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Storage in data center
— a simple example
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Server 4 -
File Y -
L L Data center
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FileR Server 2

> 4 servers.

> 4 files:
File R 4 copies; File Y 2 copies;
File B 2 copies; File G 1 copies.

» If server 2 crashed, only File G will be lost forever.
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Real world: servers fail

Large data center files are stored in servers;
10 out of 200000 servers fail per day approximately;

Literature Failure Trends in a Large Disk Drive Population
Eduardo Pinheiro et al.(Google, 2007)

Problem: » How to prevent losing files?
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Real world: servers fail

Large data center files are stored in servers;
10 out of 200000 servers fail per day approximately;

Literature Failure Trends in a Large Disk Drive Population
Eduardo Pinheiro et al.(Google, 2007)

Problem: » How to prevent losing files?
Making more copies!
> Effective Bandwidth Utilization?
Upper limit of copies.



Literature on duplication algorithm

Experiments by data center designers OpenDHT, PAST, ...

Math models

» For single server
An Analytical Estimation of Durability in DHTs
F. Picconi, B. Baynat, P. Sens (2007)
» For large number of servers
Little work has been done.



Math Model: duplication

in a network with failures



Model of network with failures

Number of servers N
Number of files Fn
Failure rate for each server I
Duplication rate for each server A per server

(global rate AN)
Maximum number of copies d

Duplication algorithm Depends on designers



A simplified model

Number of servers N
Number of files Fn
Failure rate for each copy 1
Duplication rate for whole system AN
Maximum number of copies d
Duplication algorithm Duplicate the file with

least number of copies



A simplified model

Assumptions:

- Initial state: all files have d copies
(maximum case).

- Scaling: average number of files per server

Fn
| — =
Ninoo N B
Intuitive picture:
- larger d = files are less likely lost;
- larger B = complete for bandwidth.
d=2 A Scaling Analysis of a Transient Stochastic Network.

M. Feuillet and P. Robert (2014)



Transient Markov Process: evolution among coordinates

XN(t) = (X0, X (0), .. X (D))

XN(t) = number of files with i copies at time t.

» at time 0,
X} (0) = Fu,

xNwo)y=0, Vo<i<d.

» XN(t)isa jump process in N9+1,



Transient Markov Process: losing a copy

XN(t) = number of files with i copies at time t.

1

evolution between coordinates

inXN(t)
at rate iux;,

a file with i copies loses 1 copy, then it has (i — 1) copies.

Xj — Xj — 1, Xi—1 — xj—1 + 1.



Transient Markov Process: duplication

XN(t) = number of files with i copies at time t.

evolution between coordinates

AN ()= =xN | (6)=0:X(£)>0)

if there is no file with less than i copies

(X'() = = XM1(8) = 0: xN(¢) > 0),

at rate AN,

a file with i copies duplicates, then it has (i + 1) copies.

xXi — xj — 1, Xi+1 — Xi+1 + 1.



Transient Markov Process:
evolution among coordinates

XN(t) = number of files with i copies at time t.

ANT (x(e ANH(XN(L‘ S=XN o (=0,x]

QEE G

MXN 2;1,XN(1‘ duXN(t



Transient Markov Process: absorbing state

absorbing
l LN
uX{'(t)

Absorbing state: caused by random events, with probability 1,
(X (), x(), ... XY (£)) =5 (Fw,0,...,0).

All files lost eventually!

Aim: Estimate the rate of decay of the system
when N is large.



Decay rate of system

For 0 € (0,1),

Tn(6) = first time for 0 Fy files being lost

:inf{t >0: XN(t) > 5FN}




Decay rate of system

For 0 € (0,1),

Tn(6) = first time for 0 Fy files being lost




Underloaded system
duf < A



Meaning of condition: duf < A

At beginning , XC’,V ~ BN.

AN
dupBN

* |loss rate < duplication rate;
* most files stay with d copies;

« what will happen for larger time?



Underloaded system: dufg < A
Theorem (Stability)

d
Initial state (XJN(O)) ,

Jj=0

- (0,...

