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Background and Contribution

l In demanding working circumstances the quality of the tasks performed by 
a human might degrade. 

l To improve task performance, personal assistant agents may be used.

l An agent is able to reason about states of the human and to give the most 
appropriate and effective support, when required. 

l To enable this, the human work pressure model developed previously 
(Bosse et al., 2008) can be applied.

l To ensure that human states are recognized correctly and a proper support 
is provided to the human by the agent, the human work pressure model 
should be valid. 

l In this work an approach is proposed to validate the existing work pressure 
model. 

l In the validation approach parameter estimation is crucial step.



2

3

Agent model for an Operator’s 
Functional State (1)
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Agent model for an Operator’s 
Functional State (2)
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ExperiencedPressureInfluence(t) = 1 - (HighPressureSensitivity * Pos(ExperiencedPressure(t) -
OptimalExperiencedPressure) + LowPressureSensitivity * Pos(OptimalExperiencedPressure -
ExperiencedPressure(t)))

ProvidedEffort(t) = GeneratedEffort(t) - RecoveryEffort(t) - NoiseEffort(t)

RecoveryEffort(t) = Pos(α * (CriticalPoint(t) - GeneratedEffort(t))) * GeneratedEffort(t)* (BasicCognitiveAbilities -
CriticalPoint(t)) / BasicCognitiveAbilities

CriticalPoint(t) = LowestCriticalPoint + (1 - Exhaustion(t)) * (BasicCognitiveAbilities - LowestCriticalPoint)
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Background

l In demanding working circumstances the quality of the tasks
performed by a human might degrade. 

l To improve task performance, personal assistant agents may be 
used.

l An agent is able to reason about states of the human and to give 
the most appropriate and effective support, when required. 

l To enable this, the human work pressure model developed 
previously (Bosse et al., 2008) can be applied.
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Experiments

l 31 subjects

l Experiment duration is approx. 1h

l 2-factor within subject design:
Condition 1 (15 minutes): 

low task level – high task level
Condition 2 (15 minutes):

high task level – low task level

l Personal characteristics of the subjects
were evaluated using NEO-PI-R and NEO-FFI questionnaires and 
short tests
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Data

l Data from the experiment were used to calculate the values of several concepts 
from the work pressure model. 

PerformanceNorm = B*Ambition+(1-5*B)

PerformanceSensitivity = C*Neuroticism + (0.5-5*C)

OptimalExperiencedPressure = 0.1*Extraversion*D- 0.1*Vulnerability*(1-D) + (1-D)

LowPressureSensitivity = 0, when OEP <= 0.33, LPS = 1, when OEP >0.33

HighPressureSensitivity = 1 when OEP < 0.67, HPS = 0 when OEP > 0.67

The personality profile

Basic Cognitive Abilities

Calc = % correct*minCalcRT/CalcRT

Choice = minChoiceRT/ChoiceRT

BCA = (W3*Calc + W4*Choice)*Z

The expertise profile and task level
Mouse-RT = %dist_to_centre *minMouse-RT/Mouse-RT

Exp = W1*Calc + W2*Mouse-RT

TaskLevel = (1.5 - Exp)*SitD

Performance quality

Effectivity = (1+ explosion_fraction)/2.0 ObjTES = (0.25*efficiency + 0.75*effectiveness)*2
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Gradient-based parameter estimation
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The method is based on the maximum likelihood principle
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Algorithm: ML-PARAMETER-ESTIMATION

Input: Initial values of the parameters θ1, maximal number of iterations 
itmax; satisfactory error value err_sat; matrix of the input values U; matrix 
of the output values Z

Output: Maximum likelihood estimate θML

1 i=1
2 Until i ≤ itmax perform steps 3-7
3 Calculate the current state of the system using the model equations
4 Calculate the output root mean square error erri. 
5 if err ≤ err_sat, then θML = θi; exit endif.
6 if i < itmax, then

6a Calculate the noise covariance matrix R
6b  Calculate the sensitivity coefficients θ∂∂ /y
6c Calculate the first and second gradients.
6d Calculate the parameter values for the next iteration θi+1

endif
7 i = i+1
8 Find the minimum error errm in {erri| i=1..itmax}; then 

θML = θm; exit
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Simulated annealing

Algorithm:SA-PARAMETER-ESTIMATION

Input: Initial randomly selected values of the parameters , 
computational budget C; observed human behaviour B

Output: Best estimate of parameter settings θBE

1 θBE = θ1.
2 while C ≥ 0 perform steps 3-8
3 Chose a random parameter setting θ in neighbourhood of 

θBE using equations 1, 2a and 2b.
4 Calculate the output root mean square error err for θ. 
5 Calculate the output root mean square error errBE for θBE.
6 if err ≤ errBE, then θBE = θ; errBE = err; endif.
7 Decrease C. 
8 Temperature = C * errBE. 
9 output θBE.

Temperature = computational-budget-left ⋅ error (1)

� =� +Temperature ⋅ (1- � ) ⋅ random_no_between[0,1] (2a)

� = � -Temperature ⋅ �  ⋅ random_no_between[0,1] (2b)
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Results of the parameter estimation (1)

11, 13-16, 18-23, 25, 
28, 29, 33, 36, 39

12, 27, 38, 4117, 26, 30, 31, 34. 35, 37, 
40

32SA

-29, 3111, 13, 14, 16, 17, 19, 22, 
24-26, 28, 32-41

12, 15, 18, 20, 21, 
23, 27, 30

GBSubjects in condition 2

13-18, 20, 21, 28, 29, 
31

11, 12, 22, 24-26, 30, 
32-39, 41

40SA

--11-20, 22, 24-4121GBSubjects in condition 1

> 0.4[0.25, 0.4)[0.1, 0.25)< 0.1Error range

0 100 200 300 400 500 600 700 800
0

0.5

1

1.5

TIME, sec

 

 

Performance quality
Situational demand
Empirical data

0 100 200 300 400 500 600 700 800
0

0.5

1

1.5

TIME, sec

 

 

Performance quality
Situational demand
Empirical data

Empirical data and the estimated output performance quality for subject 37 for condition1 (left) and condition 2 (right)
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l To evaluate the quality of estimation also the Cramer-Rao measure
was used

Results of the parameter estimation (2)
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l Using this measure at least 57% (70% in the best case) of the estimated 
parameters have been identified as accurate for all subjects in both 
conditions (relative standard deviation (rsd)  ≤ 5%). Other parameters, 
although less accurate (5% < rsd < 40%) still have a degree of confidence. 

l Using another measure - the correlation coefficients among the estimates -
only one significant correlation between the parameters A and φ has been 
identified 
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Cross-validation
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Predicted dynamics of the model for subject 37 in the condition 1 using the estimated parameters from condition 2 (left) and 
in the condition 2 using the estimated parameters from condition 1 (right). 
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Conclusions & Discussion

l A number of parameters (35% in average) were evaluated as less 
accurate, and, therefore, less reliable. 

l One reason for that is a large overall number of parameters being 
estimated. 

l Another reason is that since the empirical data were collected 
based on irregular events, some temporal intervals contained the
amount of information insufficient for estimation. 

l Despite this, the models with estimated parameters demonstrated 
good predictive capabilities in the cross-validation, which is a strong 
indicator of the model validity. 


