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Stochastic comparison approach

Find a reference model which

◮ Performs worse than the original

◮ Can be proven to do so analytically

◮ Is computationally tractable

 Computable & conservative performance estimates
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1 2
λ1(x1<n1) µ1(x1)1(x2<n2) µ2(x2)

Blocking

◮ Arrivals blocked when X1(t) = n1

◮ 1st server halts when X2(t) = n2

Service station models

◮ Single-server: µi (xi ) = ci1(xi > 0)

◮ Multi-server: µi (xi ) = cixi

◮ More general: µi = µi (x1, x2)

Stochastic model
Markov jump process X = (X1,X2) with generator

Au(x) = α0,1(x)[u(x+e1)−u(x)]+α1,2(x)[u(x−e1+e2)−u(x)]+α2,0(x)[u(x−e2)−u(x)]

where

◮ α0,1(x) = λ1(x1<n1)

◮ α1,2(x) = µ1(x1)1(x2<n2)

◮ α2,0(x) = µ2(x2)



Two-node linear network

1 2
λ1(x1<n1) µ1(x1)1(x2<n2) µ2(x2)

Blocking

◮ Arrivals blocked when X1(t) = n1

◮ 1st server halts when X2(t) = n2

Service station models

◮ Single-server: µi (xi ) = ci1(xi > 0)

◮ Multi-server: µi (xi ) = cixi

◮ More general: µi = µi (x1, x2)

Performance

◮ Equilibrium probability distribution π

◮ Blocking set B = {x : x1 = n1}

◮ Loss rate λπ(B)

◮ Throughput rate λ(1− π(B))

Computing π is hard except for special cases of µ1 and µ2
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Balanced system modification

1 2
λ1(x1<n1)1(x2<n2) µ1(x1)1(x2<n2) µ2(x2)1(x1<n1)

Balanced operation

◮ Arrivals blocked when X1(t) = n1 or X2(t) = n2

◮ 1st server halts when X2(t) = n2

◮ 2nd server halts when X1(t) = n1

Performance

◮ Equilibrium distribution πbal

◮ Blocking set Bbal = {x : x1 = n1 or x2 = n2}

◮ Loss rate λπbal(Bbal)

◮ Throughput rate λ(1− πbal(Bbal))

Balanced system has a product-form equilibrium (van der Wal & van Dijk 1989)



Balanced vs. original system

Balanced system

b b

b

Bbal = {x : x1 = n1 or x2 = n2}

Original system

b b

b

Borig = {x : x1 = n1}

Performance comparison

◮ Balanced system has more blocking states: Bbal ⊃ Borig

◮  Balanced system should have a higher loss rate and smaller throughput

◮  Conservative & computable performance bound
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Sample path comparison

Heuristic reasoning:

◮ Balanced system has more blocking states

◮  Blocks more jobs

◮  Has less jobs in the system

◮  Spends less time in blocking states

◮  Blocks less jobs?
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How to prove the comparison statement?

◮ Sample path comparison

◮ Order-preserving Markov coupling



Markov couplings

Andrei Markov (1978–)

Montreal Canadiens

Andrei Markov (1856–1922)

St Petersburg University



Markov couplings

Coupling of rate matrices

A transition rate matrix Q̃ on S × S ′ is a Markov coupling of transition rate
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matrices Q on S and Q ′ on S ′ if for all x ∈ S and x ′ ∈ S ′:

∑

y′∈S′

Q̃((x , x ′), (y , y ′)) = Q(x , y) for all y 6= x ,

∑

y∈S

Q̃((x , x ′), (y , y ′)) = Q ′(x ′
, y ′) for all y ′ 6= x ′

.

Coupling of stochastic processes

If X̃ = (X̃ , X̃ ′) is a Markov process with transition rate matrix Q̃, then

◮ X̃ is Markov with transition rate matrix Q

◮ X̃ ′ is Markov with transition rate matrix Q ′



Approach using order-preserving Markov couplings

A Markov coupling Q̃ on an ordered state space (S ,≤) is order-preserving if

x ≤ x ′ and Q̃((x , x ′), (y , y ′)) > 0 =⇒ y ≤ y ′
.
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Approach using order-preserving Markov couplings

A Markov coupling Q̃ on an ordered state space (S ,≤) is order-preserving if

x ≤ x ′ and Q̃((x , x ′), (y , y ′)) > 0 =⇒ y ≤ y ′
.

