Mean Value Analysis For Polling Systems

Ivo Adan, Geert-Jan van Houtum, Erik Winands 20th June 2006

Polling System:

System consisting of a number of queues served by a single server in fixed order

Applications in:

- Manufacturing
- Communication
- Maintenance
-...

Service disciplines:

- Exhaustive

A queue must be empty before the server moves on

- Gated

Only those customers are served present on arrival of the server at the queue

- k-limited

At most k customers are served

- Time-limited

The time of the server spent at the queue is limited

- ...

Performance measures:

- Utilization rate
- Cycle length
- Queue length
- Waiting time

Queue length and waiting time distribution:

If the service discipline satisfies a certain branching property, then an exact generating function analysis of the queue length distribution is possible (Resing I993)

Mean queue length and mean waiting time:

- Buffer occupancy method (Cooper 1970, Eisenberg 1972)
- Descendant set method (Konhein et al. 1994)
- Individual station method (Srinivasan et al. 1996)
- Station time method (Ferguson and Aminetzah 1985)
- . .

Mean Value Analysis:

Approach to determine mean queue lengths and waiting times based on

- The PASTA property: Poisson Arrivals See Time Averages
- Little's law: $E(L)=\lambda E(W)$

Advantage:

Probabilistic intuitive approach to determine mean values, resulting in linear equations only involving first moments

Disadvantage:
Computational complexity

Model Description:

N queues, numbered $1,2, \ldots, N$, served by 1 server in a fixed cyclic order; the service discipline is exhaustive or gated and within a queue customers are served in order of arrival. In queue i, arrivals are Poisson with rate λ_{i}, the service time and setup time are denoted by B_{i} and S_{i}, and the residual service and setup time are denoted by $R_{B_{i}}$ and $R_{S_{i}}$.

Mean total setup time in a cycle and mean residual service time are

$$
E(S)=\sum_{i=1}^{N} E\left(S_{i}\right), \quad E\left(R_{B_{i}}\right)=\frac{E\left(B_{i}^{2}\right)}{2 E\left(B_{i}\right)}
$$

Utilization rate of queue i and the total utilization rate are

$$
\rho_{i}=\lambda_{i} E\left(B_{i}\right), \quad \rho=\sum_{i=1}^{N} \rho_{i}<1
$$

Preliminaries:

Cycle length of queue i is the time between two successive arrivals of the server to this queue; mean cycle time is

$$
E(C)=E(S) /(1-\rho)
$$

Visit time θ_{i} of queue i is the service period of queue i plus preceding setup time if exhaustive service or plus succeeding setup time if gated service; thus

$$
\begin{aligned}
& E\left(\theta_{i}\right)=E\left(S_{i}\right)+\rho_{i} E(C) \text { (exhaustive), } \\
& E\left(\theta_{i}\right)=\rho_{i} E(C)+E\left(S_{i+1}\right) \text { (gated) }
\end{aligned}
$$

Let L_{i} denote the length of queue i (excluding customer possibly in service), let W_{i} denote the waiting time of a type- i customer

Goal:

Determine $E\left(L_{i}\right)$ and $E\left(W_{i}\right)$

Mean Value Analysis:

Derive (i) arrival relation for the mean waiting time and use (ii) Little's law
First $N=1$: ($M / G / 1$ queue)
Arrival relation

$$
E\left(W_{1}\right)=E\left(L_{1}\right) E\left(B_{1}\right)+\rho_{1} E\left(R_{B_{1}}\right)
$$

Little's law

$$
E\left(L_{1}\right)=\lambda_{1} E\left(W_{1}\right)
$$

yields

$$
E\left(W_{1}\right)=\frac{1}{1-\rho_{1}} \cdot \rho_{1} E\left(R_{B_{1}}\right)=\frac{\rho_{1}}{1-\rho_{1}} \cdot \frac{\rho_{1}}{2}\left(1+c_{B_{1}}^{2}\right) E\left(B_{1}\right)
$$

Now $N=2$ for exhaustive service:

Arrival relation

$$
\begin{aligned}
E\left(W_{1}\right)= & E\left(L_{1}\right) E\left(B_{1}\right)+\rho_{1} E\left(R_{B_{1}}\right) \\
& +\frac{E\left(S_{1}\right)}{E(C)} E\left(R_{S_{1}}\right)+\frac{E\left(\theta_{2}\right)}{E(C)}\left(E\left(R_{\theta_{2}}\right)+E\left(S_{1}\right)\right)
\end{aligned}
$$

Little's law

$$
E\left(L_{1}\right)=\lambda_{1} E\left(W_{1}\right)
$$

yields

$$
E\left(W_{1}\right)=\frac{1}{1-\rho_{1}} \cdot\left[\rho_{1} E\left(R_{B_{1}}\right)+\frac{E\left(S_{1}\right)}{E(C)} E\left(R_{S_{1}}\right)+\frac{E\left(\theta_{2}\right)}{E(C)}\left(E\left(R_{\theta_{2}}\right)+E\left(S_{1}\right)\right)\right]
$$

But what is $E\left(R_{\theta_{2}}\right)$?

