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The processes

Slowed exclusion processes: the dynamics

e 1, is an exclusion process with space state Q = {0,1}%, so that for
x € Z, n(x) = 1 if the site is occupied, otherwise n(x) = 0.

The rates are:

1 a a a 1 a
2 + 27?’7 2np + 2n 2 + 27?’7
: . : -2 . -1 : 0 . 1 : 2 : 3 . .
1 a o _a 1 a
27 2n7 2nf - 2n7 27 2n7

We assume v >  or =+~ and a > a (in last case if a = a then
{—1,0} is totally asymmetric).

e For ¢ = 0, we obtain the SSEP with a slow bond.

e For o =1 and 8 = 0 we obtain the WASEP - weak asymmetry.
e v, the Bernoulli product measure of parameter p is invariant.
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Hydrodynamics

Hydrodynamic limit: the case a =0

e For n let Ty (777 d'LL) n Z:pEZ nth( )5x/n(du)

e Fix pp : R — [0, 1] and p, such that for every § > 0 and every
continuous function H : R — R,

IZH £ —>n%oo/H Po( )d

TEZ

wrt pn,. Then for any ¢t > 0, m7 — p(t,u)du, as n — oo, where p(t,u)
evolves according to:

e 3 < 1: Heat equation Op(t,u) = Ap(t,u)

e 3 =1: Heat equation O0:p(t,u) = Ap(t,u) with a type of Robin’s
boundary conditions 9, p(t,0”)=0,p(t,0") =a(p(t,0")—p(t,07)).

e 5 > 1: Heat equation dp(t,u) = Ap(t,u) with Neumann’s
boundary conditions d,p(t,07) = dup(t,0") = 0.
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Equilibrium fluctuations
Equilibrium density fluctuations: a =0

e Fix a density p € (0,1) and consider the process starting from v,,.

e The density fluctuation field {yf’%” ; t€[0,T]} is given on
He Sg(R) by

VM H) = ZH< )mm z) = p).
:EGZ

Definition

Let S(R\{0}) be the space of functions H : R — R such that: 1) H is
smooth on R\{0}, 2) H is continuous from the right at 0, 3) for all
non-negative integers k, £, the function H satisfies

d"H

[#l 1= sup | (1 + |ul") G ()] <
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Space of test functions

e o
@ For 5 <1, S3(R) := S(R), the usual Schwartz space S(R).
@ For g =1, S3(R) is the subset of S(R\{0}) composed of functions
H such that
d2kH1 g

d2k+1H
+ - -
du2k+1 (

- d**H
s - ”’(
for any integer k > 0.

d2k g
+
du?k (07) =

du?k (07)>

@ For § > 1, S3(R) is the subset of S(R\{0}) composed of functions
d2k+1H

H such that

d2k+1H
+
du2k+1 (0
for any integer k£ > 1.
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for any integer k£ > 1.
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Equilibrium fluctuations

Space of test functions

Definition

@ For § <1, S3(R) := S(R), the usual Schwartz space S(R).
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Equilibrium fluctuations

Space of test functions

Definition
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Ornstein-Uhlenbeck universality class

Density fluctuation field for a =0

Theorem (Franco, G., Neumann - 2013)

If a =0, the sequence of processes {yf’%” ; t €10, T]}nen converges to
the Ornstein-Uhlenbeck process given by

|
4V} = S8Vt + \[x(p) VWY,

where {W/ ; t € [0,T]} is an S5(R)-valued Brownian motion and
x(p) = p(1—p).
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Ornstein-Uhlenbeck universality class

Density fluctuation field for a # 0: removing the drift
We redefine for any H € Sg(R)

WIEZZH(%‘ a1 = 2p)t )(ﬁtrﬂ(ﬂ?) - ).

n

Y/ H) =

Theorem (Ornstein-Uhlenbeck process)

If one of these two conditions are satisfied:
e 3<1/2 and~y>1/2,
e 3>1/2andy>p
then {YP7™ : t € [0,T)}nen converges to OU as in the case a = 0.

e The influence of the asymmetry is NOT SEEN in the limit.
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KPZ universality class