Comparing the blocking rates

Find an order relation ≤ on [0, n1]× [0, n2] such that

◮ x ≤ x ′ =⇒ 1B(x) ≤ 1B′ (x ′)

◮ There exists a ≤-preserving Markov coupling of the systems

Feasible order relations

◮ Coordinatewise order: x ≤ x ′ if x1 ≤ x ′
1 and x2 ≤ x ′

2

◮ 1st coordinate order: x ≤ x ′ if x1 ≤ x ′
1

No order-preserving Markov coupling for these exists (Reason: when X (t) = x
and X ′(t) = x for some x such that x1 = n1, the original system spends a
longer time in its blocking set.)
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Relation-preserving Markov couplings

Find a relation R ⊂ S × S ′ such that

◮ (x , x ′) ∈ R =⇒ 1B(x) ≤ 1B′(x)

◮ There exists an R-preserving Markov coupling of the systems.

A transition rate matrix Q̃ on S × S is R-preserving if

(x , x ′) ∈ R and Q̃((x , x ′), (y , y ′)) > 0 =⇒ (y , y ′) ∈ R

Does it exist?

◮ Can be checked using a subrelation algorithm (Leskelä 2010)

◮ Does not exist.
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How to prove the comparison statement?

◮ Sample path comparison

◮ Order-preserving Markov coupling

◮ Relation-preserving Markov coupling

◮ Markov reward approach



Nico van Dijk 1998:

Established comparison, or relatedly monotonicity,
proof techniques such as the one-step comparison
technique (Keilson & Kester 1977; Whitt 1981, 1986; Massey 1987)
and the related sample path technique as in
(Shanthikumar & Yao 1986, 1988; van Dijk & Tsoucas & Walrand 1988;

Adan & van der Wal 1989), however, do not generally apply.
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Uniformize  discrete-time Markov processes

◮ Original system: transition matrix Po

◮ Balanced system: transition matrix Pb

Mean number of departures during first t time steps:

◮ V t
o (x) = E{

∑t−1
s=0 ro(X (s)) |X (0) = x}, ro(x) = µ2(x2)

◮ V t
b (x) = E{

∑t−1
s=0 rb(X

′(s)) |X ′(0) = x}, rb(x) = µ2(x)1(x1<n1)



Markov reward comparison

Theorem (Van Dijk 1998)

Assume that ro(x) + PoV
t−1
o (x) ≥ rb(x) + PbV

t−1
o (x) for all x and all t ≥ 1.

Then V t
o (x) ≥ V t

b (x) for all x and all t ≥ 0.
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Markov reward comparison

Theorem (Van Dijk 1998)

Assume that ro(x) + PoV
t−1
o (x) ≥ rb(x) + PbV

t−1
o (x) for all x and all t ≥ 1.

Then V t
o (x) ≥ V t

b (x) for all x and all t ≥ 0.

Proof.
Conditioning on the first jump yields the recursive equations:

◮ V t
o = ro + PoV

t−1
o , t ≥ 1

◮ V t
b = rb + PbV

t−1
b , t ≥ 1

By subtracting these, and then using the induction assumption V t−1
o ≥ V t−1

b ,

V t
o − V t

b = ro − rb + PoV
t−1
o − PbV

t−1
b

= ro − rb + (Po − Pb)V
t−1
o + Pb(V

t−1
o − V t−1

b )

≥ ro − rb + (Po − Pb)V
t−1
o .

The last term on the right is positive by the assumption.
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Applying the Markov reward comparison

Can we show that

ro(x) + PoV
t−1
o (x) ≥ rb(x) + PbV

t−1
o (x)

for the two-node queueing network?

Yes. (van der Wal & van Dijk 1989)

◮ Uniformize.

◮ Prove by induction.

As a consequence, the mean throughputs are ordered by

◮ EFbal
dep(t) ≤ EF orig

dep (t) for all t ≥ 0

whenever both systems are started at the same initial state.



How to prove the comparison statement?

◮ Sample path comparison

◮ Order-preserving Markov coupling

◮ Relation-preserving Markov coupling

◮ Markov reward approach (OK for mean throughputs)



Markov reward approach: Pros and cons

Pros

◮ Works when Markov couplings
don’t

◮ Tailor-made for chosen reward
functions

◮ Time-dependent comparison
results

Cons

◮ Only a conceptual framework:
Requires proving an induction
argument

◮ Hard to tell when works

◮ Uniformization leads to unintuitive
notation

◮ Results only for the mean rewards



Hybrid approach

Can we incorporate a reward structure to a coupling construction?

◮ Use a (non-Markov) coupling

◮ Embed a reward structure explicitly

◮ Prove pathwise ordering of rewards



How to prove the comparison statement?

