On the diameter of random planar graphs

Guillaume Chapuy, CNRS & LIAFA, Paris

joint work with

Éric Fusy, Paris,
Omer Giménez, ex-Barcelona,
Marc Noy, Barcelona.

Planar graphs and maps

- **Planar graph** = (connected) graph on \(V = \{1, 2, \ldots, n\} \) that can be drawn in the plane without edge crossing.
Planar graphs and maps

- **Planar graph** = (connected) graph on $V = \{1, 2, \ldots, n\}$ that can be drawn in the plane without edge crossing.

- **Planar map** = planar graph + planar drawing of this graph (up to continuous deformation)

same graph
different maps
Planar graphs and maps

- **Planar graph** = (connected) graph on \(V = \{1, 2, \ldots, n\} \) that can be drawn in the plane without edge crossing.

- **Planar map** = planar graph + planar drawing of this graph (up to continuous deformation)

- Note: the number of embeddings depends on the graph...

Uniform random planar map \neq Uniform random planar graph!
Some known results for maps (stated approximately)

- **Thm** [Chassaing-Schaeffer ’04], [Marckert, Miermont ’06], [Ambjörn-Budd ’13]

 In a uniform random map M_n of size n, distances are of order $n^{1/4}$.

 For example one has $\frac{\text{Diam}(M_n)}{n^{1/4}} \rightarrow$ some real random variable
Some known results for maps (stated approximately)

- **Thm** [Chassaing-Schaeffer ’04], [Marckert, Miermont ’06], [Ambjörn-Budd ’13]
 - In a uniform random map M_n of size n, distances are of order $n^{1/4}$.
 - For example one has $\frac{\text{Diam}(M_n)}{n^{1/4}} \rightarrow$ some real random variable

© J.-F. Marckert
Some known results for maps (stated approximately)

- **Thm** [Chassaing-Schaeffer ’04], [Marckert, Miermont ’06], [Ambjörn-Budd ’13]

 In a uniform random map M_n of size n, distances are of order $n^{1/4}$.

 For example one has $\frac{\text{Diam}(M_n)}{n^{1/4}} \to$ some real random variable

A lot of (very strong) things are known – very active field of research since 2004 [Bouttier, Di Francesco, Gitter, Le Gall, Miermont, Paulin, Addario-Berry, Albenque...]
Our main result: diameter of random planar GRAPHS

- **Thm** [C, Fusy, Giménez, Noy 2010+]

 Let G_n be the uniform random planar graph with n vertices.

 Then $\text{Diam}(G_n) = n^{1/4+o(1)}$ w.h.p.

 More precisely $\mathbb{P}\left(\text{Diam}(G_n) \not\in \left[n^{1/4-\epsilon}, n^{1/4+\epsilon}\right]\right) = O(e^{-n^{\Theta(\epsilon)}})$.
Our main result: diameter of random planar GRAPHS

- **Thm [C, Fusy, Giménez, Noy 2010+]**
 Let G_n be the uniform random planar graph with n vertices.

 Then $\text{Diam}(G_n) = n^{1/4+o(1)}$ w.h.p.

 More precisely $\mathbb{P}\left(\text{Diam}(G_n) \notin \left[n^{1/4-\epsilon}, n^{1/4+\epsilon}\right]\right) = O(e^{-n^{\Theta(\epsilon)}})$.

- This is some kind of large deviation result. We also conjecture convergence in law:

 $$\frac{\text{Diam}(G_n)}{n^{1/4}} \to \text{some real random variable}$$

- Note: for random trees,

 $$\frac{\text{Diam}(T_n)}{n^{1/2}} \to \text{some real random variable}$$

 $$\mathbb{P}\left(\text{Diam}(T_n) \notin \left[n^{1/2-\epsilon}, n^{1/2+\epsilon}\right]\right) = O(e^{-n^{\Theta(\epsilon)}})$$

 [Flajolet et al '93]
(0) Connectivity in graphs

General

Connected (1-connected)

