Value of Information in Optimal Flow-Level Scheduling of Users with Markovian Time-Varying Channels

Peter Jacko*

YEQT V 2011, October 25

*BCAM — Basque Center for Applied Mathematics, Spain
BCAM, Bilbao
BCAM, Bilbao

- Applied math research center founded in 2008
- North coast of Spain: surfing, Rioja, France, Pyrenees
- Bilbao: R&D&I-oriented, Guggenheim, cuisine
- Quickly growing (30 researchers, 10 PhD students)
- International (20 countries, dozens of visitors)
- Networks: Ayesta, Anselmi, J., Makowski, Erausquin,...
- Call for all-level positions: 11/11/11
- Internship program, courses
BCAM Courses

• **Enrico SCALAS.** "Semi-Markov models for high-frequency finance". November 7-11, 2011.

• **Ger KOOLE.** "Markov decisions chains and their applications". November 28 - December 2, 2011.

• **Emmanuel TRÉLAT.** "Finite dimensional optimal control: theory, applications, numerical implementation". March 12 - 16, 2012.

• **Sebastian REICH.** "Predicting the unpredictable: Combining mathematical models with observational data". March 26 - 30, 2012.

• **Mats GYLLENBERG.** "Structured populations: Modelling and analysis". May 7 - 11 2012.

• **Sergey KOROTOV.** "Selected topics in the finite element analysis". May 21 - 25, 2012.
Motivation: Wireless Downlink

- CDMA 1xEV-DO
- Channel conditions vary due to fading
- Geometric-sized jobs
- Channel conditions independent across users
- Markovian evolution of channel conditions
- Base station can serve M users per slot
Talk Outline

• Flow-level MDP model

• Relaxation of the resource allocation constraint

• Optimal index policy and indexability

• Generalized Potential Improvement rule
 ▶ new opportunistic scheduler

• Suboptimality evaluation by numerical experiments

• Maximal stability (?)
Job Scheduling Problem

- Discrete time \((t = 0, 1, 2, \ldots)\), preemptive service

- Jobs \(k = 1, 2, \ldots\) with size \(B_k\) (in bits) arrive randomly
 - \(c_k\) = cost of waiting for job \(k\)
 - Gilbert-Elliot channel quality conditions \(\mathcal{N}_k' := \{B, G\}\)

\[
Q_k = \begin{pmatrix}
B & G \\
q_{k,B,B} & q_{k,B,G} \\
q_{k,G,B} & q_{k,G,G}
\end{pmatrix}
\]

- service rate \(0 \leq s_{k,B} \leq s_{k,G}\) bits per second

- Minimize total waiting cost while serving \(M\) jobs/slot
Markov Decision Processes Model

- Job/user/channel k is defined by
 - action space $\mathcal{A} := \{0, 1\}$
 - departure probability
 $$\mu_{k,n} = \min \{1, 1 - (1 - 1/\mathbb{E}[B_k])^{\varepsilon_{s,k,n}}\}$$
 - state space $\mathcal{N}_k := \{0, B, G\}$
 - expected one-period capacity consumption $W_{k}^{a} := a$
 - expected one-period reward R_{k}^{a}
 - one-period transition probability matrix P_{k}^{a}

- State process $X_k(t) \in \mathcal{N}_k$

- Action process $a_k(t) \in \mathcal{A}$ – to be decided
Markov Decision Processes Model

- Expected one-period reward

\[R_{k,0}^1 := 0, \quad R_{k,n}^1 := -c_k (1 - \mu_{k,n}), \]
\[R_{k,0}^0 := 0, \quad R_{k,n}^0 := -c_k; \]

- One-period transition probability matrices

\[
P_{k}^1 :=
\begin{pmatrix}
0 & B & G \\
0 & 1 & 0 \\
\mu_{k,B} & \tilde{\mu}_{k,Bqk,B,B} & \tilde{\mu}_{k,Bqk,B,G} \\
\mu_{k,G} & \tilde{\mu}_{k,Gqk,G,B} & \tilde{\mu}_{k,Gqk,G,G}
\end{pmatrix}
\]
Resource Allocation Problem