◮ Sample path comparison

◮ Order-preserving Markov coupling

◮ Relation-preserving Markov coupling

◮ Markov reward approach (OK for mean throughputs)

◮ Flow coupling



General Markov network

Traffic flows on a graph G = ({0, . . . , n}, L):

◮ Nodes 1, 2, . . . , n

◮ Node 0 represents the external world

◮ Directed links between nodes L ⊂ {0, . . . , n}2

Network state: Markov jump process X in S ⊂ Z
n
+ with transitions

x 7→ x − ei + ej at rate αi,j(x), (i , j) ∈ L,

where ei is the i-th unit vector in Z
n and e0 = 0

Generator
Au(x) =

∑

(i,j)∈L

αi,j (x)[u(x − ei + ej )− u(x)]



State-flow Markov process

Markov jump process (X ,F ) in S × Z
L
+ with transitions

(x , f ) 7→ (x − ei + ej , f + ei,j) at rate αi,j(x), (i , j) ∈ L

◮ Xi (t) is the number of jobs in node i at time t

◮ Fi,j(t)− Fi,j(0) is the number of transitions over link (i , j) during (0, t]
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State-flow Markov process

Markov jump process (X ,F ) in S × Z
L
+ with transitions

(x , f ) 7→ (x − ei + ej , f + ei,j) at rate αi,j(x), (i , j) ∈ L

◮ Xi (t) is the number of jobs in node i at time t

◮ Fi,j(t)− Fi,j(0) is the number of transitions over link (i , j) during (0, t]

Redundant process: F (t) may be recovered by observing the path of X up to
time t by using the formula

Fi,j(t)− Fi,j(0) = # {s ∈ (0, t] : X (s) − X (s−) = −ei + ej} ,

Generator

Au(x , f ) =
∑

(i,j)∈L

αi,j(x)[u(x − ei + ej , f + ei,j)− u(x , f )]



Netflow ordering in state-flow space

1 2 3

α0,1(x)

α1,0(x)

α1,2(x)

α2,1(x)

α2,3(x)

α3,2(x)

α3,0(x)

α0,3(x)

State-flow relation

◮ (x , f ) has smaller netflow than (x ′, f ′) if

fi,i+1 − fi+1,i ≤ f ′i,i+1 − f ′i+1,i for all i = 0, 1, . . . , d ,

xi − fin,i + fi,out = x ′
i − f ′in,i + f ′i,out for all nodes i = 1, . . . , d ,

Notation

◮ fin,i =
∑

j 6=i
fj,i , fi,out =

∑

j 6=i
fi,j

◮ fd,d+1 = fd,0, fd+1,d = f0,d



Flow coupling for linear networks

Theorem
Assume that

x1 ≥ x ′
1 =⇒ α0,1(x) ≤ α

′
0,1(x

′) and α1,0(x) ≥ α
′
1,0(x

′),

xi ≤ x ′
i and xi+1 ≥ x ′

i+1 =⇒ αi,i+1(x) ≤ α
′
i,i+1(x

′) and αi+1,i (x) ≥ α
′
i+1,i (x

′),

xd ≤ x ′
d =⇒ αd,0(x) ≤ α

′
d,0(x

′) and α0,d(x) ≥ α
′
0,d(x

′).

Then there exists a Markov coupling of (X ,F ) and (X ′,F ′) which preserves the
netflow relation. Especially, the netflow counting processes are ordered by

Ni,i+1(t) ≤st N
′
i,i+1(t)

for all t ≥ 0 and i = 0, . . . , d, whenever X (0) =st X
′(0).



Flow coupling for linear networks

Proof: Coupling property.

Let (X̃ , F̃ , X̃ ′, F̃ ′) be a Markov process with transitions

((x , f ), (x ′
, f ′)) 7→











(Ti,j(x , f ),Ti,j (x
′
, f ′)) at rate αi,j (x) ∧ α

′
i,j (x

′),

((x , f ),Ti,j (x
′
, f ′)) at rate (α′

i,j (x
′)− αi,j(x))+,

(Ti,j (x , f ), (x , f )) at rate (αi,j (x)− α
′
i,j(x

′))+,

where Ti,j (x , f ) = (x − ei + ej , f + ei,j)

◮ This is the marching soldiers coupling of (X ,F ) and (X ′,F ′) (Mu-Fa Chen

2005). Why coupling?



Flow coupling for linear networks

Proof: Coupling property.

