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Overview:

1. Introduction

2. Adiabatic (quasi-static) models
I validation against χ simulations

3. Advection diffusion equations
I validation against factory data
I validation against χ simulations

4. Policies, bottlenecks and degree of re-entrant behavior



1) Introduction

Example: Chip production in semiconductor manufacturing.
Factory investment several billions of $$.
Issues:
1.) Hardware: how many machines, topology of production flow
2.) Software: starts policies, dispatch policies, production mix
Idea: Generate a faithful representation of the factory and do
simulation experiments using Discrete Event Simulations, e.g. χ
(TU Eindhoven)
Problem: Simulation of production flows with stochastic demand
and stochastic production processes requires Monte Carlo
Simulations

It is not scalable.



2) Continuum Models of production flows

Fundamental Idea:
Model high volume, many stages, production via a continuum.
Basic variable:
product density (mass density) ρ(x, t).
x- is the position in the production process, x ∈ [0, 1].- degree of
completion- stage of production
Note: For a re-entrant process a machine corresponds to many
positions x .



Mass conservation and state equations

Quasi-stationary model (adiabatic model): Mass conservation and
state equation

∂ρ

∂t
+

∂F

∂x
= 0

F = ρveq

Typical models for the equilibrium velocity veq (state equation) are

vLW (ρ) = v0(1− ρ

ρc
), (1)

vQ(ρ) =
v0

1 + L(ρ)
Lc

, (2)

veq(ρ) = Φ(L), (3)

with L the total load (Work in progress, WIP) given as

L(ρ) =

∫ 1

0
ρ(x , t)dx . (4)

Φ maybe determined experimentally or theoretically.



Note:
The equilibrium velocity is closely related to the concept of a
clearing function Ω(Wip) (Karmarkar, Uszoy).
Ω - Throughput as a function of Wip.
used locally to characterize a single machine or a group of machines
used globally to characterize a larger production unit via an
equivalent queue.
Typical models:

Ωc(Wip) = min{v0Wip, µ0}
ΩQ(Wip) =

v0Wip

1 + Wip

ΩK (Wip) = α(1− exp(−βWip))



tp

wip

3

30

2.5

2

25

1.5

1

20

0.5

0
151050

karmarkar               

queueing                

limit                   

Figure: 1. Three different clearing functions



Validation through χ-simulations

Simulate a network in χ, consisting of 5 machines, re-entrant with
4 production loops.
Run experiment for different influx levels
Generate average cycle time, average WIP, and average
throughput.
Figure 2 shows resulting state equation.
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Usage:

1. Determine steady state parameters through
inter/extrapolation

2. Use as state equation for transient behavior

Figures 3, 4 show two experiments

1. Transition from a steady state with 75% utilization to 85%
utilization with pull policy

2. Transition from a steady state with 67% utilization to 85%
utilization with push policy
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Notice:
Inverse response in Figures 3 and 4
Due to global velocity model: Increase in influx leads to a change
in total WIP
Result: infinite wave speed and decrease in velocity and hence
decrease of output before the increase arrives at the end of the
factory.
Reality: re-entrant production has this effect but much less
pronounced.



3) Advection diffusion equations

Including variance in stochastic models typically introduces
diffusion. We expect that the basic mass conservation model
becomes

∂ρ

∂t
+ veq

∂ρ

∂x
= D

∂2ρ

∂x2
(5)

veq(t) = Φ(W (ρ(x , t))) (6)

W (t) =

∫ 1

0
ρ(x , t)dx (7)



a) Real Factory Data

Data analysis of sanitized data of a real INTEL factory for about 3
months production.
Details:

I 920 lots

I time log in and out at all machines

I identify 8 approximately equally spaced machines

I Determine time-in at all 8 machines

I interpolate paths

I generate histograms at different times.

I Fit the histograms to the explicit solution of the
advection-diffusion equation by a least square fit for the
diffusion coefficient.
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Figure: 7. Paths of all 920 lots
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Figure: 8 Histograms at t=20, 30 and 40
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Result:
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Figure: 10 WIP profile after a step up in influx, with and without diffusion



b) χ Simulations - Emiel v.d. Rijt

100 identical machines
characterized through mean process time te and squared coefficient
of variation c2

e .
Arrival process: average interarrival time ta and its squared
coefficient of variation c2

a

Goal: Determine the dependence of the WIP profile on the ratios

c2
a

c2
e

and u =
te
ta



Simulations - Wip profiles:
utilization u = 0.75,
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Boundary layer is utilization dependent: u = 0.99
The BL has reduced to one machine.
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PDE model

Consider the steady state of the advection diffusion equation:

ρveq + D
dρ

dx
= λ (8)

with boundary condition ρ(0) e.g. given by

ρ(0) =
1

2
(c2

a + c2
e )

u2

1− u
+ u

The solution to Eq.(8) is

ρ(x) =
λ

veq
+ (ρ0 − λ

veq
)e−

veq
D

x (9)



Notice:
with ρss = λ

veq
, e.g.

ρss = c2
e

u2

1− u
+ u

we get that

I if c2
a > c2

e then ρ′′(x) > 0,

I if c2
a < c2

e then ρ′′(x) < 0,

I utilization dependence:
Scaling argument: D ≈ σ2, σ2 = cv2

eq

limu→1 veq → 0

Hence from e−
veq
D

x the boundary layer ξ becomes ξ ≈ (1− u).



4 Policies and bottlenecks

Assume: Every machine has a fixed deterministic maximal
capacity, µ
Mass conservation then leads to

∂ρ

∂t
+

∂F

∂x
= 0

F = min{ρveq, µ}
veq = Φ(L)



Hybrid model: veq addresses slow down due to ubiquitous
stochasticity
Capacity limit: Addresses hard upper bound at bottleneck
machines.

TP

wip

4

20

3

2

15

1

0
1050

Figure: 14. Nonsmooth clearing function



This allows to address dispatch policies:
Consider N -stages xi that are serviced at the same machine.
Assume the total desired flux ΣN

i ρivi at a machine is greater than
the total capacity of that machine.
Then we have three options

I Push policy: Allocate capacity from front

I Pull policy: Allocate capacity from back

I FIFO policy: on average allocate µ/N to each stage

movies



Factory Master Equation for Linear Factory from First
Principles

Goal:
Derive Factory Master Equation from ’First Principles’ with
methods from gas-dynamics.
General idea:
Boltzmann equation for the density f (x , y , t) of a particle at
position x with attribute y at time t:

∂t f + ∂x [u(x , y , t)f ] + ∂y (E (x , y , t)f ) = Q[f ] , (10)

∂y (Ef ) models a continuous change in attribute,
Q[f ] models a random and discontinuous change in the attribute
Note that ∫

Q[f ](x , y , t) dy = 0, ∀f . (11)



Define part density ρ(x , t) and flux density F (x , t) by

ρ(x , t) =

∫
f (x , y , t) dy ,

F (x , t) =

∫
u(x , y , t)f (x , y , t) dy

integrating we get the conservation law

∂tρ + ∂xF = 0 .

as the zero order moment equation.
Goal: Determine E and Q from detailed underlying kinetic
behavior and extend to higher moments.



Conclusions

PDE models of production flows are highly effective simulation
tools. They can be adjusted to the desired level of accuracy and
modeling sophistication. In addition

I they have execution times in seconds

I they can be adjusted to include policies

I they can be adjusted to cover inhomogeneous production lines.

I they allow to simulate transient situations

I they can be linked to generate simulations for the whole
supply chain

I they can be justified (in parts) from first principles
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