2-Connected

3-Connected

A graph is k-connected if one needs to remove at least k vertices to disconnect it.
(0) Connectivity in graphs

General

Connected (1-connected)

2-Connected

3-Connected

\[\text{[Tutte'66]: } \text{a connected graph decomposes into 2-connected components} \]
\[\text{a 2-connected graph decomposes into 3-connected components} \]

\[\text{[Whitney]: A 3-connected planar graph has a UNIQUE embedding} \]

A graph is \(k \)-connected if one needs to remove at least \(k \) vertices to disconnect it.
(0) Connectivity in graphs

A graph is \(k \)-connected if one needs to remove at least \(k \) vertices to disconnect it.

- **General**
- **Connected (1-connected)**
- **2-Connected**
- **3-Connected**

[Tutte’66]: - a connected graph decomposes into 2-connected components
 - a 2-connected graph decomposes into 3-connected components

[Whitney]: A 3-connected planar graph has a UNIQUE embedding

[Tutte 60s], [Bender,Gao,Wormald’02], [Giménez, Noy’05] followed this path carrying counting results along the scheme → exact counting of planar graphs!

Here we follow the same path and carry deviations statements for the diameter.
To simplify the exposition we consider a quadrangular planar map (faces have degree 4)

1. Label vertices by their graph-distance to some root vertex
To simplify the exposition we consider a **quadrangular planar map** (faces have degree 4)

1. Label vertices by their graph-distance to some root vertex

2. Observe that there are only **two types** of faces (since bipartite)
To simplify the exposition we consider a quadrangular planar map (faces have degree 4)

