Random evolution of population subject to competition

Etienne Pardoux

Aix–Marseille Université

joint work with Anton Wakolbinger
(and also with Mamadou Ba, Vi Le)
Contents

1 Finite population

2 Continuous population models

3 Effect of the competition on the height and length of the forest of genealogical trees

4 The path–valued Markov process
Finite population
Consider a continuous–time population model, where each individual gives birth at rate λ, and dies at an exponential time with parameter μ.

We superimpose a death rate due to interaction equal to $f^-(k)$ (resp. a birth rate due to interaction equal to $f^+(k)$) while the total population size is k.

In fact since we want to couple the models for all possible initial population sizes, we need to introduce a pecking order (e.g. from left to right) on our ancestors at time 0, which is passed on to the descendants, and so that any daughter is placed on the right of her mother.

In all what follows, we assume that $f \in C(\mathbb{R}_+; \mathbb{R})$, $f(0) = 0$ and for some fixed $a > 0$, $f(x + y) - f(x) \leq ay$, for all $x, y \geq 0$.
Consider a continuous–time population model, where each individual gives birth at rate λ, and dies at an exponential time with parameter μ.

We superimpose a death rate due to interaction equal to $f^-(k)$ (resp. a birth rate due to interaction equal to $f^+(k)$) while the total population size is k.

In fact since we want to couple the models for all possible initial population sizes, we need to introduce a pecking order (e.g. from left to right) on our ancestors at time 0, which is passed on to the descendants, and so that any daughter is placed on the right of her mother.

In all what follows, we assume that $f \in C(\mathbb{R}_+; \mathbb{R})$, $f(0) = 0$ and for some fixed $a > 0$, $f(x + y) - f(x) \leq ay$, for all $x, y \geq 0$.

Etienne Pardoux (Aix–Marseille Université) EURANDOM, 25 Aug 2014

joint work with Anton Wakolbinger (and also with Mamadou Ba, Vi Le)
Consider a continuous–time population model, where each individual gives birth at rate λ, and dies at an exponential time with parameter μ.

We superimpose a death rate due to interaction equal to $f^-(k)$ (resp. a birth rate due to interaction equal to $f^+(k)$) while the total population size is k.

In fact since we want to couple the models for all possible initial population sizes, we need to introduce a pecking order (e.g. from left to right) on our ancestors at time 0, which is passed on to the descendants, and so that any daughter is placed on the right of her mother.

In all what follows, we assume that $f \in C(\mathbb{R}^+; \mathbb{R})$, $f(0) = 0$ and for some fixed $a > 0$, $f(x + y) - f(x) \leq ay$, for all $x, y \geq 0$.
Consider a continuous–time population model, where each individual gives birth at rate \(\lambda \), and dies at an exponential time with parameter \(\mu \).

We superimpose a death rate due to interaction equal to \(f^-(k) \) (resp. a birth rate due to interaction equal to \(f^+(k) \)) while the total population size is \(k \).

In fact since we want to couple the models for all possible initial population sizes, we need to introduce a pecking order (e.g. from left to right) on our ancestors at time 0, which is passed on to the descendants, and so that any daughter is placed on the right of her mother.

In all what follows, we assume that \(f \in C(\mathbb{R}_+; \mathbb{R}) \), \(f(0) = 0 \) and for some fixed \(a > 0 \), \(f(x + y) - f(x) \leq ay \), for all \(x, y \geq 0 \).
We want that the individual i interacts only with those individuals who sit on her left. Let $L_i(t)$ denote the number of individuals alive at time t who sit on the left of i.

Then we decide that i gives birth at rate $\lambda + [f(L_i(t)) - f(L_i(t) - 1)]^+$, and dies at rate $\mu + [f(L_i(t)) - f(L_i(t) - 1)]^-$.

Summing up, we conclude that the size of the population X_t^m, starting from $X_0^m = m$, jumps

$$
\begin{align*}
\text{from } k \text{ to } & \\
& \left\{ \\
& \begin{array}{ll}
& k + 1, \quad \text{at rate } \lambda k + \sum_{\ell=1}^{k}[f(\ell) - f(\ell - 1)]^+ \\
& k - 1, \quad \text{at rate } \mu k + \sum_{\ell=1}^{k}[f(\ell) - f(\ell - 1)]^-
\end{array}
\right.
\end{align*}
$$

Note that we have defined $\{X_t^m, \ t \geq 0\}$ jointly for all $m \geq 1$, i.e. we have defined the two-parameter process $\{X_t^m, \ t \geq 0, \ m \geq 1\}$.
We want that the individual i interacts only with those individuals who sit on her left. Let $\mathcal{L}_i(t)$ denote the number of individuals alive at time t who sit on the left of i.

Then we decide that i gives birth at rate
\[\lambda + [f(\mathcal{L}_i(t)) - f(\mathcal{L}_i(t) - 1)]^+, \]
and dies at rate
\[\mu + [f(\mathcal{L}_i(t)) - f(\mathcal{L}_i(t) - 1)]^-.
\]

Summing up, we conclude that the size of the population X_t^m, starting from $X_0^m = m$, jumps

from k to $\begin{cases} k + 1, & \text{at rate } \lambda k + \sum_{\ell=1}^k [f(\ell) - f(\ell - 1)]^+ \\ k - 1, & \text{at rate } \mu k + \sum_{\ell=1}^k [f(\ell) - f(\ell - 1)]^- \end{cases}$

Note that we have defined $\{X_t^m, \ t \geq 0\}$ jointly for all $m \geq 1$, i.e. we have defined the two–parameter process $\{X_t^m, \ t \geq 0, \ m \geq 1\}$.
• We want that the individual i interacts only with those individuals who sit on her left. Let $L_i(t)$ denote the number of individuals alive at time t who sit on the left of i.

• Then we decide that i gives birth at rate
 $$\lambda + [f(L_i(t)) - f(L_i(t) - 1)]^+, \text{ and dies at rate}$$
 $$\mu + [f(L_i(t)) - f(L_i(t) - 1)]^-.$$

• Summing up, we conclude that the size of the population X_t^m, starting from $X_0^m = m$, jumps

 \[\begin{align*}
 \text{from } k \text{ to } & \begin{cases}
 k + 1, & \text{at rate } \lambda k + \sum_{\ell=1}^{k}[f(\ell) - f(\ell - 1)]^+ \\
 k - 1, & \text{at rate } \mu k + \sum_{\ell=1}^{k}[f(\ell) - f(\ell - 1)]^- \end{cases}
 \end{align*} \]

• Note that we have defined $\{X_t^m, \ t \geq 0\}$ jointly for all $m \geq 1$, i.e. we have defined the two–parameter process $\{X_t^m, \ t \geq 0, \ m \geq 1\}$.

Etienne Pardoux
(Aix–Marseille Université) EURANDOM, 25 Aug 2014

Joint work with Anton Wakolbinger (and also with Mamadou Ba, Vi Le)
We want that the individual i interacts only with those individuals who sit on her left. Let $\mathcal{L}_i(t)$ denote the number of individuals alive at time t who sit on the left of i.

