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Circadian rhythms

e circadian rhythms, endogenpus cycles
of behavior or biological activity with a period
of about 24 hours
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Phase response curves (PRCs)

A PRC is a plot of phase-shifts as a function of circadian phase of a stimulus
- in our contex usually a light pulses, sometimes a temperature pulse.
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Into the
nucleus

Diagram for the Drosophila clock
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Perturbation theory

Differential equation: (X9, s 5%,) Variational equation:
, dX ,
@=F(x,u) xER" xﬁ g A0 (*)
Z L > (@0, ...0) | | where
oF;
g(t) = x(t,x9,U) \ A(t) = (—‘(g(r),uo)J
period =t — 0X

X =X{(t) an nxn matrix

Floquet theory: can write X(z) = Z(1)e®
X(t) = fundamental

where Z(t + 1) = Z(t), Z(0)= Identity b ealribian v
eigenvalues A, ... A of ¢f are Floquet multipliers X(0)=1,

A= eXj Floquet exponents

0 - -
ﬂj(p(pt),xo(M))|M=MU=-(X(fc)-armg[m,ln_ O f X(1)X(s)™ Mj(g(r),uo) \
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Flexibility

u = (rates, couplings, ...) . .
differential gu(t) _

ug = base value equation
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Two-loop forced Leloup-Gonze-Goldbeter model of the Drosophila clock

Ssingular value
i 1.041425287
0.021026676
0.000870290
0.000052507
] 0.000004254
0.000000428
1 0.0000000306
0.000000004
0.000000001
0.000000000

Number of variables in the model ... 10

Wariable used as reference (mPER) ... 1

Number of parameters in the model ... 41

Mumber of perturbed parameters in this analysis ... 39
Size of the perturbations ... <= 1.00%

Projection coefficient of dt on 1st PC ... 6.6325
Projection coefficient of dt on 2nd PC ... -0. 8207326

Projection coefficient of dt~2 on 1st PC ... -0.38426
Projection coefficient of dt~2 on 2nd PC ... -2.73112
Projection coefficient of dt~2 on 3rd PC ... -0.581293

oo of Variance
07.023028951

2.890559794
0.081079393
0.00489172%5
0.000396276
0.000039912
0.0000033252
0.000000418
0.000000066
0.000000027
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Loops

@Rl — [ ] <=

kv

eigenvalues

~ exp{—k x period}

(m(#), TF(#)

WARWICK

<> s e = P —»@

dominant mode is phase ¢ and
perhaps d¢/dt.

— image of parameters — period orbit
is low-dimension (typ. 2 in this case)

extra slow modes obtained by adding
more genes (TF v mRNA), coupling etc
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IRCs: Infinitesimal Response Curves

for given parameter yu, and output variable Q,

.félf,Qj.(S)

T

phase
s

e for sustained parameter change of 6uj:

T
80; = dw; [ f, o ($)ds+0(u,”)
0

has the following properties:

» for phase-restricted parameter change of Emj between s and s+ds

2
00; = OW;" fy, o, (s)ds+00u;")
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Drosophila clock response analysis
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Temperature Compensation

base temperature 7,
Parameters as function of temperature: w,=u(7)
Ty — Ty +0T causes change w;(Ty) = u;(Tp) + uj'(TO) -6T+0(6T2)

Temperature IRC: fr 0i0q(®) = zjujr(TO)'fuj,period(cp)

Temperature compensation

¢

T
f f T,period (cp)d(p =0
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Phase response maps
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0 D T K

v = period of free oscillator

T = forcing period (e.qg. 24hrs)

TIM p2 degr.
in L-G Drosophila
Q' = (P+(T—T)+8V((P) 7 _unstable
' fixed point
stable
t period ) fixed point
mismatc
I'-= \| /] @
Arnold

tongue — I'= ];Li,pe,,,-od must have significant amplitude




Flowering Induction Network

Photoperiodic Pathway  Autonomous Pathway FRIGIDA Vearnalization
Light =ignal Genetic Switch between Cold
Northen versus Snbtropical
l Varieties l
_ VIN3
& -, | Histone
k= FLD, FVE > .
& de—acetylation VRNL
YREN2
l FY, FCA, FPA Histone
LFFL v de—acetylation
CO and methylation
FLC | J
: mRNA
_ | binding and
‘ : degradation
- HT |

Vegetative Phase » Flowering



Parametrisation

Two different short day (SD) and long day (LD) experiments were used as training
data sets.

The validation data sets included mRNA waveforms from both wild-type plants and
some mutant types.

The fit of the model to the relevant data set(s) was measured using a weighted mean
square cost function (SDs vs. LDs).

Initial parameter search was performed using simulated annealing (Sobol
sequences). The Nelder-Mead unconstrained simplex optimization method (Matlab)
was used to improved the fitting.

In each case, the solution to the ODE was allowed to relax to the limit cycle
(entrainment) and then the limit cycle was computed using MatLab ODE boundary
value solver. The resulting solution was therefore guaranteed to be a true, attracting
limit cycle.

After optimisation, the difference in cost values of the 20 best solutions tended to be
small, although some parameter values could be widely spread in parameter space.
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The model shows a
missing inhibitor gene
In the morning.

We deduced from here
Its expression pattern

and that has given us
appropriate candidates.

Help in experiment
design:

» Microchips

» Micro RNASs



Conclusions

» New Molecular Biology techniques are giving us unprecedented details about
the inner workings of living organisms.

» Itis possible to adopt an interactive approach where existing knowledge is
modelled, computer simulated and analysed mathematically; this in turn helps
with the design of new experiments.

» Despite the great complexity of biological systems, it is possible to discern
fundamental principles that are achieved through convergent evolution.

» New mathematical theories and techniques will emerge from the study of these
systems, which may be fundamentally different from the more physically

Inspired theories that we have now.