1. Label vertices by their graph-distance to some root vertex
2. Observe that there are only two types of faces (since bipartite)
3. Apply Schaeffer rules:

```
  i+1  i
 /\    /
 i    i+1
```

```
  i+1  i
 /\    /
 i    i+2
```

```
To simplify the exposition we consider a quadrangular planar map (faces have degree 4).

1. Label vertices by their graph-distance to some root vertex.
2. Observe that there are only two types of faces (since bipartite).
3. Apply Schaeffer rules:

- To simplify the exposition we consider a **quadrangular planar map** (faces have degree 4)

1. Label vertices by their **graph-distance** to some root vertex

2. Observe that there are only **two types** of faces (since bipartite)

3. Apply **Schaeffer rules**:

    ![Diagram of Schaeffer rules]

    1. $i 
ightarrow i+2$
    2. $i+1 
ightarrow i+1$
    3. $i 
ightarrow i+1$
    4. $i+1 
ightarrow i$
To simplify the exposition we consider a quadrangular planar map (faces have degree 4)

1. Label vertices by their graph-distance to some root vertex

2. Observe that there are only two types of faces (since bipartite)

3. Apply Schaeffer rules:
To simplify the exposition we consider a **quadrangular planar map** (faces have degree 4)

1. Label vertices by their **graph-distance** to some root vertex
2. Observe that there are only **two types** of faces (since bipartite)
3. Apply **Schaeffer rules**:
To simplify the exposition we consider a quadrangular planar map (faces have degree 4)

1. Label vertices by their graph-distance to some root vertex
2. Observe that there are only two types of faces (since bipartite)
3. Apply Schaeffer rules:
To simplify the exposition we consider a **quadrangular planar map** (faces have degree 4)

1. Label vertices by their **graph-distance** to some root vertex

2. Observe that there are only **two types** of faces (since bipartite)

3. Apply **Schaeffer rules**:

   ![Schaeffer rules diagram](image)

   - **Fact**: the blue map is a **tree**.
To simplify the exposition we consider a quadrangular planar map (faces have degree 4)

1. Label vertices by their graph-distance to some root vertex

2. Observe that there are only two types of faces (since bipartite)

3. Apply Schaeffer rules:

Fact: the blue map is a tree.
To simplify the exposition we consider a quadrangular planar map (faces have degree 4)

1. Label vertices by their graph-distance to some root vertex

2. Observe that there are only two types of faces (since bipartite)

3. Apply Schaeffer rules:

   Fact: the blue map is a tree.
To simplify the exposition we consider a quadrangular planar map (faces have degree 4).

1. Label vertices by their graph-distance to some root vertex.
2. Observe that there are only two types of faces (since bipartite).
3. Apply Schaeffer rules:

Fact: the blue map is a tree.
• To simplify the exposition we consider a quadrangular planar map (faces have degree 4)

1. Label vertices by their graph-distance to some root vertex

2. Observe that there are only two types of faces (since bipartite)

3. Apply Schaeffer rules:

Fact: the blue map is a tree.

If one remembers the labels the construction is bijective!
• A well-labelled tree is a plane tree together with a mapping $l : V \to \mathbb{Z}_{>0}$ such that
  - if $v \sim v'$ then $|l(v) - l(v')| \leq 1$
  - $\min_v l(v) = 1$
• A well-labelled tree is a plane tree together with a mapping $l : V \rightarrow \mathbb{Z}_{>0}$ such that
  - if $v \sim v'$ then $|l(v) - l(v')| \leq 1$
  - $\min_v l(v) = 1$

• Thm [Cori-Vauquelin’81; Schaeffer’99]
  There is a bijection between quadrangular planar maps with a pointed vertex and $n + 1$ vertices and well-labelled trees with $n$ vertices. The labels in the tree correspond to distances to the root in the map.
A well-labelled tree is a plane tree together with a mapping $l : V \rightarrow \mathbb{Z}_{>0}$ such that
- if $v \sim v'$ then $|l(v) - l(v')| \leq 1$
- $\min_v l(v) = 1$

**Thm** [Cori-Vauquelin'81; Schaeffer'99]
There is a bijection between quadrangular planar maps with a pointed vertex and $n + 1$ vertices and well-labelled trees with $n$ vertices. The labels in the tree correspond to distances to the root in the map.

**Corollary:** $\text{Diam}(M_n) = n^{1/4 + o(1)}$

indeed: - the height of a random tree is $= n^{1/2 + o(1)}$ w.h.p