Then we decide that i gives birth at rate
$$\lambda + [f(\mathcal{L}_i(t)) - f(\mathcal{L}_i(t) - 1)]^+, \text{ and dies at rate }$$
$$\mu + [f(\mathcal{L}_i(t)) - f(\mathcal{L}_i(t) - 1)]^-.$$

Summing up, we conclude that the size of the population X_t^m, starting from $X_0^m = m$, jumps

from k to \(\begin{cases} k+1, & \text{at rate } \lambda k + \sum_{\ell=1}^{k}[f(\ell) - f(\ell - 1)]^+ \\ k-1, & \text{at rate } \mu k + \sum_{\ell=1}^{k}[f(\ell) - f(\ell - 1)]^- \end{cases}\)

Note that we have defined $\{X_t^m, \ t \geq 0\}$ jointly for all $m \geq 1$, i.e. we have defined the two–parameter process $\{X_t^m, \ t \geq 0, \ m \geq 1\}$.

$L_3(t_1) = 4$

$L_3(t_2) = 9$
In case f linear, we have a branching process, and for each $t > 0$,
$\{X_t^m, \ m \geq 1\}$ has independent increments.

In the general case, we don’t expect that for fixed t,
$\{X_t^m, \ m \geq 1\}$ is a Markov chain.

However, $\{X_t^m, \ t \geq 0\}_{m \geq 1}$ is a path–valued Markov chain. We can specify the transitions as follows.

For $1 \leq m < n$, the law of $\{X_t^n - X_t^m, \ t \geq 0\}$, given $\{X_t^\ell, \ t \geq 0, \ 1 \leq \ell \leq m\}$ and given that $X_t^m = x(t), \ t \geq 0$, is that of a time–inhomogeneous jump Markov process whose rate matrix $\{Q_{k,\ell}(t), \ k, \ell \in \mathbb{Z}_+\}$ satisfies

$$Q_{0,\ell} = 0, \ \forall \ell \geq 1$$

and for any $k \geq 1$,

$$Q_{k,k+1}(t) = \lambda k + \sum_{\ell=1}^{k} [f(x(t) + \ell) - f(x(t) + \ell - 1)]^+$$

$$Q_{k,k-1}(t) = \mu k + \sum_{\ell=1}^{k} [f(x(t) + \ell) - f(x(t) + \ell - 1)]^-$$

$$Q_{k,\ell} = 0, \ \text{if } \ell \notin \{k-1, k, k+1\}.$$
In case f linear, we have a branching process, and for each $t > 0$,
$\{X^m_t, \ m \geq 1\}$ has independent increments.

In the general case, we don’t expect that for fixed t,
$\{X^m_t, \ m \geq 1\}$ is a Markov chain.

However, $\{X^m_t, \ t \geq 0\}_{m \geq 1}$ is a path–valued Markov chain. We can specify the transitions as follows.

For $1 \leq m < n$, the law of $\{X^n_t - X^m_t, \ t \geq 0\}$, given
$\{X^\ell_t, \ t \geq 0, \ 1 \leq \ell \leq m\}$ and given that $X^m_t = x(t), t \geq 0$, is that of
The time–inhomogeneous jump Markov process whose rate matrix
$\{Q_{k,\ell}(t), \ k, \ell \in \mathbb{Z}_+\}$ satisfies

$Q_{0,\ell} = 0, \ \forall \ell \geq 1$ and for any $k \geq 1$,

$Q_{k,k+1}(t) = \lambda k + \sum_{\ell=1}^{k}[f(x(t) + \ell) - f(x(t) + \ell - 1)]^+$

$Q_{k,k-1}(t) = \mu k + \sum_{\ell=1}^{k}[f(x(t) + \ell) - f(x(t) + \ell - 1)]^-$

$Q_{k,\ell} = 0, \ \text{if } \ell \notin \{k - 1, k, k + 1\}.$
In case f linear, we have a branching process, and for each $t > 0$,
$\{X^m_t, \ m \geq 1\}$ has independent increments.

In the general case, we don’t expect that for fixed t, $\{X^m_t, \ m \geq 1\}$ is
a Markov chain.

However, $\{X^m_t, \ t \geq 0\}_{m \geq 1}$ is a path–valued Markov chain. We can
specify the transitions as follows.

For $1 \leq m < n$, the law of $\{X^n_t - X^m_t, \ t \geq 0\}$, given
$\{X^\ell_t, \ t \geq 0, \ 1 \leq \ell \leq m\}$ and given that $X^m_t = x(t), \ t \geq 0$, is that of
the time–inhomogeneous jump Markov process whose rate matrix
$\{Q_{k,\ell}(t), \ k, \ell \in \mathbb{Z}_+\}$ satisfies

$$Q_{0,\ell} = 0, \ \forall \ell \geq 1 \ \text{and for any} \ k \geq 1,$$

$$Q_{k,k+1}(t) = \lambda k + \sum_{\ell=1}^{k} [f(x(t) + \ell) - f(x(t) + \ell - 1)]^+$$

$$Q_{k,k-1}(t) = \mu k + \sum_{\ell=1}^{k} [f(x(t) + \ell) - f(x(t) + \ell - 1)]^-$$

$$Q_{k,\ell} = 0, \ \text{if} \ \ell \not\in \{k - 1, k, k + 1\}.$$
In case f linear, we have a branching process, and for each $t > 0$, \(\{X_t^m, \ m \geq 1\} \) has independent increments.

In the general case, we don’t expect that for fixed t, \(\{X_t^m, \ m \geq 1\} \) is a Markov chain.

However, \(\{X_t^m, \ t \geq 0\}_{m \geq 1} \) is a path–valued Markov chain. We can specify the transitions as follows.

For $1 \leq m < n$, the law of \(\{X_t^n - X_t^m, \ t \geq 0\} \), given \(\{X_t^\ell, \ t \geq 0, \ 1 \leq \ell \leq m\} \) and given that $X_t^m = x(t), \ t \geq 0$, is that of the time–inhomogeneous jump Markov process whose rate matrix \(\{Q_{k,\ell}(t), \ k, \ell \in \mathbb{Z}_+\} \) satisfies

\[
Q_{0,\ell} = 0, \ \forall \ell \geq 1 \quad \text{and for any } k \geq 1,
\]

\[
Q_{k,k+1}(t) = \lambda k + \sum_{\ell=1}^{k} \left[f(x(t) + \ell) - f(x(t) + \ell - 1) \right]^+
\]

\[
Q_{k,k-1}(t) = \mu k + \sum_{\ell=1}^{k} \left[f(x(t) + \ell) - f(x(t) + \ell - 1) \right]^-
\]

\[
Q_{k,\ell} = 0, \ \text{if } \ell \not\in \{k - 1, k, k + 1\}.
\]
Exploration process of the forest of genealogical trees

Joint work with Anton Wakolbinger (and also with Mamadou Ba, Vi Le)
Call $\{H_s^m, \ s \geq 0\}$ the zigzag curve in the above picture (with slope ± 2), and define the local time accumulated by H^m at level t up to time s by

$$L_s^m(t) = \lim_{\varepsilon \to 0} \frac{1}{\varepsilon} \int_0^s 1_{t \leq H_r^m < t + \varepsilon} \, dr.$$

H^m is piecewise linear, with slopes ± 2. While the slope is 2, the rate of appearance of a maximum is

$$\mu + \left[f(\lfloor L_s^m(H_s^m) \rfloor + 1) - f(\lfloor L_s^m(H_s^m) \rfloor) \right]^-,$$

and the rate of appearance of a minimum while the slope is -2 is

$$\lambda + \left[f(\lfloor L_s^m(H_s^m) \rfloor + 1) - f(\lfloor L_s^m(H_s^m) \rfloor) \right]^+.$$

