
Systems with unlimited supply of work:
MCQN with infinite virtual buffers

A Push Pull multiclass system

Systems with unlimited supply of work:
MCQN with infinite virtual buffers

A Push Pull multiclass system

Gideon Weiss
University of Haifa

Joint work with students:
Anat (Anastasia) Kopzon

Yoni Nazarathy

Gideon Weiss
University of Haifa

Joint work with students:
Anat (Anastasia) Kopzon

Yoni Nazarathy



Gideon Weiss, University of Haifa, Push Pull, ©2006 1

Queue vs Manufacturing machine: Queue vs Manufacturing machine: 
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Queue vs Manufacturing machine: Queue vs Manufacturing machine: 

λ max(λ,μ)μ

Single server queue

Machine with controlled input

μ
μ∞



Gideon Weiss, University of Haifa, Push Pull, ©2006 3

Infinite supply of work - infinite virtual buffersInfinite supply of work - infinite virtual buffers

A tandem of queues

μ1 μ2∞
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Infinite supply of work - infinite virtual buffersInfinite supply of work - infinite virtual buffers

A tandem of queues

The push pull system

λ1 μ1

λ2μ2
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Balanced full utilizationBalanced full utilization

ν1 = α1μ1 = (1− α2 )λ1
ν2 = α2μ2 = (1− α1)λ2

λ1 μ1

λ2μ2

ν1

ν2

12 n1

n2

∞

∞

Both machines work all time and no flow accumulates implies:
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Balanced full utilizationBalanced full utilization

ν1 =
λ1μ1(μ2 − λ2 )
μ1μ2 − λ1λ2

ν2 =
λ2μ2(μ1 − λ1)
μ1μ2 − λ1λ2

λ1 μ1

λ2μ2

ν1

ν2

12 n1

n2

∞
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Balanced full utilizationBalanced full utilization

ν1 =
λ1μ1(μ2 − λ2 )
μ1μ2 − λ1λ2

ν2 =
λ2μ2(μ1 − λ1)
μ1μ2 − λ1λ2

How does it behave?

λ1 μ1

λ2μ2

ν1

ν2
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The Rybko Stolyar networkThe Rybko Stolyar network

Traffic intensity/offered load

ρ1 =
α1
μ1

+
α2
λ2

ρ2 =
α2
μ2

+
α1
λ1

λ1 μ1

λ2μ2

α1

α2
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The Rybko Stolyar networkThe Rybko Stolyar network

Traffic intensity

Heavy traffic:  α1 /, α2 / ⇒ ρ1 /, ρ2 /

Balanced heavy traffic: α1 → ν1, α2 → ν2

λ1 μ1

λ2μ2

α1

α2

12

ρ1 =
α1
μ1

+
α2
λ2

ρ2 =
α2
μ2

+
α1
λ1
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Push pull system - inherently stable casePush pull system - inherently stable case

λ1 < μ1

λ2 < μ2

λ1 μ1

λ2μ2

ν1

ν2

n1

n2

12
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Push pull system - inherently stable casePush pull system - inherently stable case

λ1 < μ1

λ2 < μ2
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λ2

λ2

λ2 μ2

μ2

μ2

μ2
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Last buffer first serve, priority to pull over push
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Push pull system - inherently stable casePush pull system - inherently stable case
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λ2 < μ2
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Push pull system - inherently stable casePush pull system - inherently stable case

λ1 < μ1

λ2 < μ2

0,0 1,0 2,0 3,0 4,0 5,0

0,1

0,2

0,3

0,4

n1

n2

μ1 μ1 μ1 μ1 μ1 μ1

λ1 λ1 λ1 λ1 λ1 λ1

λ2

λ2

λ2

λ2

λ2 μ2

μ2

μ2

μ2

μ2

P(n1,n2 ) =
1−

λ1
μ1

⎛
⎝⎜

⎞
⎠⎟

1−
λ2
μ2

⎛
⎝⎜

⎞
⎠⎟

1−
λ1
μ1

λ2
μ2

λ1
μ1

⎛
⎝⎜

⎞
⎠⎟

n1 λ2
μ2

⎛
⎝⎜

⎞
⎠⎟

n2
, n1 ⋅n2 = 0
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Rybko Stolyar network - LBFS virtual machineRybko Stolyar network - LBFS virtual machine

Under LBFS the two pulling queues form a virtual machine -
only one works at any time

Conditions for stability (global stability of all work conserving policies)

ρ1 =
α1
μ1

+
α2
λ2

ρ2 =
α2
μ2

+
α1
λ1

virtual machine load=α1
μ1

+
α2
μ2

< 1

When          ,  we can have                but virtual machine load   
LBFS will be unstable

λi > μi > 1

λ1 μ1

λ2μ2

α1

α2

12

 �
 �

ρ1, ρ2 < 1
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Push pull system - inherently unstable casePush pull system - inherently unstable case

λ1 > μ1

λ2 > μ2
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Last buffer first serve, priority to pull over push:
All the states are transient
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Push pull system - fixed threshold policyPush pull system - fixed threshold policy

λ1 > μ1

λ2 > μ2

Machine i : Monitor queue at Machine  j, 
if   < sj Push,
if   > sj Pull.
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Push pull system - fixed threshold  Steady State:Push pull system - fixed threshold  Steady State:

Symmetric streams
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Maximum pressure policyMaximum pressure policy

Maximum pressure policy will stabilize any system with offered load <1
Consider MCQN with fluid dynamics described by 

where R is the input output matrix, u(t) is the machine allocation, and  is the 
input rate.  