- A well-labelled tree is a plane tree together with a mapping \( l : V \to \mathbb{Z}_{>0} \) such that
  - if \( v \sim v' \) then \( |l(v) - l(v')| \leq 1 \)
  - \( \min_v l(v) = 1 \)

- **Thm** [Cori-Vauquelin’81;Schaeffer’99]
  There is a bijection between quadrangular planar maps with a pointed vertex and \( n+1 \) vertices and well-labelled trees with \( n \) vertices. The labels in the tree correspond to distances to the root in the map.

| Corollary: Diam\((M_n) = n^{1/4+o(1)}\) |

- indeed: - the height of a random tree is \( = n^{1/2+o(1)} \) w.h.p
  - the labelling function behaves as a random walk along branches of the tree so \( l(v) \approx \sqrt{n^{1/2+o(1)}} = n^{1/4+o(1)} \)
A well-labelled tree is a plane tree together with a mapping \( l : V \rightarrow \mathbb{Z}_{>0} \) such that
- if \( v \sim v' \) then \( |l(v) - l(v')| \leq 1 \)
- \( \min_v l(v) = 1 \)

**Thm** [Cori-Vauquelin'81; Schaeffer'99]
There is a bijection between quadrangular planar maps with a pointed vertex and \( n + 1 \) vertices and well-labelled trees with \( n \) vertices. The labels in the tree correspond to distances to the root in the map.

**Corollary:** \( \text{Diam}(M_n) = n^{1/4+o(1)} \)

indeed:
- the height of a random tree is \( = n^{1/2+o(1)} \) w.h.p
- the labelling function behaves as a random walk along branches of the tree so \( l(v) \approx \sqrt{n^{1/2+o(1)}} = n^{1/4+o(1)} \)

[Chassaing-Schaeffer'04]
(2) Decomposition into 2-connected components

A connected map is “a tree of 2-connected maps”
(2) Decomposition into 2-connected components

A connected map is “a tree of 2-connected maps”

One can write this in terms of generating functions.
(2) Decomposition into 2-connected components

A connected map is “a tree of 2-connected maps”

One can write this in terms of generating functions.

The generating function of connected maps is explicitly known (e.g. using bijections)

→ deduce the g.f. of 2-connected maps from the one of connected maps. [Tutte 60’s].
(2) Decomposition into 2-connected components

A connected map is “a tree of 2-connected maps”

One can write this in terms of generating functions.

The generating function of connected maps is explicitly known (e.g. using bijections)

→ deduce the g.f. of 2-connected maps from the one of connected maps.

[Tutte 60’s].
Decomposition into 2-connected components

Thm

The largest 2-connected component has size
\[ \frac{n}{3} + \frac{n^{2/3}}{A} \]
where \( A \) converges to an explicit law.

The second-largest component has size \( O(n^{2/3}) \).

[Gao, Wormald’99] [Banderier, Flajolet, Schaeffer, Soria ’01]
(2) Decomposition into 2-connected components

**Thm**

The largest 2-connected component has size
\[ \frac{n}{3} + n^{2/3}A \]
where $A$ converges to an explicit law.

The second-largest component has size $O(n^{2/3})$.

[Gao, Wormald’99] [Banderier, Flajolet, Schaeffer, Soria ’01]

**tools to prove this:** (very) fine singularity analysis of generating functions. In particular exact expressions for counting functions are mandatory!
(2) Decomposition into 2-connected components

Thm

The largest 2-connected component has size \( \frac{n}{3} + n^{2/3} A \) where \( A \) converges to an explicit law.

The second-largest component has size \( O(n^{2/3}) \).

[Gao, Wormald’99] [Banderier, Flajolet, Schaeffer, Soria ’01]

Tools to prove this: (very) fine singularity analysis of generating functions. In particular exact expressions for counting functions are mandatory!

“Corollary”:

\[ \text{Diam}(B_{n/3}) \sim \text{Diam}(M_n) = n^{1/4+o(1)} \]

random 2-conn. map of size \( n/3 \)
(2) Decomposition into 2-connected components

Thm

The largest 2-connected component has size

\[ \frac{n}{3} + n^{2/3}A \]

where \( A \) converges to an explicit law.

The second-largest component has size \( O(n^{2/3}) \).

[Gao, Wormald’99] [Banderier, Flajolet, Schaeffer, Soria ’01]

tools to prove this: (very) fine singularity analysis of generating functions. In particular exact expressions for counting functions are mandatory!

“Corollary”:

\[ \text{Diam}(B_{n/3}) \sim \text{Diam}(M_n) = n^{1/4 + o(1)} \]

indeed: \( \text{Diam}(X_n) \leq \text{Diam}(M_n) \leq \text{Diam}(X_n) + 2 \max_i \text{Diam}(H_i) \)