Let $S^m = \inf\{s > 0, \ L_s^m(0) \geq m\}$ the time needed for H_s^m to explore the genealogical trees of m ancestors. If we assume that the population goes extinct in finite time, we have the Ray–Knight type result (see next figure)

$$\{X_t^m, \ t \geq 0, \ m \geq 1\} \equiv \{L_s^m(t), \ t \geq 0, \ m \geq 1\}.$$
Call \(\{ H_s^m, \ s \geq 0 \} \) the zigzag curve in the above picture (with slope ±2), and define the local time accumulated by \(H^m \) at level \(t \) up to time \(s \) by

\[
L_s^m(t) = \lim_{\varepsilon \to 0} \frac{1}{\varepsilon} \int_0^s 1_{t \leq H_r^m < t + \varepsilon} \, dr.
\]

\(H^m \) is piecewise linear, with slopes ±2. While the slope is 2, the rate of appearance of a maximum is

\[
\mu + \left[f(\lfloor L_s^m(H_s^m) \rfloor + 1) - f(\lfloor L_s^m(H_s^m) \rfloor) \right]^-,
\]

and the rate of appearance of a minimum while the slope is −2 is

\[
\lambda + \left[f(\lfloor L_s^m(H_s^m) \rfloor + 1) - f(\lfloor L_s^m(H_s^m) \rfloor) \right]^+.
\]

Let \(S^m = \inf \{ s > 0, \ L_s^m(0) \geq m \} \) the time needed for \(H_s^m \) to explore the genealogical trees of \(m \) ancestors. If we assume that the population goes extinct in finite time, we have the Ray–Knight type result (see next figure)

\[
\{ X_t^m, \ t \geq 0, \ m \geq 1 \} \equiv \{ L_s^m(t), \ t \geq 0, \ m \geq 1 \}.
\]
Call \(\{ H^m_s, s \geq 0 \} \) the zigzag curve in the above picture (with slope ±2), and define the local time accumulated by \(H^m \) at level \(t \) up to time \(s \) by

\[
L^m_s(t) = \lim_{\varepsilon \to 0} \frac{1}{\varepsilon} \int_0^s 1_{t \leq H^m_r < t + \varepsilon} \, dr.
\]

\(H^m \) is piecewise linear, with slopes ±2. While the slope is 2, the rate of appearance of a maximum is

\[
\mu + \left[f(\lfloor L^m_s(H^m_s) \rfloor + 1) - f(\lfloor L^m_s(H^m_s) \rfloor) \right]^-,
\]

and the rate of appearance of a minimum while the slope is −2 is

\[
\lambda + \left[f(\lfloor L^m_s(H^m_s) \rfloor + 1) - f(\lfloor L^m_s(H^m_s) \rfloor) \right]^+.
\]

Let \(S^m = \inf \{ s > 0, \ L^m_s(0) \geq m \} \) the time needed for \(H^m_s \) to explore the genealogical trees of \(m \) ancestors. If we assume that the population goes extinct in finite time, we have the Ray–Knight type result (see next figure)

\[
\{ X^m_t, t \geq 0, \ m \geq 1 \} \equiv \{ L^m_{S^m}(t), \ t \geq 0, \ m \geq 1 \}.
\]
How to recover X^m from H^m?

$$H_s^1$$

level t

exploration time s

t

$L_{S^1}(t)$

S^1
Renormalization

- Let $N \geq 1$. Suppose that for some $x > 0$, $m = \lfloor Nx \rfloor$, $\lambda = 2N$, $\mu = 2N$, replace f by $f_N = Nf(\cdot/N)$. We define $Z_{t}^{N,x} = N^{-1}X_t^{\lfloor Nx \rfloor}$.
- We have

Theorem

As $N \to \infty$,

$$\{Z_{t}^{N,x}, \ t \geq 0, x \geq 0\} \Rightarrow \{Z_t^x, \ t \geq 0, x \geq 0\}$$

in $D([0, \infty); D([0, \infty); \mathbb{R}_+))$ equipped with the Skorohod topology of the space of càdlàg functions of x, with values in the Polish space $D([0, \infty); \mathbb{R}_+)$, equipped with the adequate metric.

- $\{Z_t^x, \ t \geq 0, x \geq 0\}$ solves for each $x > 0$ the Dawson–Li type SDE

$$Z_t^x = x + \int_0^t f(Z_s^x)ds + 2 \int_0^t \int_0^{Z_s^x} W(ds, du),$$

where $W(ds, du)$ is a space–time white noise.
Renormalization

- Let $N \geq 1$. Suppose that for some $x > 0$, $m = \lfloor Nx \rfloor$, $\lambda = 2N$, $\mu = 2N$, replace f by $f_N = Nf(\cdot/N)$. We define $Z^{N,x}_t = N^{-1}X^{\lfloor Nx \rfloor}_t$.
- We have

Theorem

As $N \to \infty$,

$$\{Z^{N,x}_t, \ t \geq 0, x \geq 0\} \Rightarrow \{Z^x_t, \ t \geq 0, x \geq 0\}$$

in $D([0, \infty); D([0, \infty); \mathbb{R}_+))$ equipped with the Skorohod topology of the space of càdlàg functions of x, with values in the Polish space $D([0, \infty); \mathbb{R}_+)$, equipped with the adequate metric.

- $\{Z^x_t, \ t \geq 0, x \geq 0\}$ solves for each $x > 0$ the Dawson–Li type SDE

$$Z^x_t = x + \int_0^t f(Z^x_s)\,ds + 2\int_0^t \int_0^s W(ds, du),$$

where $W(ds, du)$ is a space–time white noise.
Renormalization

- Let $N \geq 1$. Suppose that for some $x > 0$, $m = \lfloor Nx \rfloor$, $\lambda = 2N$, $\mu = 2N$, replace f by $f_N = Nf(\cdot/N)$. We define $Z_{t \wedge}\!^N = N^{-1}X_t^{\lfloor N x \rfloor}$.
- We have

Theorem

As $N \to \infty$,

$$\{ Z_{t \wedge}^{N,x}, \ t \geq 0, x \geq 0 \} \Rightarrow \{ Z_t^x, \ t \geq 0, x \geq 0 \}$$

in $D([0, \infty); D([0, \infty); \mathbb{R}_+))$ equipped with the Skorohod topology of the space of càdlàg functions of x, with values in the Polish space $D([0, \infty); \mathbb{R}_+)$, equipped with the adequate metric.

- $\{ Z_t^x, \ t \geq 0, x \geq 0 \}$ solves for each $x > 0$ the Dawson–Li type SDE

$$Z_t^x = x + \int_0^t f(Z_s^x)ds + 2 \int_0^t \int_0^s W(ds, du),$$

where $W(ds, du)$ is a space–time white noise.
How to check tightness?

- Our assumptions on \(f \) are pretty minimal. In order to check tightness for \(x \) fixed, we establish the two bounds

\[
\sup_{N \geq 1} \sup_{0 \leq t \leq T} \mathbb{E} \left(Z_{t}^{N,x} \right)^2 < \infty, \quad \sup_{N \geq 1} \sup_{0 \leq t \leq T} \mathbb{E} \left(- \int_{0}^{t} Z_{s}^{N,x} f(Z_{s}^{N,x}) ds \right) < \infty,
\]

and exploit Aldous’ criterion.

