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Overview

Construction of a Pathway Model
Bottom-up and Top-down Model Estimation
Dynamic Flux Estimation

Open Problems




Construction of a Pathway Model
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Formulation of a
Dynamical Systems Model
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Big Problem: Where do we get functions from?
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Physics: Functions come from theory

Biology: No theory available
Solution 1: Educated guesses: growth functions
Solution 2: “Partial” theory: Enzyme Kinetics

Solution 3:  Generic approximation
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Why Not Use Linear Functions?

Example: Heartbeat modeled as stable limit cycle
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System of linear System of non-linear
differential equations differential equations




Formulation of a Noniinear Model
for Complex Systems

Challenge:
Linear approximation unsuited
Infinitely many nonlinear functions

O~V id i cns il Dt~ AV I _\/t
Solution with Potential: X = === Vi

Savageau (1969): Approximate V;* and V- Iin a
logarithmic coordinate system, using Taylor theory.

Result: Canonical Modeling; Biochemical Systems Theory.




Result: S-system

Xi =, Xlgil X29i2 X Ginem _Bi thil X;iz. X Ni nm
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Each term is represented as a product of power-functions.

Each term contains and only those variables that have a
direct effect; others have exponents of O and drop out.

a’s and f’s are rate constants, g’s and h’s kinetic orders.

Important for Estimation & Structure ldentification:
Each term contains exactly those variables that have a
direct effect; others have exponents of O and drop out.
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Alternative Formulations
Within BST

S-system Form:
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Alternative Formulations
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S-system Form:
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GMA: Xl = 2())(0 XS—O-9 _8X10.75 _12X10.5X4_1

S-system: X, = 20X, X% —19X 0% ;045

10 1 e , 10 ¢
GMA system
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Application
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Pathways: purines, glycolysis, citric acid, TCA, red blood cell,
trehalose, sphingolipids,

Genes: circuitry, regulation,...

Genome: explain expression patterns upon stimulus
Growth, immunology, pharmaceutical science, forestry, ...
Metabolic engineering: optimize yield in microbial pathways

Dynamic labeling analyses possible

Math: recasting, function classification, bifurcations, delays...

Statistics: S-system representation, S-distribution, trends;
applied to seafood safety, marine mammals, health economigsg




Advantages of Canonical Mo

Prescribed model design: Rules for translating diagrams into
equations; translation can be automated

Direct interpretability of parameters and other features
One-to-one relationship between parameters and model
structure simplifies parameter estimation and model

identification

Simplified steady-state computations (for S-systems), including
steady-state equations, stability, sensitivities, gains

Simplified optimization under steady-state conditions
Efficient numerical solutions and time-dependent sensitivities

In some sense minimal bias of model choice and minimal model
size; easy scalability




Flow Chart of Traditional
Systems Estimation Strategy

Voit, Drug Discovery Today, 2004



« Use information at the “global” level (in vivo time series
data) to deduce (per model) structure and regulation at the
“local” level (connectivity, signals,...)




Inverse Problems: Sandbox Example

concentration
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Key Step: Parameter
Estimation from Time Series Data

According to computer scientists: trivial, solved.
Many methods

Most work sometimes

None works always

Estimation remains to be a frustrating topic!
Example: Kikuchi et al. 2003




Recent

Substitution of slopes for differentials; including
decoupling of equations (Voit, Savageau, ...)

Genetic algorithms (Kikuchi, Tominaga, ...)

Neural networks + GA’s (Almeida, ...)

Interval methods (Tucker, Moulton, ...)

Newton flow methods (Tucker, Moulton, ...)

Simulated annealing (Gonzalez, Mendoza, ...)

Swarm & ant colony methods (Naval, Mendoza, ...)

Collocation and hybrid evolution (Tsai, Wang, ...)

Alternating regression (Chou, Martens, Voit, ...)

Eigenvector optimization (Vilela, Almeida, ...)

Dynamic Flux Estimation (Goel, Chou, Voit, ...)

O
O
O
O
O
O
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Chou and Voit, Math. Biosc., 2009



Old Trick: Slope Estimation

S(tk) ~ X | = F(X(t))
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Voit and Savageau, J. Ferment. Techn. 1982



Toward a New Trick
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New Trick: Alternating Regression

S, ma XXz X9 — g XX
N S—— /
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Number = ¢, X * X Jiz... X Jr
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Linear regression yields ¢o; and @;;

Chou, Marten, Voit, Theor. Biol. Med. Model. 2006



Alternating Regression (cont’d)

S, mo XXz X9 — g XXl XM at ot

/\ /\
Use ¢; and g; and compute “a-term”

Merge the numerical value of the a-term

. /\ /\
with S; and compute S and h; per

linear regression for all time points.