- Formulation under the β-discounted criterion:

$$\max_{\pi \in \Pi} \sum_{k \in \mathcal{K}} \mathbb{E}^{\pi} \left[\sum_{t=0}^{\infty} \beta^t R_{k,X_k(t)}^{a_k(t)} \right]$$

subject to

$$\sum_{k \in \mathcal{K}} W_{k,X_k(t)}^{a_k(t)} = M, \quad \text{for all } t = 0, 1, 2, \ldots$$

- Analogously under the time-average criterion

- This problem is \textbf{PSPACE}-hard
 - intractable to solve exactly by Dynamic Programming
 - instead, we relax and decompose the problem
Resource Allocation Problem (RAP)

- Stochastic and dynamic
- There is a number of independent users
- Constraint: resource capacity at every moment
- Objective: maximize expected “reward”
- Captures the exploitation vs. exploration trade-off
 - always exploiting (being myopic) is not optimal
 - always exploring (being utopic) is not optimal
- This is a model of learning by doing!
Whittle’s Relaxation

- Serve M jobs in expectation
 - infinite number of constraints is replaced by one
 - sort of perfect market assumption

\[
\begin{align*}
\max_{\pi \in \Pi} \sum_{k \in K} \mathbb{E}^{\pi} & \left[\sum_{t=0}^{\infty} \beta^t R_{k, X_k(t)} \right] \\
\text{subject to} \quad \sum_{k \in K} \mathbb{E}^{\pi} & \left[\sum_{t=0}^{\infty} \beta^t W_{k, X_k(t)} \right] = \sum_{t=0}^{\infty} \beta^t M
\end{align*}
\]

- Provides an upper bound for RAP
Lagrangian Relaxation

- **Pay cost** ν for using the server
 - the constraint is moved into the objective

$$
\max_{\pi \in \Pi} \sum_{k \in \mathcal{K}} \mathbb{E}^{\pi} \left[\sum_{t=0}^{\infty} \beta^t R^{a_k(t)}_{k,X_k(t)} \right] - \nu \sum_{k \in \mathcal{K}} \mathbb{E}^{\pi} \left[\sum_{t=0}^{\infty} \beta^t W^{a_k(t)}_{k,X_k(t)} \right]
$$

- Also provides an upper bound for RAP
- Decomposes due to user independence into **single-user** parametric subproblems
Optimal Solution to Subproblems

- **Theorem 1:** Threshold policy is optimal
 - serve iff user-k state is above a threshold

- **Theorem 2:** Problem is indexable, which implies
 - if $\nu \leq \nu^*_{k,n}$, then it is optimal to serve in state n
 - if $\nu \geq \nu^*_{k,n}$, then it is optimal to wait in state n

- $\nu^*_{k,n}$ is the dynamic price (Whittle index value)
 - obtained by identifying the efficiency frontier
Index Values

- The index values for user k are

$$
\nu_{k,G}^* = \frac{c_k \mu_{k,G}}{(1 - \beta)}, \quad \nu_{k,B}^* = \frac{c_k \mu_{k,B}}{(1 - \beta)} + \beta q_{k,B,G}^* (\mu_{k,G} - \mu_{k,B})
$$

- Weighted harmonic mean

$$
q_{k,B,G}^* := \frac{1}{\frac{1}{1 - \beta(1 - \mu_{k,G})} q_{k,B,G} + \beta(1 - \mu_{k,G}) q_{k,G}^\text{SS}}
$$

- Steady-state probability for condition G

$$
q_{k,G}^\text{SS} = \frac{q_{k,B,G}}{1 + q_{k,B,G} - q_{k,G,G}}
$$
Generalized Potential Improvement Rule

- **Opportunistic scheduler** under time-average criterion:
 - serve M jobs with highest actual PI* index

 $$\nu^*_k,G = \infty, \quad \nu^*_k,B = \frac{c_k \mu_{k,B}}{q^*_k,B,G (\mu_{k,G} - \mu_{k,B})}, \quad \nu^*_k,0 = 0$$

 - tie-breaking if in the good state: $c_k \mu_{k,G}$

- **Optimality** in special cases
 - $M = 1, \quad q_{k,B,G} = q_{k,G,B} = 0, \quad \beta = 0, \ldots$
 - multi-class ON/OFF channels ($\mu_{k,B} = 0$)
 - maximal stability and fluid-optimality in i.i.d. case
Real Wireless Data Networks