- Concerning the tightness “in the \(x \) direction”, we establish the following bound: for any \(0 \leq x < y < z \) with \(y - x \leq 1 \), \(z - y \leq 1 \),

\[
\mathbb{E} \left[\sup_{0 \leq t \leq T} \left| Z_{t}^{N,y} - Z_{t}^{N,x} \right|^2 \times \sup_{0 \leq t \leq T} \left| Z_{t}^{N,z} - Z_{t}^{N,y} \right|^2 \right] \leq C |z - x|^2.
\]
How to check tightness?

- Our assumptions on f are pretty minimal. In order to check tightness for x fixed, we establish the two bounds

\[
\sup_{N \geq 1} \sup_{0 \leq t \leq T} \mathbb{E} \left(Z_t^{N,x} \right)^2 < \infty, \quad \sup_{N \geq 1} \sup_{0 \leq t \leq T} \mathbb{E} \left(- \int_0^t Z_s^{N,x} f(Z_s^{N,x}) \, ds \right) < \infty,
\]

and exploit Aldous’ criterion.

- Concerning the tightness “in the x direction”, we establish the following bound: for any $0 \leq x < y < z$ with $y - x \leq 1$, $z - y \leq 1$,

\[
\mathbb{E} \left[\sup_{0 \leq t \leq T} |Z_t^{N,y} - Z_t^{N,x}|^2 \times \sup_{0 \leq t \leq T} |Z_t^{N,z} - Z_t^{N,y}|^2 \right] \leq C |z - x|^2.
\]
Continuous population models
For each fixed $x > 0$, there exists a standard BM B_t such that

$$ Z_t^x = x + \int_0^t f(Z_s^x)\,ds + 2 \int_0^t \sqrt{Z_s^x} \,dB_s. $$

However, B depends upon x in a non obvious way, and the good way of coupling the evolution of Z^x for various x’s, which is compatible with the above coupling in the discrete case, is to use the Dawson–Li formulation

$$ Z_t^x = x + \int_0^t f(Z_s^x)\,ds + 2 \int_0^t \int_0^{Z_s^x} W(ds, du), \forall t \geq 0, x \geq 0. $$

It is easily seen that $\{Z_t^x, t \geq 0\}_{x \geq 0}$ is a path–valued Markov process. More on this below.
For each fixed $x > 0$, there exists a standard BM B_t such that

$$Z_t^x = x + \int_0^t f(Z_s^x) ds + 2 \int_0^t \sqrt{Z_s^x} dB_s.$$

However, B depends upon x in a non obvious way, and the good way of coupling the evolution of Z^x for various x’s, which is compatible with the above coupling in the discrete case, is to use the Dawson–Li formulation

$$Z_t^x = x + \int_0^t f(Z_s^x) ds + 2 \int_0^t \int_0^{Z_s^x} W(ds, du), \ \forall t \geq 0, \ x \geq 0.$$

It is easily seen that $\{Z_t^x, \ t \geq 0\}_{x \geq 0}$ is a path–valued Markov process. More on this below.
We will say that Z^x is (sub)critical if

$$T_0^x = \inf\{t > 0; \ Z_t^x = 0\} < \infty \ \text{a.s.}$$

Let $\Lambda(f) = \int_1^\infty \exp \left(-\frac{1}{2} \int_1^u \frac{f(r)}{r} \, dr \right) \, du$.

For any $x \geq 0$, Z^x is (sub)critical iff $\Lambda(f) = \infty$.

Etienne Pardoux (Aix–Marseille Université) EURANDOM, 25 Aug 2014
We will say that Z^x is (sub)critical if

$$T_0^x = \inf \{ t > 0; \ Z_t^x = 0 \} < \infty \ \text{a.s.}$$

Let $\Lambda(f) = \int_1^\infty \exp \left(-\frac{1}{2} \int_1^u \frac{f(r)}{r} dr \right) du$.

For any $x \geq 0$, Z^x is (sub)critical iff $\Lambda(f) = \infty$.
A generalized Ray–Knight theorem

- We assume now that \(f \in C^1(\mathbb{R}_+; \mathbb{R}) \), and there exists \(a > 0 \) such that \(f'(x) \leq a \), for all \(x \geq 0 \). Suppose that we are in the (sub)critical case. We consider the SDE

\[
H_s = B_s + \frac{1}{2} \int_0^s f'(L^Z_r(H_r))dr + \frac{1}{2}L_s(0),
\]

where \(L_s(0) \) denotes the local time accumulated by the process \(H \) at level 0 up to time \(s \). We define \(S_x = \inf\{s > 0, \ L_s(0) > x\} \).

- We have

\textbf{Theorem}

The laws of the two random fields \(\{L_{S_x}(t); \ t \geq 0, \ x \geq 0\} \) and \(\{Z^x_t; \ t \geq 0, \ x \geq 0\} \) coincide.

The proof exploits ideas from Norris, Rogers, Williams (1987) who prove the other Ray–Knight theorem in a similar context.
A generalized Ray–Knight theorem

- We assume now that \(f \in C^1(\mathbb{R}^+; \mathbb{R}) \), and there exists \(a > 0 \) such that \(f'(x) \leq a \), for all \(x \geq 0 \). Suppose that we are in the (sub)critical case. We consider the SDE

\[
H_s = B_s + \frac{1}{2} \int_0^s f'(L_r^z(H_r))dr + \frac{1}{2}L_s(0),
\]

where \(L_s(0) \) denotes the local time accumulated by the process \(H \) at level 0 up to time \(s \). We define \(S_x = \inf\{s > 0, L_s(0) > x\} \).

- We have

Theorem

The laws of the two random fields \(\{L_{S_x}(t); t \geq 0, x \geq 0\} \) and \(\{Z^x_t; t \geq 0, x \geq 0\} \) coincide.

The proof exploits ideas from Norris, Rogers, Williams (1987) who prove the other Ray–Knight theorem in a similar context.
A generalized Ray–Knight theorem

- We assume now that \(f \in C^1(\mathbb{R}_+; \mathbb{R}) \), and there exists \(a > 0 \) such that \(f'(x) \leq a \), for all \(x \geq 0 \). Suppose that we are in the (sub)critical case. We consider the SDE

\[
H_s = B_s + \frac{1}{2} \int_0^s f'(L^z_r(H_r))dr + \frac{1}{2} L_s(0),
\]

where \(L_s(0) \) denotes the local time accumulated by the process \(H \) at level 0 up to time \(s \). We define \(S_x = \inf\{s > 0, L_s(0) > x\} \).

