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The processes

Slowed exclusion processes: the dynamics

• ηt is an exclusion process with space state Ω = {0, 1}Z, so that for
x ∈ Z, η(x) = 1 if the site is occupied, otherwise η(x) = 0.
The rates are:

-1 0 1 2 3-2

We assume γ > β or β = γ and α ≥ a (in last case if a = α then
{−1, 0} is totally asymmetric).
• For a = 0, we obtain the SSEP with a slow bond.
• For α = 1 and β = 0 we obtain the WASEP - weak asymmetry.
• νρ the Bernoulli product measure of parameter ρ is invariant.

March 16, 2016 2 / 17



Hydrodynamics

Hydrodynamic limit: the case a = 0

• For η let πnt (η; du) = 1
n

∑
x∈Z ηtn2(x)δx/n(du).

• Fix ρ0 : R→ [0, 1] and µn such that for every δ > 0 and every
continuous function H : R→ R,

1
n

∑
x∈Z

H(xn) η(x)→n→∞

∫
R
H(u) ρ0(u)du,

wrt µn. Then for any t > 0, πnt → ρ(t, u)du, as n→∞, where ρ(t, u)
evolves according to:
• β < 1: Heat equation ∂tρ(t, u) = ∆ρ(t, u)

• β = 1: Heat equation ∂tρ(t, u) = ∆ρ(t, u) with a type of Robin’s
boundary conditions ∂uρ(t, 0−)=∂uρ(t, 0+) =α(ρ(t, 0+)−ρ(t, 0−)).

• β > 1: Heat equation ∂tρ(t, u) = ∆ρ(t, u) with Neumann’s
boundary conditions ∂uρ(t, 0−) = ∂uρ(t, 0+) = 0.
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Equilibrium fluctuations

Equilibrium density fluctuations: a = 0

• Fix a density ρ ∈ (0, 1) and consider the process starting from νρ.

• The density fluctuation field {Yβ,γ,nt ; t ∈ [0, T ]} is given on
H ∈ Sβ(R) by

Yβ,γ,nt (H) := 1√
n

∑
x∈Z

H
(x
n

)
(ηtn2(x)− ρ).

Definition
Let S(R\{0}) be the space of functions H : R→ R such that: 1) H is
smooth on R\{0}, 2) H is continuous from the right at 0, 3) for all
non-negative integers k, `, the function H satisfies

‖H‖k,` := sup
u6=0

∣∣∣(1 + |u|`)d
kH

duk
(u)
∣∣∣ <∞.
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Equilibrium fluctuations

Space of test functions

Definition

1 For β < 1, Sβ(R) := S(R), the usual Schwartz space S(R).
2 For β = 1, Sβ(R) is the subset of S(R\{0}) composed of functions
H such that

d2k+1H

du2k+1 (0+) = d2k+1H

du2k+1 (0−) = α
(d2kH

du2k (0+)− d2kH

du2k (0−)
)

for any integer k ≥ 0.
3 For β > 1, Sβ(R) is the subset of S(R\{0}) composed of functions
H such that

d2k+1H

du2k+1 (0+) = d2k+1H

du2k+1 (0−) = 0

for any integer k ≥ 1.
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Ornstein-Uhlenbeck universality class

Density fluctuation field for a = 0

Theorem (Franco, G., Neumann - 2013)

If a = 0, the sequence of processes {Yβ,γ,nt ; t ∈ [0, T ]}n∈N converges to
the Ornstein-Uhlenbeck process given by

dYβt = 1
2∆βYβt dt+

√
χ(ρ)∇βdWβ

t ,

where {Wβ
t ; t ∈ [0, T ]} is an S ′β(R)-valued Brownian motion and

χ(ρ) = ρ(1− ρ).

March 16, 2016 6 / 17



Ornstein-Uhlenbeck universality class

Density fluctuation field for a 6= 0: removing the drift

We redefine for any H ∈ Sβ(R)

Yβ,γ,nt (H) = 1√
n

∑
x∈Z

H

(
x− n2−γa(1− 2ρ)t

n

)
(ηtn2(x)− ρ).

Theorem (Ornstein-Uhlenbeck process)

If one of these two conditions are satisfied:
• β ≤ 1/2 and γ > 1/2,
• β > 1/2 and γ ≥ β

then {Yβ,γ,nt ; t ∈ [0, T ]}n∈N converges to OU as in the case a = 0.