Let (X̃ , F̃ , X̃ ′, F̃ ′) be a Markov process with transitions

((x , f ), (x ′
, f ′)) 7→











(Ti,j(x , f ),Ti,j (x
′
, f ′)) at rate αi,j (x) ∧ α

′
i,j (x

′),

((x , f ),Ti,j (x
′
, f ′)) at rate (α′

i,j (x
′)− αi,j(x))+,

(Ti,j (x , f ), (x , f )) at rate (αi,j (x)− α
′
i,j(x

′))+,

where Ti,j (x , f ) = (x − ei + ej , f + ei,j)

◮ This is the marching soldiers coupling of (X ,F ) and (X ′,F ′) (Mu-Fa Chen

2005). Why coupling? Because

(a ∧ a′) + (a′ − a)+ = a′

(a ∧ a′) + (a − a′)+ = a
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Flow coupling for linear networks

Proof: Relation preservation.

Consider the relation fi,i+1 − fi+1,i ≤ f ′i,i+1 − f ′i+1,i for i = 1.

◮ Breaking this is possible only when f1,2 − f2,1 = f ′1,2 − f ′2,1
◮ Flow balance equations at node 1 and node 2:

x1 − (f0,1 + f2,1) + (f1,0 + f1,2) = x ′
1 − (f ′0,1 + f ′2,1) + (f ′1,0 + f ′1,2)

x2 − (f1,2 + f3,2) + (f2,1 + f2,3) = x ′
2 − (f ′1,2 + f ′3,2) + (f ′2,1 + f ′2,3)

◮ In light of the equality, these imply

x1 − (f0,1 − f1,0) = x ′
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2 + (f ′2,3 − f ′3,2)

◮ Therefore, x1 ≤ x ′
1 and x2 ≥ x ′

2,
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x2 + (f2,3 − f3,2) = x ′
2 + (f ′2,3 − f ′3,2)

◮ Therefore, x1 ≤ x ′
1 and x2 ≥ x ′

2,

◮ The assumption implies α1,2(x) ≤ α′
1,2(x)

◮ The transition ((x , f ), (x ′, f ′)) 7→ (T1,2(x , f ), (x , f )) has rate
(α1,2(x)− α′

1,2(x
′))+ = 0



Balanced vs. original two-node network

1 2
α0,1(x) α1,2(x) α2,0(x)

Balanced system

◮ αbal
0,1 (x) = λ1(x1<n1)1(x2<n2)

◮ αbal
1,2 (x) = µ1(x1)1(x2<n2)

◮ αbal
2,0 (x) = µ2(x2)1(x1<n1)

Original system

◮ α
orig
0,1 (x) = λ1(x1<n1)

◮ α
orig
1,2 (x) = µ1(x1)1(x2<n2)

◮ α
orig
2,0 (x) = µ2(x2)
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0,1 (x) = λ1(x1<n1)

◮ α
orig
1,2 (x) = µ1(x1)1(x2<n2)

◮ α
orig
2,0 (x) = µ2(x2)

(Xbal,Fbal) has a stochastically smaller flow than (X orig,F orig) if

x1 ≥ x ′
1 =⇒ α

bal
0,1 (x) ≤ α

orig
0,1 (x ′)

x1 ≤ x ′
1 and x2 ≥ x ′

2 =⇒ α
bal
1,2 (x) ≤ α

orig
1,2 (x ′)

x2 ≤ x ′
2 =⇒ α

bal
2,0 (x) ≤ α

orig
2,0 (x ′).



Balanced vs. original two-node network

1 2
α0,1(x) α1,2(x) α2,0(x)
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◮ αbal
0,1 (x) = λ1(x1<n1)1(x2<n2)

◮ αbal
1,2 (x) = µ1(x1)1(x2<n2)

◮ αbal
2,0 (x) = µ2(x2)1(x1<n1)

Original system

◮ α
orig
0,1 (x) = λ1(x1<n1)

◮ α
orig
1,2 (x) = µ1(x1)1(x2<n2)

◮ α
orig
2,0 (x) = µ2(x2)

(Xbal,Fbal) has a stochastically smaller flow than (X orig,F orig) if

x1 ≥ x ′
1 =⇒ λ1(x1<n1)1(x2<n2) ≤ λ1(x ′

1<n1)

x1 ≤ x ′
1 and x2 ≥ x ′

2 =⇒ µ1(x1)1(x2<n2) ≤ µ1(x
′
1)1(x

′
2<n2)

x2 ≤ x ′
2 =⇒ µ2(x2)1(x1<n1) ≤ µ2(x

′
2)

The above conditions are valid when µ1 and µ2 are increasing.



How to prove the comparison statement?