- We have

Theorem

The laws of the two random fields \(\{L_{S_x}(t); \ t \geq 0, x \geq 0\} \) and \(\{Z_t^x; \ t \geq 0, x \geq 0\} \) *coincide.*

The proof exploits ideas from Norris, Rogers, Williams (1987) who prove the other Ray–Knight theorem in a similar context.
Effect of the competition on the height and length of the forest of genealogical trees
The finite population case

- We assume again that \(f \in C(\mathbb{R}_+; \mathbb{R}) \), \(f(0) = 0 \) and for some fixed \(a > 0 \), \(f(x + y) - f(x) \leq ay \), for all \(x, y \geq 0 \). We assume in addition that for some \(b > 0 \), \(f(x) < 0 \) for all \(x \geq b \). Define
 \[
 H^m = \inf\{t > 0, \ X^m_t = 0\}, \ L^m = \int_0^{H^m} X^m_t \, dt.
 \]

- We have

Theorem

1. If \(\int_b^{\infty} |f(x)|^{-1} \, dx = \infty \), then \(\sup_m H^m = \infty \) a.s.
2. If \(\int_b^{\infty} |f(x)|^{-1} \, dx < \infty \), then \(\sup_m \mathbb{E}(e^{cH^m}) < \infty \) for some \(c > 0 \).

- We have

Theorem

Assume in addition that \(g(x) = f(x)/x \) satisfies \(g(x + y) - g(x) \leq ay \).

1. If \(\int_b^{\infty} |f(x)|^{-1} x \, dx = \infty \), then \(\sup_m L^m = \infty \) a.s.
2. If \(\int_b^{\infty} |f(x)|^{-1} x \, dx < \infty \), then \(\sup_m \mathbb{E}(e^{cL^m}) < \infty \) for some \(c > 0 \).
The finite population case

- We assume again that $f \in C(\mathbb{R}_+; \mathbb{R})$, $f(0) = 0$ and for some fixed $a > 0$, $f(x + y) - f(x) \leq ay$, for all $x, y \geq 0$. We assume in addition that for some $b > 0$, $f(x) < 0$ for all $x \geq b$. Define $H^m = \inf\{t > 0, X^m_t = 0\}$, $L^m = \int_0^{H^m} X^m_t dt$.
- We have

Theorem

1. If $\int_b^{\infty} |f(x)|^{-1} dx = \infty$, then $\sup_m H^m = \infty$ a.s.
2. If $\int_b^{\infty} |f(x)|^{-1} dx < \infty$, then $\sup_m \mathbb{E}(e^{cH^m}) < \infty$ for some $c > 0$.

We have

Theorem

Assume in addition that $g(x) = f(x)/x$ satisfies $g(x + y) - g(x) \leq ay$.

1. If $\int_b^{\infty} |f(x)|^{-1} x dx = \infty$, then $\sup_m L^m = \infty$ a.s.
2. If $\int_b^{\infty} |f(x)|^{-1} x dx < \infty$, then $\sup_m \mathbb{E}(e^{cL^m}) < \infty$ for some $c > 0$.
The finite population case

- We assume again that $f \in C(\mathbb{R}_+; \mathbb{R})$, $f(0) = 0$ and for some fixed $a > 0$, $f(x + y) - f(x) \leq ay$, for all $x, y \geq 0$. We assume in addition that for some $b > 0$, $f(x) < 0$ for all $x \geq b$. Define $H^m = \inf\{t > 0, X_t^m = 0\}$, $L^m = \int_0^{H^m} X_t^m dt$.

- We have

Theorem

1. If $\int_b^\infty |f(x)|^{-1} dx = \infty$, then $\sup_m H^m = \infty$ a.s.
2. If $\int_b^\infty |f(x)|^{-1} dx < \infty$, then $\sup_m \mathbb{E}(e^{cH^m}) < \infty$ for some $c > 0$.

- We have

Theorem

Assume in addition that $g(x) = f(x)/x$ satisfies $g(x + y) - g(x) \leq ay$.

1. If $\int_b^\infty |f(x)|^{-1} x dx = \infty$, then $\sup_m L^m = \infty$ a.s.
2. If $\int_b^\infty |f(x)|^{-1} x dx < \infty$, then $\sup_m \mathbb{E}(e^{cL^m}) < \infty$ for some $c > 0$.
The case of continuous state space

- Same assumptions as in the discrete case. We define
 \[T^x = \inf\{ t > 0, \ Z_t^x = 0 \}, \ S^x = \int_0^{T^x} Z_s^x \, ds. \]

- We have

Theorem

1. If \(\int_b^\infty |f(x)|^{-1} \, dx = \infty \), then \(\sup_{x > 0} T^x = \infty \) a.s.
2. If \(\int_b^\infty |f(x)|^{-1} \, dx < \infty \), then \(\sup_{x > 0} \mathbb{E}(e^{cT^x}) < \infty \) for some \(c > 0 \).

- We have

Theorem

Assume in addition that \(g(x) = f(x)/x \) satisfies \(g(x + y) - g(x) \leq ay \).

1. If \(\int_b^\infty |f(x)|^{-1} \, dx = \infty \), then \(\sup_x S^x = \infty \) a.s.
2. If \(\int_b^\infty |f(x)|^{-1} \, dx < \infty \), then \(\sup_x \mathbb{E}(e^{cS^x}) < \infty \) for some \(c > 0 \).
The case of continuous state space

- Same assumptions as in the discrete case. We define
 \[T^x = \inf\{ t > 0, \ Z_t^x = 0 \}, \ S^x = \int_0^{T^x} Z_s^x \, ds. \]

- We have

Theorem

1. If \(\int_b^\infty |f(x)|^{-1} \, dx = \infty \), then \(\sup_{x > 0} T^x = \infty \) a.s.
2. If \(\int_b^\infty |f(x)|^{-1} \, dx < \infty \), then \(\sup_{x > 0} \mathbb{E}(e^{cT^x}) < \infty \) for some \(c > 0 \).

- We have

Theorem

Assume in addition that \(g(x) = f(x)/x \) satisfies \(g(x + y) - g(x) \leq ay \).

1. If \(\int_b^\infty |f(x)|^{-1} \, dx = \infty \), then \(\sup_x S^x = \infty \) a.s.
2. If \(\int_b^\infty |f(x)|^{-1} \, dx < \infty \), then \(\sup_x \mathbb{E}(e^{cS^x}) < \infty \) for some \(c > 0 \).
The case of continuous state space

- Same assumptions as in the discrete case. We define
 \[T^x = \inf\{ t > 0, \ Z_t^x = 0 \}, \ S^x = \int_0^{T^x} Z_s^x \, ds. \]

- We have

Theorem

1. If \(\int_b^\infty |f(x)|^{-1} \, dx = \infty \), then \(\sup_{x > 0} T^x = \infty \) a.s.
2. If \(\int_b^\infty |f(x)|^{-1} \, dx < \infty \), then \(\sup_{x > 0} \mathbb{E}(e^{cT^x}) < \infty \) for some \(c > 0 \).

- We have

Theorem

Assume in addition that \(g(x) = f(x)/x \) satisfies \(g(x + y) - g(x) \leq ay \).

1. If \(\int_b^{\infty} |f(x)|^{-1} \, dx = \infty \), then \(\sup_x S^x = \infty \) a.s.
2. If \(\int_b^{\infty} |f(x)|^{-1} \, dx < \infty \), then \(\sup_x \mathbb{E}(e^{cS^x}) < \infty \) for some \(c > 0 \).
Intuitive idea

- The reason why the above works is essentially because, if
 \(g : \mathbb{R}_+ \to \mathbb{R}_+ \) satifies

 \[
 \int_0^\infty \frac{1}{g(x)} \, dx < \infty
 \]

 then the solution of the ODE

 \[
 \dot{x}(t) = g(x), \quad x(0) = x > 0
 \]

 explodes in finite time.

