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1 Chemical engineers develop fundamental dynamic1. Chemical engineers develop fundamental dynamic 
models based on knowledge of chemical and 
physical phenomenap y p

2. Parameter estimation is a difficult problem
– Two sources of uncertainty

• Measurement noise
• Disturbances that influence future behaviour• Disturbances that influence future behaviour 
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1 Chemical engineers develop fundamental dynamic1. Chemical engineers develop fundamental dynamic 
models based on knowledge of chemical and 
physical phenomenap y p

2. Parameter estimation is a difficult problem
– Two sources of uncertainty

• Measurement noise
• Disturbances that influence future behaviour• Disturbances that influence future behaviour 

Proposed parameter estimation techniques account forProposed parameter estimation techniques account for 
both sources of uncertainty:
- Iterative Principal Differential Analysis
- Approximate Maximum Likelihood Estimation
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Why Model ChemicalWhy Model Chemical 
Reactors?

Objectives of Chemical Companies: $$$Objectives of Chemical Companies: $$$
– Produce chemicals and polymers with targeted properties
– Make different product grades efficiently in a single reactor
– Devise improved reactor operating strategiesDevise improved reactor operating strategies
– Bring new products to market quickly
– Develop process knowledge for trouble-shooting

Models can help companies to:
– Train operators
– Design and test automatic control schemesDesign and test automatic control schemes
– Optimize grade changeover policies
– Simulate effects of process conditions and equipment design on product 

properties and production rates
– Plan experiments
– Test theories about what has gone wrong
– Capture, store and distribute knowledge
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F d t l M d lFundamental Models 
of Chemical Processes

Where do model equations come from?

• Material balances on chemical species, and 
energy balances
– Modeler converts mythology and assumptions into– Modeler converts mythology and assumptions into 

mathematical expressions
– Algebraic equations, ODEs, PDEs

• Additional equations that describe:
– Rates of chemical reactions
– Movement of chemical species from one phase to another 
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F d t l M d lFundamental Models 
of Chemical Processes

Example - Polyethylene model for INEOS (BP Chemicals)
• 22 nonlinear ODEs

45 t• 45 parameters 

– Model predicts:Model predicts:
• reactant gas composition (ethylene, hexene, hydrogen)
• polymer production rate
• polymer properties• polymer properties 

using reactant feed rates and reactor temperature

– Model for scale-up from laboratory to commercial reactorsp y
• Use knowledge from model to reduce the number of steps and experiments 

required
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Th P t E ti ti P blThe Parameter Estimation Problem 
in Dynamic Chemical Reactor Models

• Experimental situation 
Measurements at irregular sampling times– Measurements at irregular sampling times

– Results from replicate experiments vary due to
• Disturbances that enter the reactor and influence future behaviour
• Uncertainties in initial reactor conditions and input-variable 

trajectories

• Model equations
– Typically 10-100 ODEs and 15-50 parametersTypically   10 100  ODEs   and  15 50  parameters
– Many simplifying assumptions
– Unknown initial values for some state variables
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Four Replicates of a Dynamic Experimentp y p
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• Any model that we fit through these data will result in
correlated residuals.

I d i t d t ti• In dynamic systems, random errors at one time
influence future responses. 

• How should we account for this deviation from   

9
traditional least-squares assumptions during
parameter estimation and model testing?



T diti l P t E ti ti iTraditional Parameter Estimation in 
a Differential Equation
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• Estimate the model parameters θ, given noisy 
observations y and known system inputs u.
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• We assume: 1) model structure is perfect
2) u and x0 are perfectly known
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2) u and x0 are perfectly known
3) measurements have random error



Traditional Parameter Estimation inTraditional Parameter Estimation in 
a Differential Equation
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• Estimate the model parameters θ, given noisy 
observations y and known system inputs u.
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• Requires repeated numerical solution of ODE each time 
the optimizer guesses new parameter values
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p g p
• If initial conditions are unknown, they are estimated 

along with the parameters



Our First Algorithm (iPDA)Our First Algorithm (iPDA)

• Fit an empirical curve x (t) to the dynamic data using B-splinesFit an empirical curve x~(t) to the dynamic data using B splines  

( )            ),(t-)y(t J 2
i~i1 ∑= βx
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Dynamic Data and B-Spline Curve
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Our First Algorithm (iPDA)Our First Algorithm (iPDA)

• Fit an empirical curve x (t) to the dynamic data using B-splinesFit an empirical curve x~(t) to the dynamic data using B splines  
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• Determine parameter values θ to satisfy ODE as much as possible 
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Our First Algorithm (iPDA)Our First Algorithm (iPDA)

• Fit an empirical curve x~(t) to the dynamic data using B-splinesFit an empirical curve x~(t) to the dynamic data using B splines  
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• Determine parameter values θ to satisfy ODE as much as possible 
with β fixed
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• Iterate between steps 2 and 3 until convergence



I iPDA d?Is iPDA any good?

• No need for repeated numerical solution of ODE
– No stability problems for bad parameter values

• No initial conditions required• No initial conditions required
• Easy to handle non-uniformly sampled data
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I iPDA d?Is iPDA any good?