◮ Sample path comparison

◮ Order-preserving Markov coupling

◮ Relation-preserving Markov coupling

◮ Markov reward approach (OK for mean throughputs)

◮ Flow coupling (OK for throughput distributions)



Generalizations

Other networks structures?

◮ Closed linear networks (cyclic networks)

◮ Aggregate flows across linear partitions
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Assume that for all i and for all x and x ′,

xi ≤ x ′
i and xi+1 ≥ x ′
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αi,i+1(x) ≤ α
′
i,i+1(x

′) and αi+1,i (x) ≥ α
′
i+1,i (x

′).

Then (X , F ) has stochastically smaller clockwise
netflow than (X ′,F ′).
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Theorem
Assume that for all i and for all x and x ′,

xi ≤ x ′
i and xi+1 ≥ x ′

i+1

=⇒

αi,i+1(x) ≤ α
′
i,i+1(x

′) and αi+1,i (x) ≥ α
′
i+1,i (x

′).

Then (X , F ) has stochastically smaller clockwise
netflow than (X ′,F ′).

Proof.
The marching soldiers coupling of (X ,F ) and (X ′,F ′) preserves the state-flow
relation

fi,i+1 − fi+1,i ≤ f ′i,i+1 − f ′i+1,i ,

xi − fin,i + fi,out = x ′
i − f ′in,i + f ′i,out.
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Aggregate flows through linear partitions

N1 N2 N3

State-flow (x , f ) has a smaller netflow through N1 → N2 → N3 than (x ′, f ′) if

fNr ,Nr+1 − fNr+1,Nr ≤ f ′Nr ,Nr+1
− f ′Nr+1,Nr

for all clusters Nr ,

xi − fin,i + fi,out = x ′
i − f ′in,i + f ′i,out for all nodes i ,

where
fNr ,Ns =

∑

i∈Nr , j∈Ns

fi,j



Aggregate flows through linear partitions

Theorem
The system (X ,F ) has a stochastically smaller netflow through
N1 → · · · → Nm than (X ′,F ′) if for all x ∈ S and x ′ ∈ S ′:

(i) |xN1 | ≥ |x ′
N1
| =⇒

α0,N1 (x) ≤ α
′
0,N1

(x ′) and αN1,0(x) ≥ α
′
N1,0(x

′).

(ii) |xNk
| ≤ |x ′

Nk
| and |xNk+1

| ≥ |x ′
Nk+1

| =⇒

αNk ,Nk+1
(x) ≤ α

′
Nk ,Nk+1

(x ′) and αNk+1,Nk
(x) ≥ α

′
Nk+1,Nk

(x ′).

(iii) |xNm | ≤ |x ′
Nm

| =⇒

αNm ,0(x) ≤ α
′
Nm,0(x

′) and α0,Nm (x) ≥ α
′
0,Nm

(x ′)

Notation

◮ |xNr | =
∑

i∈Nr
xi

◮ αNr ,Ns (x) =
∑

i∈Nr ,j∈Nr
αi,j(x)



Aggregate flows through linear partitions

Theorem
The system (X ,F ) has a stochastically smaller netflow through
N1 → · · · → Nm than (X ′,F ′) if for all x ∈ S and x ′ ∈ S ′:

(i) |xN1 | ≥ |x ′
N1
| =⇒

α0,N1 (x) ≤ α
′
0,N1

(x ′) and αN1,0(x) ≥ α
′
N1,0(x

′).

(ii) |xNk
| ≤ |x ′

Nk
| and |xNk+1

| ≥ |x ′
Nk+1

| =⇒

αNk ,Nk+1
(x) ≤ α

′
Nk ,Nk+1

(x ′) and αNk+1,Nk
(x) ≥ α

′
Nk+1,Nk

(x ′).

(iii) |xNm | ≤ |x ′
Nm

| =⇒

αNm ,0(x) ≤ α
′
Nm,0(x

′) and α0,Nm (x) ≥ α
′
0,Nm

(x ′)

Proof.
Marching soldiers coupling does not work in general. A netflow-preserving
state-flow coupling can be shown to exist (Whitt 1986; Massey 1987; Leskelä 2010).
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Flow coupling

◮ State-flow redundant model  
non-Markov coupling

◮ Sample paths coupled when both systems
started at the same state
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Stochastic relations of random variables and processes.
J. Theor. Probab., 23(2):523–546, 2010.

I. Verloop, U. Ayesta, and S. Borst.
Monotonicity properties for multi-class queueing systems.
Discrete Event Dyn. Syst., 20:473–509, 2010.