- Reversing time, we conclude that the ODE

 \[
 \dot{x}(t) = -g(x), \quad x(0) = +\infty
 \]

 has a solution which lives in \(C(\mathbb{R}_+; \mathbb{R}_+) \).

- And the same is true for certain SDEs.
Intuitive idea

- The reason why the above works is essentially because, if \(g : \mathbb{R}_+ \to \mathbb{R}_+ \) satifies

\[
\int_0^\infty \frac{1}{g(x)} \, dx < \infty
\]

then the solution of the ODE

\[
\dot{x}(t) = g(x), \quad x(0) = x > 0
\]

explodes in finite time.

- Reversing time, we conclude that the ODE

\[
\dot{x}(t) = -g(x), \quad x(0) = +\infty
\]

has a solution which lives in \(C(\mathbb{R}_+; \mathbb{R}_+) \).

- And the same is true for certain SDEs.
Intuitive idea

- The reason why the above works is essentially because, if $g : \mathbb{R}_+ \to \mathbb{R}_+$ satisfies
 \[
 \int_0^\infty \frac{1}{g(x)} \, dx < \infty
 \]
 then the solution of the ODE
 \[
 \dot{x}(t) = g(x), \quad x(0) = x > 0
 \]
 explodes in finite time.

- Reversing time, we conclude that the ODE
 \[
 \dot{x}(t) = -g(x), \quad x(0) = +\infty
 \]
 has a solution which lives in $C(\mathbb{R}_+; \mathbb{R}_+)$.

- And the same is true for certain SDEs.
The path–valued Markov process
Our assumptions

- For the rest of this talk, we assume again that f is continuous, $f(0) = 0$, $f(x + y) - f(x) \leq ay$ for some $a > 0$, all $x, y \geq 0$, and moreover
 - (Sub)criticality: $\int_1^\infty \exp(- \int_1^u (2r)^{-1} f(r) dr) du = +\infty$;
 - (1/2–Hölder): For all $M > 0$, there exists C_M s.t. $|f(x + y) - f(x)| \leq C_M \sqrt{y}$, for all $0 \leq x \leq M$, $0 \leq y \leq 1$.

- We define E to be the subset of $C([0, +\infty); [0, +\infty))$ consisting of those functions φ such that whenever $\zeta(\varphi) := \inf\{t > 0, \varphi(t) = 0\}$ is finite, then $\varphi(t) = 0$ for any $t \geq \zeta(\varphi)$. E is equipped with the topology of uniform convergence on compacts.

- From now on, we choose a version of the solution of the SDE

\[Z_t^x = x + \int_0^t f(Z_s^x) ds + 2 \int_0^t \int_0^{Z_s^x} W(ds, du) \]

s.t. the mapping $x \rightarrow Z^x$ is right–continuous and increasing from $[0, \infty)$ into E.

Our assumptions

For the rest of this talk, we assume again that f is continuous, $f(0) = 0$, $f(x + y) - f(x) \leq ay$ for some $a > 0$, all $x, y \geq 0$, and moreover

- \text{(Sub)criticality:} $\int_1^\infty \exp(- \int_1^u (2r)^{-1} f(r) dr) du = +\infty$;
- \text{(1/2–Hölder):} For all $M > 0$, there exists C_M s.t. $|f(x + y) - f(x)| \leq C_M \sqrt{y}$, for all $0 \leq x \leq M$, $0 \leq y \leq 1$.

We define E to be the subset of $C([0, +\infty); [0, +\infty))$ consisting of those functions φ such that whenever $\zeta(\varphi) := \inf\{t > 0, \varphi(t) = 0\}$ is finite, then $\varphi(t) = 0$ for any $t \geq \zeta(\varphi)$. E is equipped with the topology of uniform convergence on compacts.

From now on, we choose a version of the solution of the SDE

$$Z_t^x = x + \int_0^t f(Z_s^x) ds + 2 \int_0^t \int_0^{Z_s^x} W(ds, du)$$

s.t. the mapping $x \rightarrow Z_t^x$ is right–continuous and increasing from $[0, \infty)$ into E.
Our assumptions

- For the rest of this talk, we assume again that f is continuous, $f(0) = 0$, $f(x + y) - f(x) \leq ay$ for some $a > 0$, all $x, y \geq 0$, and moreover:
 - (Sub)criticality: $\int_1^\infty \exp(-\int_1^u (2r)^{-1}f(r)dr)du = +\infty$;
 - ($1/2$–Hölder): For all $M > 0$, there exists C_M s.t. $|f(x + y) - f(x)| \leq C_M \sqrt{y}$, for all $0 \leq x \leq M$, $0 \leq y \leq 1$.

- We define E to be the subset of $C([0, +\infty); [0, +\infty))$ consisting of those functions φ such that whenever $\zeta(\varphi) := \inf\{t > 0, \varphi(t) = 0\}$ is finite, then $\varphi(t) = 0$ for any $t \geq \zeta(\varphi)$. E is equipped with the topology of uniform convergence on compacts.

- From now on, we choose a version of the solution of the SDE

$$Z_t^x = x + \int_0^t f(Z_s^x)ds + 2 \int_0^t \int_0^{Z_s^x} W(ds, du)$$

s.t. the mapping $x \to Z_t^x$ is right–continuous and increasing from $[0, \infty)$ into E.

Consider, with the same space–time white noise W, the two SDEs

$$Y_t^x = x + a \int_0^t Y_s^x \, ds + 2 \int_0^t \int_0^t Y_s^x \, W(ds, du),$$

$$Z_t^x = x + \int_0^t f(Z_s^x) \, ds + 2 \int_0^t \int_0^t Z_s^x \, W(ds, du).$$

It follows readily from a comparison theorem due to Dawson, Li that $Z_t^x \leq Y_t^x$ a.s., for all $x > 0$ and $t \geq 0$.
Consider, with the same space–time white noise W, the two SDEs

\[Y_t^x = x + a \int_0^t Y_s^x \, ds + 2 \int_0^t \int_0^t Y_s^x \, W(ds, du), \]

\[Z_t^x = x + \int_0^t f(Z_s^x) \, ds + 2 \int_0^t \int_0^t Z_s^x \, W(ds, du). \]

It follows readily from a comparison theorem due to Dawson, Li that $Z_t^x \leq Y_t^x$ a.s., for all $x > 0$ and $t \geq 0$.

Etienne Pardoux (Aix–Marseille Université) EURANDOM, 25 Aug 2014
A stronger coupling

- We recall that for each $t > 0$, $x > 0$, the mapping $\xi \in [0, x] \mapsto Y_\xi^x$ has a finite number of (positive) jumps, and is constant between those jumps.

- For each $t > 0$, $x > 0$, let

 $$D_t = \{\xi > 0; Y_\xi^x > Y_\xi^x\}, \quad \text{and}$$

 $$A_x^x(Z) = \bigcup_{\xi \leq x, \xi \in D_t} (Y_\xi^x, Y_\xi^x + Z_\xi^x - Z_\xi^x].$$

- One can construct a random field $\{\tilde{Z}_t^x, x > 0, t \geq 0\}$ such that $t \mapsto \tilde{Z}_t^x$ is continuous, $x \mapsto \tilde{Z}_t^x$ is right–continuous,

 $\{\tilde{Z}_t^x, x > 0, t \geq 0\}$ has the same law as $\{Z_t^x, x > 0, t \geq 0\}$,

 $\{\tilde{Z}_t^x, x > 0, t \geq 0\}$ solves the SDE

 $$\tilde{Z}_t^x = x + \int_0^t f(\tilde{Z}_s^x) ds + 2 \int_0^t \int_{A_x^x(\tilde{Z})} W(ds, du),$$

- Moreover $\mathbb{P}(\tilde{Z}_t^{x+y} - \tilde{Z}_t^x \leq Y_t^{x+y} - Y_t^x, \forall t \geq 0) = 1$, for all $x, y > 0$.