70’FN)

and

2



Underloaded system: dufg < A
Theorem (Stability)

Initial state  (X(0)) = (0,...

RN
Fluid limit (Xf,\ft)) = (0,...

F
B



Underloaded system: dufg < A
Theorem (Stability)

Initial state (X-’V(O)> ~ =(0,...,0,Fy) and fr—p

Vi d
Fluid limit (Xf,\,(t)) = (0,...,0,8).
=0

Time scale: t — N9—2¢

_ d
im (25) ~0000)

N—oo N .
j=0

x All alive files have d copies.

= The time scale of decay is larger than
t — N92¢.



Underloaded system: dufg < A

Theorem (Decay) ( Main Result! )
Time scale: t — N9~ 1t

_ d
lim (M) = (x0(t),0,...,0,xq4(t))

N—oo N .
j=0



Underloaded system: dufg < A

Theorem (Decay) ( Main Result! )
Time scale: t — N9~ 1t

N(pd—1 d
lim (XJ(Nt)> = (x0(t),0,...,0,xq4(t))

N—oo N .
j=0

Fluid limit

xo(t) + xa(t) = B,

d—1)! d X
dxo(t) = M 2GSy de

— lostfiles (0 copy)

— alive files(d copies)

* Most alive files have d copies.

« Ewventually, all the files will be lost.

time



Underloaded system: dufg < A
Sketch of proof (Decay: t — N7-1t)

Step. 1 Prove for all k =1,2,...,d — 1,
XN Ndfl
lim <’< ( t)> =0.
N—oo N
Step. 2 Obtain the limit of

XN(Nd-1t 1 N
<O(N)> - (MN/ XlN(u)du—l—martingale part | .
0



Underloaded system: dufg < A
Sketch of proof (Decay: t — N7-1t)

Step. 1 Prove for all k=1,2,...,d — 1,

im (M) o

N—o0 N



Underloaded system: dufg < A
Sketch of proof (Decay: t — N7-1t)

Step. 1 Prove for all k=1,2,...,d — 1,
(XN
o (1070)
Proof ZN(t) = (d=1)XNM(t)+(d—2)XL (t)+- -+ X}, ().
Coupling ZN(t) <L(Nt),
L(t) = an ergodic M/M/1 queue

with +1 rate dufg, —1 rate A.

XN(N9-1t) - Z(N91t)

t<T N t<T N <7 N




Underloaded system: dufg < A
Sketch of proof (Decay: t — N7-1t)

Step. 2 Obtain the limit of

N(pjd—1 NA=1t yN
(XO(I\IIVt)> — (M/ XlN(u)du + martingale part) .
0



Underloaded system: dufg < A
Sketch of proof (Decay: t — N7-1t)

Step. 2 Obtain the limit of

N(pjd—1 NA=1t yN
(XO(I\IIVt)> — (M/ XlN(u)du + martingale part) .
0

Balance of flows ( Key point! ) @

lim # (/ON A [M(k + )XY (u) - )\NXLV(U)} du) =0.

N—oc0

. </0Ndlrxﬂ(u)_(d_l)!xyl(u)du> o,

Nooo N pd—2 N1

(Stochastic Calculus with Poisson Processes)



Underloaded system: dufg < A
Sketch of proof (Decay: t — N971t)

Tightness and convergence of

</0Nd—1t X%—dl_(lu)du> = (/Othllv—l(Nd_1U)du>

Stochastic averaging problem

Markov process under time scale: t — N9=1t

slow process fast process

¢




Stochastic averaging problem: Literature

» PDE: Singular Perturbation Theory;
» Probability

- Khasminskii (1966), Freidlin, Wentzell (1979),
- Papanicolaou, Stroock, Varadhan (1977) for diffusions,

- Kurtz (1992) for jump processes.



Underloaded system: dufg < A Sketch of proof

Markov process under time scale: t — N9~1t

slow process fast process

¢

» Tightness of measures (7"V) on N x R* defined by

<wMg>=/ g(X 1 (N91u), u)du,
RJr



Underloaded system: dufg < A Sketch of proof

Markov process under time scale: t — N9~1t

slow process fast process

¢
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» 7N = 71 with 7(N x [0, t]) = t.



