Systems with unlimited supply of work: MCQN with infinite virtual buffers
 A Push Pull multiclass system

Gideon Weiss
University of Haifa

Joint work with students:
Anat (Anastasia) Kopzon
Yoni Nazarathy

Queue vs Manufacturing machine:

Single server queue

Queue vs Manufacturing machine:

Single server queue

Machine with controlled input

Infinite supply of work - infinite virtual buffers
A tandem of queues

Infinite supply of work - infinite virtual buffers
A tandem of queues

Infinite supply of work - infinite virtual buffers
A tandem of queues

The push pull system

Balanced full utilization

Both machines work all time and no flow accumulates implies:

$$
\begin{aligned}
& v_{1}=\alpha_{1} \mu_{1}=\left(1-\alpha_{2}\right) \lambda_{1} \\
& v_{2}=\alpha_{2} \mu_{2}=\left(1-\alpha_{1}\right) \lambda_{2}
\end{aligned}
$$

Balanced full utilization

Balanced full utilization

How does it behave?

The Rybko Stolyar network

Traffic intensity/offered load

$$
\begin{aligned}
& \rho_{1}=\frac{\alpha_{1}}{\mu_{1}}+\frac{\alpha_{2}}{\lambda_{2}} \\
& \rho_{2}=\frac{\alpha_{2}}{\mu_{2}}+\frac{\alpha_{1}}{\lambda_{1}}
\end{aligned}
$$

The Rybko Stolyar network

Traffic intensity

$$
\begin{aligned}
& \rho_{1}=\frac{\alpha_{1}}{\mu_{1}}+\frac{\alpha_{2}}{\lambda_{2}} \\
& \rho_{2}=\frac{\alpha_{2}}{\mu_{2}}+\frac{\alpha_{1}}{\lambda_{1}}
\end{aligned}
$$

Heavy traffic: $\alpha_{1} \nearrow, \alpha_{2} \nearrow \Rightarrow \rho_{1} \nearrow, \rho_{2} \nearrow$
Balanced heavy traffic: $\quad \alpha_{1} \rightarrow v_{1}, \alpha_{2} \rightarrow v_{2}$

Push pull system - inherently stable case

Rybko Stolyar network - LBFS virtual machine

Under LBFS the two pulling queues form a virtual machine only one works at any time
Conditions for stability (global stability of all work conserving policies)

$$
\begin{aligned}
& \rho_{1}=\frac{\alpha_{1}}{\mu_{1}}+\frac{\alpha_{2}}{\lambda_{2}} \\
& \rho_{2}=\frac{\alpha_{2}}{\mu_{2}}+\frac{\alpha_{1}}{\lambda_{1}}
\end{aligned} \quad \text { virtual machine load }=\frac{\alpha_{1}}{\mu_{1}}+\frac{\alpha_{2}}{\mu_{2}}<1
$$

When $\lambda_{i}>\mu_{i}$, we can have $\rho_{1}, \rho_{2}<1$ but virtual machine load >1 LBFS will be unstable

Push pull system - inherently unstable case

Push pull system - fixed threshold policy

Push pull system - fixed threshold Steady State:

Symmetric streams

Maximum pressure policy
Maximum pressure policy will stabilize any system with offered load <1 Consider MCQN with fluid dynamics described by

$$
\frac{d}{d t} Q(t)=\alpha-R u(t)
$$

where R is the input output matrix, $u(t)$ is the machine allocation, and α is the input rate.
The machine allocations (controls) are subject to resource constraints Max pressure attempts to maximize the gradient of the sum of squares of queue
lengths

$$
\frac{d}{d t} \sum_{k} Q_{k}^{2}(t)=\frac{d}{d t} Q^{\prime}(t) Q(t)=2 Q^{\prime}(t)(\alpha-R u(t))
$$

At any time t choose allocation $u(t)$ such that
$\max Q^{\prime}(t) R u(t)$ s.t. $A u(t) \leq 1, u(t) \geq 0, u(t)$ is available
In balanced heavy traffic it optimizes the diffusion approximation

Decisions for $\quad \max Q^{\prime}(t) R u(t)$

Rybko-Stolyar

Infinite supply push pull

Rybko Stolyar network under max pressure

Push Pull network under max pressure

Push Pull under max pressure - trying for full utilization

How good is max pressure?

Rybko-Stolyar

Max pressure attempts to balance the queues, minimize sum of squares
For infinite supply it will balance fluctuations in supply with queues
Using the fixed threshold, fluctuations in supply may be twice as big, But: Average number in the two queues (with full utilization)

$$
E(\text { queues })=11.86 \quad\left(s_{1}=s_{2}=4\right)
$$

Push pull system - balancing diagonal policy

Push pull balancing diagonal policy - steady state

Generalized threshold policies

We define two monotone threshold curves, above the levels s_{1}, s_{2} and use those for our policy
We define and appropriate Lyapunov function, and use
Foster Lyapunov criterion to show that all of these are stable.

A dynamic programming problem
For full utilization, or for a given throughput, find actions to minimize expected queue lengths: Restless bandit indexes?

What next?

We have looked at a small system that can work at full utilization and not be congested

What next?

We have looked at a small system that can work at full utilization and not be congested

Provided we feed it infinite supply of work

What next?

The challenge is to have a large network working at full utilization with no congestion, on a dynamic basis - by online control which assures supply of work at selected points.

Leads to fluid optimal fluid control, solved as a continuous linear program

What next?

The challenge is to have a large network working at full utilization with no congestion, on a dynamic basis - by online control which assures supply of work at selected points.

Leads to fluid optimal fluid control, solved as a continuous linear program

Summary

We presented a small MCQN with 2 infinite virtual buffers and compared it to the similar Rybko-Stolyar network.

The infinite supply of work, infinite virtual buffers, present a new paradigm for MCQN in balanced heavy traffic

Maximum pressure policies can be adapted to MCQN w infinite virtual buffers and they achieve pathwise stability under full utilization, similar to the Rybko -Stolyar network. However, at full utilization the system will become congested with null recurrent queues that scale as $\sqrt{ } n$ to a diffusion

The greater controllability of MCQN with virtual infinite buffers allows full utilization of the system in which all the random fluctuations are pushed to the input and output of the system, and all the internal queues are not congested

