j (—— £(T.,C_,u,0)- w~(t)j dt
1 & © 1 %(dr 2
+ G—jﬂ;(yz(tmzj)—ﬂ(tmz,-)) +sz tjo(Tt_fZ(T C_u, e)j i
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Input Sequence u(t) for Simulated
Experiments

Input flow rate
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Parameter Estimation Resuits from
Monte-Carlo Simulations of CSTR Example

4 parameters, @, b, E/Rand k,, were estimated using
AMLE and traditional method nonlinear least squares (NLS)

e

NLS

AMLE

15F

0.5F

-0.5¢

AMLE
30
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Parameter Estimation Resuits from
Monte-Carlo Simulations of CSTR Example
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e Parameter estimates are better using AMLE

e Confidence intervals for parameter and state estimates
are readily computed from inverse of FIM 31
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State Trajectory Estimates
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State Estimates

e Temperature trajectory
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State Estimates

Non-stationary disturbance w
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Selecting Weighting Factors in J

Modeler can estimate ¢, from repeated measurements or from
information from instrument supplier

Modeler will know that model is imperfect, and about the physical
sources of disturbances, but won’t know the noise intensity Q

When Q is unknown, we must estimate it.
— The correct value of @ results in spline fits that are consistent with ¢’
— lterate between parameter estimation and Q estimation until convergence

Estimate of O for each ODE provides information to modeler about
disturbances and model mismatch

35



Features of IPDA and AMLE Methods

e Good for systems with
— Unknown or uncertain initial conditions
— lrregular sampling
— Unmeasured states
— Meandering (nonstationary) disturbances

 No need for repeated numerical solution of ODEs
— Collocation methods that account for model error
— Optimization problems readily solved in AMPL/IPOPT

— ODEs are satisfied (or not) using soft constraints in the
objective function

36



Testing of AMLE

e Application to a nylon polymerization reactor model
with data from my lab
— 6 unknown parameters
— 2 measured states and 1 unmeasured state
— unknown initial conditions
— known measurement variances, but unknown Q values

e Seeking graduate students to estimate parameters in
larger models

37
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Parameter estimation is a difficult problem

— Two sources of uncertainty
e Measurement noise
e Disturbances that influence future behaviour

Proposed parameter estimation technigues account for

both sources of uncertainty:
- Iterative Principal Differential Analysis
- Approximate Maximum Likelihood Estimation
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