- $s_{k,n}$ and ε is usually known (E.g.: CDMA 1xEV-DO)

- PI* rule requires information of
 - expected job size $\mathbb{E}[B_k]$ (for both B, G)
 - state-transition matrix Q_k (for B)

- Approximations for long jobs:
 - probability of departure $\mu_{k,n} \approx s_{k,n} \cdot \varepsilon / \mathbb{E}[B_k]$
 - parameter $q_{k,B,G}^* \approx q_{k,G}^{SS}$
 - using both, index of B becomes independent of $\mathbb{E}[B_k]$
 - only tie-breaking of G jobs is $c_k s_{k,G} / \mathbb{E}[B_k] \approx c_k s_{k,G}$
Systems with Random Arrivals

- We evaluate performance in experiments
 - $M = 1$
 - consider 2 different classes of jobs
 - $\lambda_{k,n}$: probability of arrival from class k to state n

- Schedulers: PI*, PI-SS, PI1
 - randomized and $c\mu$ tie-breaking in G

- Score Based (Bonald, 2004): $\nu_{k,n}^{SB} := \sum_{m=1}^{n} q_{k,n,m}$
 - $c\mu$ tie-breaking in G
Experiments: Scenario 1

- Class 1 channel varies from slow-fading to fast-fading
Experiments: Scenario 2

- **Class 1**: $\mu_{1,G} = 1$, $\mu_{1,B}$ varies

![Graph showing relative suboptimality gap for different classes and scenarios.](image-url)
Experiments: Scenario 3

- **Class 1:** $q_{1,G,B}$ varies
Experiments: Scenario 4

- Class 1: both $\mu_{1,G}$ and $\mu_{1,B}$ vary (decreasing job size)
Experiments: Scenario 5

- Class 2: both $\mu_{2,G}$ and $\mu_{2,B}$ vary (decreasing job size)
Experiments: Scenario 6

- Class 2: both $\mu_{2,G}$ and $\mu_{2,B}$ vary (decreasing job size)
Experiments Summary

- PI variants are often nearly-optimal
- Tie-breaking in G more important than what is done in B
- $c\mu$ tie-breaking often significantly better than randomized
- The stability region seems similar to i.i.d. case
Conclusion

- New PI-like opportunistic rule
- Insights about value of information
- Open problems
 - PI* maximally-stable?
 - optimal solution (structure?)
 - indices for more than 2-state channels (PI-like?)
 - general job sizes (Gittins-like?)
 - partially observable channel conditions (PI-like?)
 - correlation among users’ channels
Thank you for your attention
Dynamic Prices (Index Values)

- We will assign a dynamic price to each user
- Arises in the solution of the parametric subproblem
 - optimal policy: use server iff price greater than ν
- Prices are values of ν when optimal solution changes
- However, such prices may not exist!
 - indexability has to be proved
- Price computation (if they exist):
 - in general, by parametric simplex method
 - by analysis sometimes obtained in a closed form
Optimal Solution to Subproblems

- For finite-state finite-action MDPs there exists an optimal policy that is deterministic, stationary, and independent of the initial state

 - we narrow our focus to those policies
 - represent them via serving sets $S \subseteq \mathcal{N}$
 - policy S prescribes to serve in states in S and wait in states in $S^c := \mathcal{N} \setminus S$

- Combinatorial ν-cost problem: $\max_{S \subseteq \mathcal{N}} R^S_n - \nu W^S_n$, where

\[
R^S_n := \mathbb{E}^S_n \left[\sum_{t=0}^{\infty} \beta^t R^a(t) X(t) \right], \quad W^S_n := \mathbb{E}^S_n \left[\sum_{t=0}^{\infty} \beta^t W^a(t) X(t) \right]
\]
Geometric Interpretation

- \((W_n^S, R_n^S)\) gives rise to 2-dim. performance region
- Indexability means the performance region is convex
- Optimal (threshold) policies are extreme points of the upper boundary of the performance region
- Index values are slopes of the upper boundary
- Indexability is sort of a dual concept to threshold policies
- but not equivalent!
Performance Region
Performance Region
Performance Region
Performance Region
Performance Region
Performance Region

\[R^S \]

\[W^S \]