Effect of a stronger asymmetry a # 0: the KPZ scaling

Theorem (Stochastic Burgers equation)
Fiz p=1/2. For <1/2 and v =1/2, {Y?7™ : t € [0, T)}nen is tight

and any limit point is a stationary energy solution of the stochastic
Burgers equation

1
Y, = AYidt + aV (Vo) *dt + 4/ x(p) VAW,

where {W; ; t € [0,T]} is an S'(R)-valued Brownian motion.
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KPZ universality class

Y
1 4
1 ------
2
1 B
2
------ Stochastic Burgers equation (KPZ regime)

OU process with no boundary conditions

—— OU process with Robin’s boundary conditions

;i OU process with Neumann’s boundary conditions
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KPZ universality class

The KPZ scaling: stationary energy solution

To show that ) is a stationary energy solution of

|
AV: = S AVidt + aV (V) dt + V() vaw,,

we need to prove that {M,; : ¢t € [0,T]} given by

My (H) = Yy(H) - Yo(H / Vo(AH)ds + aAy(H)
is a continuous martingale with quadratic variation

(M(H))¢ = p(1 - p)|VHII3,

where )
) = lim / /VH ) [Vulie(@))] drdu
e—0
in L2, where t.(z,y) = 1x<y<x+a, for y € R.
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KPZ universality class

The instantaneous current

Note that p .
jﬂrcl,a:+1(n) = j:?:erl (77) + jg,7x+1(n)
with
.n, A an2 2 7
Jewr1(n) = %(77@7 +1) —n(z))*, x € 4,
-n,S n2
2

o) = 55 (n(=1) = (0).
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KPZ universality class

The martingale problem

Simple computations show that
M (H) = Vi (H) = Vo' (H) = 7¢ (H) — B{'(H),
plus some negligible term, where

) =5 [ vamas=; [ Z= S tae) = )M (%) ds.

TE€EZ n

and

Bl (H) = —a—/ an2 (2 4+ Vil (2)VH () ds.

Last term is the hard one!
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KPZ universality class

The second-order Boltzmann-Gibbs Principle

Theorem

Let v : Z — R be a function such that |[v]|3,, := 15 ez vi(z) < oo
Then, there exists C' > 0 such that for any t > 0 and £ = en:

TEZ

[(/ > 0(@){an2 (@)an2 (2 + 1) = (e (@) = X(p))}dSﬂ

gC’t{g +—B+ }|va2n+Ct{ﬂ(IOgW}1 3 3(x),

an
where

1 z+L

r@=7 Y .

y=z+1
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KPZ universality class

On the universality of KPZ: exclusion processes

o Let r: Q2 — R be a local function that satisfies:

[i] There exists eg > 0 such that eg < () < g for any n € Q.

[ii] For any 7,  such that n(x) = {(z) for = # 0,1, then r(n) = r(&).
[ili] Gradient condition. There exists w : Q — R such that

r(n)(n(1) = n(0)) = nw(n) — w(n), for anyn € Q.
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KPZ universality class

On the universality of KPZ: zero-range processes

e 7); a Markov process with space state  := NZ.

e the jump rate from x only depends on the number of particles at x
and is given by a function g : Ny — R, such that g(0) =0, g(k) > 0 for
k > 1 and g is Lipschitz: supy>q|g(k +1) — g(k)| < co.

As examples:

o If ¢ is Lipschitz and there exists x¢ and €9 > 0 such that
g(x 4+ xz9) — g(x) > gp for all x > 0.

e If g is sublinear, that is O~ 127 < g(z + 1) — g(x) < Cz" for
0<vy<land C>0.

b Ifg(aj) =1z>1.
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KPZ universality class

On the universality of KPZ: kinetically constrained
exclusion processes

e 1; is a Markov process with space state Q = {0, 1}%.

e here particles more likely hop to unoccupied nearest-neighbor sites
when at least m — 1 > 1 other neighboring sites are full.

e for m = 2, the jump rate to the right is given by:

1)1~ (e + 1)o@ — 1) + (e +2) + o]

and the jump rate to the left is given by

oo+ 1)1~ @) o~ 1)+ +2) + o]
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KPZ universality class
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