Underloaded system: dufg < A Sketch of proof

Markov process under time scale: t — N9~1t

slow process

N

fast process

¢

» Tightness of measures (7"V) on N x R* defined by

<wMg>=/ g(X 1 (N91u), u)du,
]RJr

» 7N = 71 with 7(N x [0, t]) = t.
» Identify m: for fixed t,
- X)L (N9t 4 £) ~ an ergodic M/M/1 queue
with +1 rate duxy(t) and —1 rate A
- 7(+, t) is the invariant measure.



Underloaded system: dufg < A Sketch of proof

Markov process under time scale: t — N9~1t

slow process fast process

¢

7(-, t) is the invariant measure of an ergodic M/M/1 queue
with +1 rate d,uxd( ) and —1 rate \.

= xo(t) = Jim_ NG /Xd LN yydu
(d—l)/
=A <mz(,u),l >du
041 o (- u)

(d—=1) 1t duxqg(u)
=\ d
P Jo A= dpxg(u)

Xd(t) :ﬁ—Xo(t). |




Underloaded system: dufg < A
Corollary (Decay time for a fraction § of files lost)

V6 € (0,1), Tn(8) = inf{t >0: %) > (m}



Underloaded system: dufg < A

Corollary (Decay time for a fraction § of files lost)

Vs € (0,1), Tw(8) = inf {t >0: %) > 55}

we have already proved

N(pnd—1
(W) — (xo(t)).



Underloaded system: dufg < A

Corollary (Decay time for a fraction § of files lost)

Vs € (0,1), Tw(8) = inf {t >0: %) > 55}

we have already proved

N(pnd—1
(W) — (xo(t)).

then for the convergence of distribution

- Tw(9) Pt
= Jim et = Nd =11t g et —9) = 5.

* The order of decay time is O(N9~1).



Central limit theorem

(for stochastic averaging problem)



Central limit theorem for stochastic averaging problem

* Law of large numbers:

N(pnd—1
() = Gt

« Theorem CLT (Underloaded case)

(X(;\’(Ndi%_ Xo(t)N> LW,
where W(t) satisfies a SDE
A2pud! W(t)

dW(t) = \/xp(t)dB(t) — dt

p?=t (A = dp(B — x0(1)))

(B(t) is the standard Brownian motion).

x Technical point: “refined” balance of flow.



Overloaded system
A< dBu



Overloaded system — A < dfu

p=1lglp=12

N
Fluid limit (ff,\f—”)ﬁO = (xi(1))5o.

Technical point: Generalized Skorokhod Problem

(xps Xp 1, ()jzppt1)(£) = ((p+1)B — p, p — P, (0))



Overloaded system — A < dfu

p=1lglp=12

N
Fluid limit (ff,\f—”)ﬁO = (xi(1))5o.

Technical point: Generalized Skorokhod Problem

(xps Xp 1, ()jzppt1)(£) = ((p+1)B — p, p — P, (0))

Time scale: t — NP1t

XN
lim (T) = (x0(t),0,...,0,x5(t), xp+1(1),0,...,0)

N—oo

Technical point: Coupling + Stochastic Averaging Problem.



Conclusion



Conclusion

Underloaded case: A\ > dfu

» Fluid limit at normal time.
» Fluid limit at time scale t — N9 1t
» Central limit theorem.

Overloaded case: pSu < A< (p+1)Bu

» Fluid limit at normal time.
» Local equibrium within p or p 4+ 1 copies.
» Fluid limit at time scale t — NP~1t.

Ts = time for Fpy files being lost
If (1—0)8 € (ormy- g)» then Ts ~ O(NP).
More details

Analysis of large unreliable stochastic networks
W. Sun, M. Feuillet and P. Robert (2015, arXiv)



Further work

« failure rate per copy — failure rate per server — p,

x copy rate of whole system — AN
— copy rate per server — ).

* mean field approach.

Ongoing work with Reza Aghajani (Brown University)
and Philippe Robert (INRIA).



Thank youl!