• No need for repeated numerical solution of ODE
– No stability problems for bad parameter values

• No initial conditions required• No initial conditions required
• Easy to handle non-uniformly sampled data
• During the parameter-estimation step, minimize residuals between g p p,

spline curve and fundamental model using the differentiated form of 
the model
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• During the spline-fitting step, minimize deviations from the data 
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An Epiphany

• IPDA is equivalent to selecting θ and β simultaneously to minimize:
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An Epiphany

• IPDA is equivalent to selecting θ and β simultaneously to minimize:
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• This is the solution, but what is the underlying statistical problem?
• What is an appropriate value of λ?
• What happens in multi-response problems?• What happens in multi response problems?
• What if some states aren’t measured?
• How can we enforce known initial conditions?
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AMLE P d P t E ti tiAMLE, a Proposed Parameter-Estimation 
Technique for Stochastic DEs
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• Two noise sources
Measurement noise

)())()(( ηη Q

– Measurement noise
– Stochastic process disturbances that can account for

• Uncertainties in u
• Unknown or unmeasured inputs
• Structural imperfections in model
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Random Process Disturbance

Process disturbance
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AMLE P d P t E ti tiAMLE, a Proposed Parameter Estimation 
Technique for Stochastic DEs
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• Our approach:
– Assume that the solution to the differential equations can be 

represented using B-splines or other basis functions:represented using B splines or other basis functions:
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is used to convert ODEs into algebraic equationsdt
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Approximate Maximum-Likelihood pp
Estimation

A h l i f h d i b ll i d• Assume the solution of the dynamic system can be well approximated 
by B-splines with unknown coefficients β

• Estimate the fundamental model parameters θ and the unknown p
spline coefficients β

Select and to minimizeθ̂ β̂– Select and       to minimize
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Deviations from data Deviations from model

• Objective function arises from maximizing conditional joint density 
function of the states and measurements given the parameters

        Deviations from data Deviations from model
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function of the states and measurements, given the parameters



What Weighting to Use?
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• Heuristically 
– A large λ is appropriate when

• Model is accurate and data are noisy• Model is accurate and data are noisy

– A small λ is appropriate when
• Data are good and model is inaccurate

24



What Weighting to Use?
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• Heuristically 
– A large λ is appropriate when

• Model is accurate and data are noisy• Model is accurate and data are noisy

– A small λ is appropriate when
• Data are good and model is inaccurate
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traditional least-squares parameter 

ti ti hi h f t
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Q estimation, which assumes a perfect 
model and no disturbances



Obj ti F ti f M lti i tObjective Function for a Multivariate 
Example with Known Variances
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Straightforward to write J for models with 
many ODEs (or DAEs) and for problems
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many ODEs (or DAEs) and for problems 
with unmeasured states



R t E l ith N t tiReactor Example with Nonstationary 
Disturbance in Material Balance
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w could be a drifting flow rate or feed 
concentration disturbance (or a leak)



Reactor Example

• Objective function for parameter estimation is:
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I t S (t) f Si l t dInput Sequence u(t) for Simulated 
Experiments

 Input flow rate
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P t E ti ti R lt fParameter Estimation Results from 
Monte-Carlo Simulations of CSTR Example

• 4 parameters,    ,     ,        and         were estimated using 
AMLE and traditional method nonlinear least squares (NLS)

a b RE / refk
AMLE and traditional method nonlinear least squares (NLS)
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P t E ti ti R lt fParameter Estimation Results from 
Monte-Carlo Simulations of CSTR Example
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• Parameter estimates are better using AMLE 

f d l f d
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• Confidence intervals for parameter and state estimates
are readily computed from inverse of FIM



State Trajectory Estimates

Concentration Trajectory
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State Estimates

• Temperature trajectory
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State Estimates

• Non-stationary disturbance w
0

-0.1

-0.05

-0 25

-0.2

-0.15

km
ol

/m
3 /t)

-0.35

-0.3

0.25

w
 (k

0 10 20 30 40 50 60 70
-0.45

-0.4

t(min)

34time



Selecting Weighting Factors in JSelecting Weighting Factors in J

• Modeler can estimate σm
2 from repeated measurements or from 

information from instrument supplier

• Modeler will know that model is imperfect, and about the physical 
sources of disturbances, but won’t know the noise intensity Q 

• When Q is unknown, we must estimate it.  
– The correct value of Q results in spline fits that are consistent with σm

2

It t b t t ti ti d Q ti ti til– Iterate between parameter estimation and Q estimation until convergence

• Estimate of Q  for each ODE provides information to modeler about 
disturbances and model mismatchdisturbances and model mismatch
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Features of iPDA and AMLE Methods

• Good for systems with
Unknown or uncertain initial conditions– Unknown or uncertain initial conditions

– Irregular sampling
– Unmeasured statesUnmeasured states
– Meandering (nonstationary) disturbances

• No need for repeated numerical solution of ODEs
– Collocation methods that account for model error

Optimization problems readily solved in AMPL/IPOPT– Optimization problems readily solved in AMPL/IPOPT
– ODEs are satisfied (or not) using soft constraints in the 

objective function
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Testing of AMLE

• Application to a nylon polymerization reactor model 
with data from my labwith data from my lab
– 6 unknown parameters
– 2 measured states and 1 unmeasured state2 measured states and 1 unmeasured state
– unknown initial conditions
– known measurement variances, but unknown Q values

• Seeking graduate students to estimate parameters in 
l d llarger models 
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1 Chemical engineers develop fundamental dynamic1. Chemical engineers develop fundamental dynamic 
models based on knowledge of chemical and 
physical phenomenap y p

2. Parameter estimation is a difficult problem
– Two sources of uncertainty

• Measurement noise
• Disturbances that influence future behaviour• Disturbances that influence future behaviour 

Proposed parameter estimation techniques account forProposed parameter estimation techniques account for 
both sources of uncertainty:
- Iterative Principal Differential Analysis
- Approximate Maximum Likelihood Estimation
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