The machine allocations (controls ) are subject to resource constraints  
Max pressure attempts to maximize the gradient of the sum of squares of queue 

lengths

At any time  t choose allocation  u(t) such that

In balanced heavy traffic it optimizes the diffusion approximation

Maximum pressure policy will stabilize any system with offered load <1
Consider MCQN with fluid dynamics described by 

where R is the input output matrix, u(t) is the machine allocation, and  is the 
input rate.  

The machine allocations (controls ) are subject to resource constraints  
Max pressure attempts to maximize the gradient of the sum of squares of queue 

lengths

At any time  t choose allocation  u(t) such that

In balanced heavy traffic it optimizes the diffusion approximation

d
dt

Q(t) = α − Ru(t)

α

d
dt

Qk
2(t) =

d
dtk

∑ ′Q (t)Q(t) = 2 ′Q (t)(α − Ru(t))

max ′Q (t)Ru(t) s.t. Au(t) ≤ 1, u(t) ≥ 0, u(t) is available
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Decisions for Decisions for max ′Q (t)Ru(t)

Machine 1 Push if Q11(t) − Q12(t) < Q22(t)
Pull if Q11(t) − Q12(t) > Q22(t)

Machine 2 Push if Q21(t) − Q22(t) < Q12(t)
Pull if Q21(t) − Q22(t) > Q12(t)

Machine 1 Push if ν1t − D11(t) − Q12(t) < Q22(t)
Pull if ν1t − D11(t) − Q12(t) > Q22(t)

Machine 2 Push if ν2t − D21(t) − Q22(t) < Q12(t)
Pull if ν2t − D21(t) − Q22(t) > Q12(t)

Rybko-Stolyar

Infinite supply push pull

λ1 μ1

λ2μ2

α1

α2

Q11(t ) Q12 (t)

Q22(t ) Q21(t)

12

λ1 μ1

λ2μ2

Q12 (t)

Q22(t )

ν1

ν2
ν2t − D11(t )

ν2t − D11(t ) 12

∞

∞
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Rybko Stolyar network under max pressureRybko Stolyar network under max pressure

ρ = 0.9 ρ = 0.99

ρ = 1.2
ρ = 1.0

λ
μ

= 1.25
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Push Pull network under max pressurePush Pull network under max pressure

ρ = 0.9 ρ = 0.99

ρ = 1.2ρ = 1.0

λ
μ

= 1.25
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Push Pull under max pressure - trying for full utilizationPush Pull under max pressure - trying for full utilization

Sample of 
4 more runs

λ
μ

= 1.25

ρ = 1.0
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How good is max pressure?  How good is max pressure?  

Rybko-Stolyar Infinite supply push pull

Max pressure attempts to balance the queues, minimize sum of squares

For infinite supply it will balance fluctuations in supply with queues

Using the fixed threshold, fluctuations in supply may be twice as big,
But:  Average number in the two queues (with full utilization)

E(queues)= 11.86 (s1=s2=4)
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Push pull system - balancing diagonal policyPush pull system - balancing diagonal policy

Symmetric
λ > μ

Machine i : Compare queue to machine  j, 
if other queue longer  - Pull,
if your queue longer  - Push,

equal queues pull

0,0

1,3

2,0 3,0 4,0 5,0

0,1

0,2

0,3

0,4

n1

2,1

2,2

2,3

3,1

3,2

3,3

4,1

4,2

4,3

5,1

5,2

5,3

1,0

1,4 2,4

0,5 1,5 2,5 4,5

λ

λ

λ λ

1,1

μ

1,2

μ

μ

3,4 4,4 5,4

μ

3,5 5,5

n2

λ μ ν
n1

n2

12

λμ
ν

E(queues)= 12.37
(compared to 11.86 For fixed threshold)

λ
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Push pull balancing diagonal policy - steady statePush pull balancing diagonal policy - steady state

Symmetric
λ > μ
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Generalized threshold policiesGeneralized threshold policies

We define two monotone threshold curves, above the levels  s1, s2
and use those for our policy
We define and appropriate Lyapunov function, and use 
Foster Lyapunov criterion to show that all of these are stable.



Gideon Weiss, University of Haifa, Push Pull, ©2006 28

A dynamic programming problemA dynamic programming problem

For full utilization, or for a given throughput, find actions to
minimize expected queue lengths:  Restless bandit indexes?
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What next?What next?

We have looked at a small system that can work
at full utilization and not be congested

μ1λ1

μ2
λ2

ν1

ν2
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What next?What next?

We have looked at a small system that can work
at full utilization and not be congested

Provided we feed it infinite supply of work

∞
μ1λ1

μ2
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ν1
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What next?What next?

The challenge is to have a large network working at full utilization 
with no congestion, on a dynamic basis - by online control which 
assures supply of work at selected points.

Leads to fluid optimal fluid control, solved as a continuous linear program

∞

ν1

ν2

∞
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What next?What next?

The challenge is to have a large network working at full utilization 
with no congestion, on a dynamic basis - by online control which 
assures supply of work at selected points.

Leads to fluid optimal fluid control, solved as a continuous linear program
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SummarySummary

We presented a small MCQN with 2 infinite virtual buffers and compared 
it to the similar Rybko-Stolyar network. 

The infinite supply of work, infinite virtual buffers, present a new paradigm 
for MCQN in balanced heavy traffic

Maximum pressure policies can be adapted to MCQN w infinite virtual buffers
and they achieve pathwise stability under full utilization, similar to the Rybko
-Stolyar network.  However, at full utilization the system will become congested
with null recurrent queues that scale as √n to a diffusion 

The greater controllability of MCQN with virtual infinite buffers allows full 
utilization of the system in which all the random fluctuations are pushed to 
the input and output of the system, and all the internal queues are not congested
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