• The influence of the asymmetry is NOT SEEN in the limit.
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KPZ universality class

Effect of a stronger asymmetry a 6= 0: the KPZ scaling

Theorem (Stochastic Burgers equation)

Fix ρ = 1/2. For β ≤ 1/2 and γ = 1/2, {Yβ,γ,nt ; t ∈ [0, T ]}n∈N is tight
and any limit point is a stationary energy solution of the stochastic
Burgers equation

dYt = 1
2∆Ytdt+ a∇(Yt)2dt+

√
χ(ρ)∇dWt,

where {Wt ; t ∈ [0, T ]} is an S ′(R)-valued Brownian motion.
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KPZ universality class

β

γ

1

11
2

1
2

Stochastic Burgers equation (KPZ regime)

OU process with no boundary conditions

OU process with Robin’s boundary conditions

OU process with Neumann’s boundary conditions
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KPZ universality class

The KPZ scaling: stationary energy solution

To show that Yt is a stationary energy solution of

dYt = 1
2∆Ytdt+ a∇(Yt)2dt+

√
χ(ρ)∇dWt,

we need to prove that {Mt : t ∈ [0, T ]} given by

Mt(H) := Yt(H)− Y0(H)− 1
2

∫ t

0
Ys(∆H)ds+ aAt(H)

is a continuous martingale with quadratic variation

〈M(H)〉t = ρ(1− ρ)‖∇H‖22,

where
At(H) = lim

ε→0

∫ t

0

∫
R
∇H(x)

[
Yu(ιε(x))

]2
dxdu

in L2, where ιε(x, y) = 1
ε1x≤y<x+ε, for y ∈ R.
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KPZ universality class

The instantaneous current

Note that
jnx,x+1(η) = jn,Sx,x+1(η) + jn,Ax,x+1(η)

with

jn,Ax,x+1(η) = an2

2nγ (η(x+ 1)− η(x))2, x ∈ Z,

jn,Sx,x+1(η) = n2

2 (η(x)− η(x+ 1)), x 6= −1,

jn,S−1,0(η) = αn2

2nβ (η(−1)− η(0)).
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KPZ universality class

The martingale problem

Simple computations show that

Mn
t (H) := Ynt (H)− Yn0 (H)− Int (H)− Bnt (H),

plus some negligible term, where

Int (H) := 1
2

∫ t

0
Yns (∆H) ds = 1

2

∫ t

0

1√
n

∑
x∈Z

(ηsn2(x)− ρ)∆H
(x
n

)
ds,

and
Bnt (H) = −a

√
n

nγ

∫ t

0

∑
x∈Z

η̄sn2(x+ 1)η̄sn2(x)∇H
(x
n

)
ds.

Last term is the hard one!
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KPZ universality class

The second-order Boltzmann-Gibbs Principle

Theorem

Let v : Z→ R be a function such that ‖v‖22,n := 1
n

∑
x∈Z v

2(x) <∞.
Then, there exists C > 0 such that for any t > 0 and ` = εn:

Eρ
[( ∫ t

0

∑
x∈Z

v(x)
{
η̄sn2(x)η̄sn2(x+ 1)−

((
η̄`sn2(x)

)2 − χ(ρ)
`

)}
ds

)2]

≤ Ct
{ `
n

+ nβ

αn
+ tn

`2

}
‖v‖22,n + Ct

{nβ(log2(`))2

αn

} 1
n

∑
x 6=−1

v2(x),

where

η̄`(x) = 1
`

x+∑̀
y=x+1

η̄(y).
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KPZ universality class

On the universality of KPZ: exclusion processes

• Let r : Ω→ R be a local function that satisfies:

[i] There exists ε0 > 0 such that ε0 < r(η) < ε−1
0 for any η ∈ Ω.

[ii] For any η, ξ such that η(x) = ξ(x) for x 6= 0, 1, then r(η) = r(ξ).

[iii]Gradient condition. There exists ω : Ω→ R such that

r(η)
(
η(1)− η(0)

)
= τ1ω(η)− ω(η), for any η ∈ Ω.
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KPZ universality class

On the universality of KPZ: zero-range processes

• ηt a Markov process with space state Ω := NZ.

• the jump rate from x only depends on the number of particles at x
and is given by a function g : N0 → R+ such that g(0) = 0, g(k) > 0 for
k ≥ 1 and g is Lipschitz: supk≥0 |g(k + 1)− g(k)| <∞.

As examples:

• If g is Lipschitz and there exists x0 and ε0 > 0 such that
g(x+ x0)− g(x) ≥ ε0 for all x ≥ 0.
• If g is sublinear, that is C−1xγ ≤ g(x+ 1)− g(x) ≤ Cxγ for
0 < γ < 1 and C > 0.
• If g(x) = 1x≥1.
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KPZ universality class

On the universality of KPZ: kinetically constrained
exclusion processes

• ηt is a Markov process with space state Ω = {0, 1}Z.

• here particles more likely hop to unoccupied nearest-neighbor sites
when at least m− 1 ≥ 1 other neighboring sites are full.

• for m = 2, the jump rate to the right is given by:

η(x)(1− η(x+ 1))
[
η(x− 1) + η(x+ 2) + θ

2n
]

and the jump rate to the left is given by

η(x+ 1)(1− η(x))
[
η(x− 1) + η(x+ 2) + θ

2n
]
.
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KPZ universality class
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