Etienne Pardoux (Aix–Marseille Université) EURANDOM, 25 Aug 2014
A stronger coupling

- We recall that for each $t > 0$, $x > 0$, the mapping $\xi \in [0, x] \mapsto Y^\xi_t$ has a finite number of (positive) jumps, and is constant between those jumps.
- For each $t > 0$, $x > 0$, let
 \[D_t = \{ \xi > 0; \ Y^\xi_t > Y^\xi_t^- \} \], and
 \[A^x_t(Z) = \bigcup_{\xi \leq x, \xi \in D_t} (Y^\xi_t^-, Y^\xi_t^- + Z^\xi_t - Z^\xi_t^-). \]
- One can construct a random field $\{ \tilde{Z}^x_t, x > 0, t \geq 0 \}$ such that $t \mapsto \tilde{Z}^x_t$ is continuous, $x \mapsto \tilde{Z}^x_t$ is right–continuous, $\{ \tilde{Z}^x_t, x > 0, t \geq 0 \}$ has the same law as $\{ Z^x_t, x > 0, t \geq 0 \}$, $\{ \tilde{Z}^x_t, x > 0, t \geq 0 \}$ solves the SDE
 \[\tilde{Z}^x_t = x + \int_0^t f(\tilde{Z}^x_s)ds + 2 \int_0^t \int_{A^x_s(\tilde{Z})} W(ds, du), \]
 Moreover $\mathbb{P}(\tilde{Z}^{x+y}_t - \tilde{Z}^x_t \leq Y^{x+y}_t - Y^x_t, \forall t \geq 0) = 1$, for all $x, y > 0$.
We recall that for each $t > 0$, $x > 0$, the mapping $\xi \in [0, x] \mapsto Y_t^\xi$ has a finite number of (positive) jumps, and is constant between those jumps.

For each $t > 0$, $x > 0$, let

$$D_t = \{\xi > 0; Y_t^\xi > Y_t^{\xi-}\}, \text{ and}$$

$$A_t^x(Z) = \bigcup_{\xi \leq x, \xi \in D_t} (Y_t^{\xi-}, Y_t^{\xi-} + Z_t^\xi - Z_t^{\xi-}].$$

One can construct a random field $\{\tilde{Z}_t^x, x > 0, t \geq 0\}$ such that $t \mapsto \tilde{Z}_t^x$ is continuous, $x \mapsto \tilde{Z}_t^x$ is right–continuous, $\{\tilde{Z}_t^x, x > 0, t \geq 0\}$ has the same law as $\{Z_t^x, x > 0, t \geq 0\}$, $\{\tilde{Z}_t^x, x > 0, t \geq 0\}$ solves the SDE

$$\tilde{Z}_t^x = x + \int_0^t f(\tilde{Z}_s^x) ds + 2 \int_0^t \int A_s^x(\tilde{Z}) W(ds, du),$$

Moreover $\mathbb{P}(\tilde{Z}_t^{x+y} - \tilde{Z}_t^x \leq Y_t^{x+y} - Y_t^x, \forall t \geq 0) = 1$, for all $x, y > 0$.
A corollary

- It follows readily from the above coupling

Corollary

For any \(t > 0 \), \(x \mapsto Z^x_t \) has finitely many jumps on any compact interval, and is constant between those jumps.

Corollary

For any \(s > 0 \),

\[
\mathbb{P}\left(\bigcup_{t>s} \left\{ x, \ Z^x_t \neq Z^x_{t^-} \right\} \subset \left\{ x, \ Z^x_s \neq Z^x_{s^-} \right\} \text{ for all } x > 0 \right) = 1.
\]
A corollary

- It follows readily from the above coupling

Corollary

For any \(t > 0 \), \(x \mapsto Z^x_t \) has finitely many jumps on any compact interval, and is constant between those jumps.

- It is also not too hard to show that

Corollary

For any \(s > 0 \),

\[
\mathbb{P}\left(\bigcup_{t > s} \{ x, \ Z^x_t \neq Z^x_{t^-} \} \subset \{ x, \ Z^x_s \neq Z^x_{s^-} \} \text{ for all } x > 0 \right) = 1.
\]
For the rest of the talk Y_t^x denotes the critical Feller diffusion, solution of

$$Y_t^x = x + 2 \int_0^t \int_0^t Y_s^x W(ds, du).$$

We can write Y^x as the solution of the SDE

$$Y^x = \int_{[0,x] \times E} uN(dy, du),$$

where N is a Poisson random measure on $\mathbb{R}_+ \times E$ with mean measure $dy \times \mathbb{Q}(du)$, where \mathbb{Q} is the excursion measure of the critical Feller diffusion, in the sense of Pitman–Yor.
For the rest of the talk Y_t^x denotes the critical Feller diffusion, solution of

$$Y_t^x = x + 2 \int_0^t \int_0^Y W(ds, du).$$

We can write Y^x as the solution of the SDE

$$Y_t^x = \int_{[0,x] \times E} uN(dy, du),$$

where N is a Poisson random measure on $\mathbb{R}_+ \times E$ with mean measure $dy \times Q(du)$, where Q is the excursion measure of the critical Feller diffusion, in the sense of Pitman–Yor.
The above Corollary implies that similarly \(x \rightarrow Z^x \) can be decomposed as a sum of excursions. Call \(N_Z(dy, du) \) the corresponding point process, which is such that for all \(x > 0 \),

\[
Z^x = \int_{[0,x] \times E} uN_Z(dy, du).
\]

We want to characterize the point process \(N_Z \). Let \(F(x, y) = f(x + y) - f(x) \) and

\[
L(Z, u) = \exp \left(-\frac{1}{4} \int_0^{\zeta(u)} F(Z_s, u_s) \frac{du_s}{u_s} - \frac{1}{8} \int_0^{\zeta(u)} F^2(Z_s, u_s) \frac{ds}{u_s} \right).
\]
The above Corollary implies that similarly \(x \rightarrow Z^x \) can be decomposed as a sum of excursions. Call \(N_Z(dy, du) \) the corresponding point process, which is such that for all \(x > 0 \),

\[
Z^x = \int_{[0,x] \times E} uN_Z(dy, du).
\]

We want to characterize the point process \(N_Z \). Let \(F(x, y) = f(x + y) - f(x) \) and

\[
L(Z, u) = \exp \left(-\frac{1}{4} \int_0^\zeta(u) \frac{F(Z_s, u_s)}{u_s} du_s - \frac{1}{8} \int_0^\zeta(u) \frac{F^2(Z_s, u_s)}{u_s} ds \right).
\]
Our main result says that the predictable intensity of N_Z is

$$L(Z^y, u)Q(du)dy.$$

This is equivalent to

Theorem

The path–valued process $\{Z^x, x > 0\}$ can be decomposed as

$$Z^x = \int_{[0,x] \times E} uL(Z^\xi, u)Q(du)d\xi + M^x,$$

where M^x is an E–valued càdlàg G^x–martingale.