2) Decomposition into 2-connected components

The largest 2-connected component has size
\[ \frac{n}{3} + n^{2/3} A \]
where \( A \) converges to an explicit law.

The second-largest component has size \( O(n^{2/3}) \).

[Gao, Wormald’99] [Banderier, Flajolet, Schaeffer, Soria ’01]

Tools to prove this: (very) fine singularity analysis of generating functions. In particular exact expressions for counting functions are mandatory!

“Corollary”:
\[ \text{Diam}(B_{n/3}) \sim \text{Diam}(M_n) = n^{1/4+o(1)} \]

random 2-conn. map of size \( n/3 \)

indeed: \( \text{Diam}(X_n) \leq \text{Diam}(M_n) \leq \text{Diam}(X_n) + 2 \max_i \text{Diam}(H_i) \leq (n^{2/3})^{1/4+\epsilon} \) w.h.p.
(2) Decomposition into 2-connected components

Thm

The largest 2-connected component has size
\[ \frac{n}{3} + n^{2/3}A \]
where \( A \) converges to an explicit law.

The second-largest component has size \( O(n^{2/3}) \).

[Gao, Wormald’99] [Banderier, Flajolet, Schaeffer, Soria ’01]

**tools to prove this:** (very) fine singularity analysis of generating functions. In particular exact expressions for counting functions are mandatory!

“Corollary”:

\[ \text{Diam}(B_{n/3}) \sim \text{Diam}(M_n) = n^{1/4 + o(1)} \]

indeed:

\[ \text{Diam}(X_n) \leq \text{Diam}(M_n) \leq \text{Diam}(X_n) + 2 \max_i \text{Diam}(H_i) \leq (n^{2/3})^{1/4 + \epsilon} \text{ w.h.p.} \]

and \( X_n \) is essentially a random 2-conn. map of size \( n/3 \).
(3) Decomposition into 3-connected components

Again one can write everything in terms of generating functions.
→ deduce the g.f. of 3-connected maps from the one of 2-connected maps. [Tutte 60's].
→ deduce the g.f. of 2-connected graphs from the one of 3-connected graphs [Bender, Gao, Wormald'02].

\( T = 3 \)-connected component
\( R = \) series composition
\( M = \) parallel composition
(3) Decomposition into 3-connected components

**Prop** A random 2-connected planar graph with $n$ edges has diameter $n^{1/4+o(1)}$ with high probability.

A 2-connected graph $B_n$

RMT tree
**Prop** A random 2-connected planar graph with $n$ edges has diameter $n^{1/4+o(1)}$ with high probability.

Same idea:
- there exists a $T$-component $Y_n$ of linear size w.h.p.
(3) Decomposition into 3-connected components

**Prop** A random 2-connected planar graph with \( n \) edges has diameter \( n^{1/4+o(1)} \) with high probability.

![Diagram](image)

Same idea:
- there exists a \( T \)-component \( Y_n \) of linear size w.h.p.
- the diameter of the RMT-tree is \( n^{o(1)} \) w.h.p.
- The extra-length due the edge substitution is also \( n^{o(1)} \)
• **Thm** [C, Fusy, Giménez, Noy 2010+]  
  Let $G_n$ be the uniform random planar graph with $n$ vertices.

  Then $\text{Diam}(G_n) = n^{1/4+o(1)}$ w.h.p.

  More precisely $\mathbb{P}\left(\text{Diam}(G_n) \notin \left[n^{1/4-\epsilon}, n^{1/4+\epsilon}\right]\right) = O(e^{-n^{\Theta(\epsilon)}})$.

• The proof relies both on exact generating functions and magical bijections: we couldn’t do anything without this (or maybe something much weaker like $O(\sqrt{n})$ ?)

• The general picture is quite clear but the analysis is a bit tedious... (need to work with bivariate generating functions and prove estimates with enough uniformity)

• No way to obtain the convergence of $\frac{\text{Diam}(G_n)}{n^{1/4}}$ - even for planar maps this is very difficult!

• **Same result** for the uniform random graph with $n$ vertices and $\lfloor \mu n \rfloor$ edges for $1 < \mu < 3$. 
Conclusion (II)

- We generalized the Giménez-Noy enumeration result to graphs embeddable on a surface of genus $g \geq 0$

**Thm** [C, Fusy, Giménez, Mohar, Noy 2011] [Bender-Gao 2011]

$$\#\{n\text{-vertex genus } g \text{ graphs}\} \sim c_g \cdot n! \cdot \gamma^n \cdot n^{\frac{5}{2}g-\frac{7}{2}} \quad \gamma \approx 27.\ldots.$$ 

Same kind of proof but Whitney's theorem (uniqueness of embedding) now requires that there is no short non-contractible cycle.
(but we could prove that)
The result on the diameter should be the same but this is not (and won't be) written.

The fact that non-contractible cycles are small imply the following:

**Thm** [C, Fusy, Giménez, Mohar, Noy 2011]

Fix $g \geq 1$. The random graph of genus $g$ and size $n$ has chromatic number in $\{4, 5\}$ and list chromatic number $5$ w.h.p.
Thank you!