Consider conditional queue lengths:
Let $L_{i, n}$ denote the length of queue i at an arbitrary point in time during a visit time of queue n

Then, since each of the $L_{2,2}$ customers initiates a busy period,

$$
E\left(R_{\theta_{2}}\right)=E\left(L_{2,2}\right) \frac{E\left(B_{2}\right)}{1-\rho_{2}}+\frac{\rho_{2} E(C)}{E\left(\theta_{2}\right)} \frac{E\left(R_{B_{2}}\right)}{1-\rho_{2}}+\frac{E\left(S_{2}\right)}{E\left(\theta_{2}\right)} \frac{E\left(R_{S_{2}}\right)}{1-\rho_{2}}
$$

Further

$$
E\left(L_{2}\right)=\frac{E\left(\theta_{1}\right)}{E(C)} E\left(L_{2,1}\right)+\frac{E\left(\theta_{2}\right)}{E(C)} E\left(L_{2,2}\right)
$$

Finally $L_{2,1}$ is equal to the number of type-2 arrivals during the age of θ_{1}, and the age has the same distribution as the residual time of θ_{1}. So

$$
E\left(L_{2,1}\right)=\lambda_{2} E\left(R_{\theta_{1}}\right)
$$

Now $N=2$ for gated service:

The visit time θ_{i} is the service period of queue i plus succeeding setup time,

$$
E\left(\theta_{i}\right)=\rho_{i} E(C)+E\left(S_{i+1}\right)
$$

An (i, j)-period is defined as the sum of j consecutive visit times starting in queue i. Then

$$
\theta_{1,1}=\theta_{1}
$$

and $\theta_{1,2}$ is a cycle starting at queue 1 ,

$$
E\left(\theta_{1,2}\right)=E\left(\theta_{1}\right)+E\left(\theta_{2}\right)
$$

Further distinguish between customers waiting before and after the gate.
Let $\tilde{L}_{i, n}$ denote the length of queue i before the gate and $\bar{L}_{i, n}$ denotes the length of queue i after the gate at an arbitrary point in time during a visit time of queue n. Then

$$
\bar{L}_{i, n}=0, \quad i \neq n,
$$

and

$$
\begin{aligned}
& L_{1,1}=\tilde{L}_{1,1}+\bar{L}_{1,1}, \\
& L_{1,2}=\tilde{L}_{1,2}
\end{aligned}
$$

Arrival relation

$$
E\left(W_{1}\right)=E\left(\tilde{L}_{1}\right) E\left(B_{1}\right)+E\left(R_{\theta_{1,2}}\right)
$$

Little's law

$$
E\left(L_{1}\right)=\lambda_{1} E\left(W_{1}\right)
$$

and

$$
\begin{aligned}
& E\left(L_{1}\right)=E\left(\tilde{L}_{1}\right)+\frac{E\left(\theta_{1}\right)}{E(C)} E\left(\bar{L}_{1,1}\right) \\
& E\left(\tilde{L}_{1}\right)=\frac{E\left(\theta_{1}\right)}{E(C)} E\left(\tilde{L}_{1,1}\right)+\frac{E\left(\theta_{2}\right)}{E(C)} E\left(\tilde{L}_{1,2}\right)
\end{aligned}
$$

But what are $E\left(\tilde{L}_{1,1}\right), E\left(\tilde{L}_{1,2}\right)$ and $E\left(R_{\theta_{1,2}}\right)$?

We have again

$$
\begin{aligned}
& E\left(\tilde{L}_{1,1}\right)=\lambda_{1} E\left(R_{\theta_{1,1}}\right) \\
& \frac{E\left(\theta_{1}\right)}{E(C)} E\left(\tilde{L}_{1,1}\right)+\frac{E\left(\theta_{2}\right)}{E(C)} E\left(\tilde{L}_{1,2}\right)=\lambda_{1} E\left(R_{\theta_{1,2}}\right)
\end{aligned}
$$

and

$$
\begin{aligned}
E\left(R_{\theta_{1,1}}\right)= & E\left(\bar{L}_{1,1}\right) E\left(B_{1}\right)+\frac{\rho_{1} E(C)}{E\left(\theta_{1}\right)}\left[E\left(R_{B_{1}}\right)+E\left(S_{2}\right)\right]+\frac{E\left(S_{2}\right)}{E\left(\theta_{1}\right)} E\left(R_{S_{2}}\right) \\
E\left(R_{\theta_{1,2}}\right)= & \frac{E\left(\theta_{2}\right)}{E(C)} E\left(R_{\theta_{2,1}}\right)+\frac{E\left(\theta_{1}\right)}{E(C)} \\
& \times\left[E\left(R_{\theta_{1,1}}\right)+\left(\lambda_{2} E\left(R_{\theta_{1,1}}\right)+E\left(\tilde{L}_{2,1}\right)\right) E\left(B_{2}\right)+E\left(S_{2}\right)\right]
\end{aligned}
$$

Model variations:

- Mixed service: Queue 1 has exhaustive and queue 2 has gated service Then further condition on queue lengths:
$L_{i, n}$ is the length of queue i at an arbitrary point in time during a service period of queue i and $L_{i, n}^{\prime}$ is the length of queue i at an arbitrary point in time during a setup time of queue i
- Zero setup times

If all setup times are zero, then replace probabilities like

$$
\frac{E\left(\theta_{1}\right)}{E(C)}
$$

by ρ_{1}

Extensions:

- Systems with Poisson Batch arrivals
- Systems with fixed polling tables
- Discrete time polling systems
- Systems with branching property?