Here $G^x = \sigma\{Z^\xi_t, 0 \leq \xi \leq x, t > 0\}$.
Main result

- Our main result says that the predictable intensity of N_Z is

$$L(Z^y, u) \mathbb{Q}(du) dy.$$

- This is equivalent to

Theorem

The path-valued process $\{Z^x, x > 0\}$ can be decomposed as

$$Z^x = \int_{[0,x] \times E} uL(Z^{\xi}, u) \mathbb{Q}(du) d\xi + M^x,$$

where M^x is an E–valued càdlàg \mathcal{G}^x–martingale.

- Here $\mathcal{G}^x = \sigma\{Z_t^{\xi}, 0 \leq \xi \leq x, t > 0\}$.
Main result

- Our main result says that the predictable intensity of N_Z is

 $$L(Z^y, u) \mathbb{Q}(du) dy.$$

- This is equivalent to

Theorem

The path–valued process $\{Z^x, x > 0\}$ can be decomposed as

$$Z^x = \int_{[0,x] \times E} uL(Z^\xi, u) \mathbb{Q}(du) d\xi + M^x,$$

where M^x is an E–valued càdlàg \mathcal{G}^x–martingale.

- Here $\mathcal{G}^x = \sigma\{Z^\xi_t, 0 \leq \xi \leq x, t > 0\}$.

The last identity is proved as follows. We want to establish that for any $t > 0$,

$$Z^x_t = \int_{[0,x] \times E} L(Z^y, u)u(t)\mathbb{Q}(du)dy + M^x(t).$$

Clearly if x is a dyadic number, then for n large enough

$$Z^x_t = \sum_{k=1}^{x2^n} 2^{-n}\mathbb{E} \left(Z^{x^k+1}_t - Z^x_t \big| G^{x^k} \right) + M^x_n(t).$$

Now

$$\mathbb{E} \left(Z^{x+y}_t - Z^x_t \big| G^x \right) = \mathbb{E} \left(L(Z^x, U^y)U^y_t \big| G^x \right),$$

where

$$U^y_t = y + 2 \int_0^t \sqrt{U_s} dB_s.$$
The last identity is proved as follows. We want to establish that for any $t > 0$,

$$Z^x_t = \int_{[0,x] \times E} L(Z^y, u) u(t) Q(du) dy + M^x(t).$$

Clearly if x is a dyadic number, then for n large enough

$$Z^x_t = \sum_{k=1}^{2^n} 2^{-n} \mathbb{E} \left(Z^{x_{k+1}}_t - Z^{x_k}_t \middle| G^{x_k} \right) + M^x_n(t).$$

Now

$$\mathbb{E} \left(Z^{x+y}_t - Z^x_t \middle| G^x \right) = \mathbb{E} \left(L(Z^x, U^y) U^y_t \middle| G^x \right),$$

where

$$U^y_t = y + 2 \int_0^t \sqrt{U_s} dB_s.$$
The last identity is proved as follows. We want to establish that for any \(t > 0 \),

\[
Z_t^x = \int_{[0,x] \times E} L(Z^y, u)u(t)\mathbb{Q}(du)dy + M^x(t).
\]

Clearly if \(x \) is a dyadic number, then for \(n \) large enough

\[
Z_t^x = \sum_{k=1}^{x2^n} 2^{-n}\mathbb{E}\left(Z_t^{x_k+1} - Z_t^{x_k} \mid G^{x_k}\right) + M^x_n(t).
\]

Now

\[
\mathbb{E}\left(Z_t^{x+y} - Z_t^x \mid G^x\right) = \mathbb{E}\left(L(Z^x, U^y)U_t^y \mid G^x\right),
\]

where

\[
U_t^y = y + 2 \int_0^t \sqrt{U_s} dB_s.
\]
Indication of proof 2

- But

\[y^{-1} \mathbb{E} \left(L(Z^x, U^y) U^y_t \middle| \mathcal{G}^x \right) = \mathbb{E}_{Q_{y,t}} \left(L(Z^x, U^y) \middle| \mathcal{G}^x \right), \]

where under \(Q_{y,t} \)

\[U_r = y + 4t \wedge r + 2 \int_0^t \sqrt{U_s} dB_s. \]

- Finally we can take the limit as \(y \to 0 \) in the last identity, yielding

\[y^{-1} \mathbb{E} \left(L(Z^x, U^y) U^y_t \middle| \mathcal{G}^x \right) \to \mathbb{E}_{Q_0,t} \left(L(Z^x, U) \middle| \mathcal{G}^x \right). \]

It just remain to verify that

\[\mathbb{E}_{Q_0,t} \left(L(Z^x, U) \middle| \mathcal{G}^x \right) = \int_E L(Z^x, u) u(t) \mathbb{Q}(du), \]

where \(\mathbb{Q} \) is the above excursion measure.
Indication of proof 2

But

\[y^{-1} \mathbb{E} \left(L(Z^x, U^y) U^y_t \bigg| G^x \right) = \mathbb{E}_{\mathcal{Q}y,t} \left(L(Z^x, U^y) \bigg| G^x \right), \]

where under \(\mathcal{Q}_{y,t} \)

\[U_r = y + 4t \wedge r + 2 \int_0^t \sqrt{U_s} dB_s. \]

Finally we can take the limit as \(y \to 0 \) in the last identity, yielding

\[y^{-1} \mathbb{E} \left(L(Z^x, U^y) U^y_t \bigg| G^x \right) \to \mathbb{E}_{\mathcal{Q}_0,t} \left(L(Z^x, U) \bigg| G^x \right). \]

It just remain to verify that

\[\mathbb{E}_{\mathcal{Q}_0,t} \left(L(Z^x, U) \bigg| G^x \right) = \int_E L(Z^x, u) u(t) \mathcal{Q}(du), \]

where \(\mathcal{Q} \) is the above excursion measure.
The infinitesimal generator

We deduce from the above statement

Corollary

For bounded $g: \mathbb{R}^+ \to \mathbb{R}^+$ *and* $z \in E$, *put* $\Phi_g(z) := e^{-\langle g, z \rangle}$. *Then, for this class of functions,*

$$A\Phi_g(z) := \Phi_g(z) \int_E \left(e^{-\langle g, u \rangle} - 1 \right) L(z, u) Q(du)$$

gives the generator of Z in the sense that for all $g: \mathbb{R}^+ \to \mathbb{R}^+$,

$$\Phi_g(Z^x) - \Phi_g(Z^0) - \int_{[0,x] \times E} A\Phi_g(Z^\xi)d\xi, \quad x \geq 0$$

is a \mathcal{G}^x–martingale.

V. Le, E. Pardoux, Height and the total mass of the forest of genealogical trees of a large population with general competition, *ESAIM P & S*, 2014, to appear.

E. Pardoux, A. Wakolbinger, From Brownian motion with a local time drift to Feller’s branching diffusion with logistic growth, *ECP* 2011.

E. Pardoux, A. Wakolbinger, A path–valued Markov process indexed by the ancestral mass, submitted.

THANK YOU FOR YOUR ATTENTION!