Iterate between «- and - terms until
convergence




Alternating Regression (cont’d)

Results:
Extremely fast, if it converges.
Convergence issue very complex.
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Chaotic Lotka-Volterra Model
(Vano, ..., Sprott, 2006)

.
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a; = (1,1.09,1.52, 0; 0, 1, 0.44, 1.36;

2.33,0,1,047;1.21,0.51, 0.35, 1)

Voit, Chou, Int. J. Syst. Synth. Biol. 2009



Typical Problems with Most Methods

Time to (global) convergence
Problems with collinear data

Problems with models permitting redundancies

l‘- L] v

Problems with compensation of error among term




Problem with Traditional Methods:
Extrapolation

Former S-system model,;
fit with GMA form

4 time 8 time

Bad parameters, but good fits Problem with the “misestimated”
because of error compensation system during extrapolation (2X;)

Voit, Lecture Notes in Operations Research 9, 2008



Example: Regulation of Glycolysis In
Lactococcus lactis

Bacteria found in yogurt and cheese:
Lactococcus lactis (top),

Lactobacillus bulgaricus (blue),
Streptococcus thermophilus (orange),
Bifidobacterium spec (magenta).

www.hhmi.org/bulletin/winter2005/images/bacteria5.jpg

Bacterium involved in dairy, wine, bread, pickle production.
Relatively simple organization. Here: study glucose regulation.

32




Goals of Modeling

e Understand pathway; design, operation
» Allow extrapolation to new situations

e Allow prediction for manipulation

e Maximize yield of main product

e Optimize yield of secondary products

e Eventually develop a cell-wide model




Experimental Time Series Data
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Other Information
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Lactococcus Data

Had modeled these data before

First, difficult to find any solutions
Combination of methods led to good fit
Later, many rather different solutions
Question: Is any of these solutions optimal?
Question: Is the BST model appropriate?

Problems with extrapolation
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Inspired by Stoichiometric and Flux Balance Analysis
Extended to dynamic time courses

Study flux balance at each time point

Change in variable @ t = All influxes @ t — All effluxes @ t

Linear system; solve as far as possible
Result: values of each flux @ time points ft;

Represent fluxes with appropriate models

Goel, Chou, Voit, Bioinformatics, 2008



Dynamic Flux Estimation (DFE)

( Model Free Estimation )

Optimizing and Linear \
Smoaothing Algebra
Time || Numerical “ System of IIL Dynamic
Series Data Slopes Fluxes Flux Profiles

System |
Topology

S

Functional
Assumptions

Parameterized Numerical Symbolic

Flux
Kinetic Model Flux _
Representation Representation

Parameter
Estimation

( Model Based Estimation )




Dynamic Flux Estimation (DFE)
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Dynamic Flux Estimation (DFE)
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Dynamic Flux Estimation (DFE)
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Open Problems

Smoothing and Mass Conservation:
Noise in the data leads to loss or gain of mass

Redundancies / Sloppiness:
Many models fit the data

Underdetermined Flux Systems:
Linear system of fluxes not of full rank

Extrapolation:
System fails for new data

llI-defined Systems:
Significant information is missing




Smoothing and Mass Conservation

Issue:
Noise in the data leads to loss or gain of mass

Possible Causes:
Experimental measurement errors
Secondary pathways ignored (PPP — 5%)
Ethanol evaporates

Possible Remedies:
Identify where mass is lost/gained;
add (degradation, production) reactions
to the model
Constrained smoothing (e.g., with wavelets)




Redundancies / Sloppiness

Issue:
Many models fit the data

Possible Reasons:
1. Data collinear or non-informative
2. High noise permits different models
3. Noise-free data admit different models

Possible Remedies:
1. Pooling of data; set variables constant
2. Monte-Carlo identification of “neutral ensembles”
More datasets and constraints
3. Lie transformation group analysis

Vilela, Vinga, Grivet, Voit, Almeida, BMC Bioinformatics, 2009



Underdetermined Flux Systems

Issue:
Linear system of flux often not of full rank;
can’t solve uniquely for fluxes

Dominant Cause:
More reactions than metabolites in most pathways

Potential Remedies:
Augment DFE with other methods
bottom-up estimation of some fluxes
Alternating Regression
Prefitting; Flux balance analysis; lin-log
Constraints (maximize growth)

Voit, Goel, Chou, da Fonseca, IET Syst. Biol., 2009



Extrapolation

Issue:
Model fit good, but extrapolation fails

Dominant Cause:
Functional representation of flux profile incorrect

Potential Remedies:

Analvze more data with sliahtlv chan
MIJL\J 11 INJI WA LA LULA vvikli 1l \JIIHI ILIJ w1l ICAlL ]

Develop better kinetic description
Attempt piecewise representation




llI-defined Systems

Issue:
Data, time courses missing

Dominant Cause:
Experimental difficulties, e.g., human systems

Potential Remedies:
Order-of-magnitude modeling
Canonical models with default parameter values
Data per expert opinion




Overriding Challenge

Speed and Convenience

Algorithms for parameter estimation
from time series must become
much faster and more robust

They must run reliably and “semi-foolproof”
on ordinary PC’s without the need
of expensive software




Summary

Efficiently dealing with inverse problems presents
new modeling opportunities:

. Time series data are coming! They contain a lot of
iImplicit information that must be extracted.

. Technical challenges abound. Important: Efficient,
robust, and fast solutions on PC’s needed. No single
algorithm satisfactory.

. Important overlooked issue: Error compensation;
extrapolation becomes unreliable. DFE promising, but
needs auxiliary methods.

. Many problems remain unsolved.
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