
Systems with unlimited supply of work:
MCQN with infinite virtual buffers

A Push Pull multiclass system

Systems with unlimited supply of work:
MCQN with infinite virtual buffers

A Push Pull multiclass system

Gideon Weiss
University of Haifa

Joint work with students:
Anat (Anastasia) Kopzon

Yoni Nazarathy

Gideon Weiss
University of Haifa

Joint work with students:
Anat (Anastasia) Kopzon

Yoni Nazarathy

Gideon Weiss, University of Haifa, Push Pull, ©2006 1

Queue vs Manufacturing machine: Queue vs Manufacturing machine:

λ max(λ,μ)μ

Single server queue

Gideon Weiss, University of Haifa, Push Pull, ©2006 2

Queue vs Manufacturing machine: Queue vs Manufacturing machine:

λ max(λ,μ)μ

Single server queue

Machine with controlled input

μ
μ∞

Gideon Weiss, University of Haifa, Push Pull, ©2006 3

Infinite supply of work - infinite virtual buffersInfinite supply of work - infinite virtual buffers

A tandem of queues

μ1 μ2∞

Gideon Weiss, University of Haifa, Push Pull, ©2006 4

Infinite supply of work - infinite virtual buffersInfinite supply of work - infinite virtual buffers

A tandem of queues

μ1 μ2

μ3

∞

∞

Gideon Weiss, University of Haifa, Push Pull, ©2006 5

Infinite supply of work - infinite virtual buffersInfinite supply of work - infinite virtual buffers

A tandem of queues

The push pull system

λ1 μ1

λ2μ2

∞

∞

μ1 μ2

μ3

∞

∞

Gideon Weiss, University of Haifa, Push Pull, ©2006 6

Balanced full utilizationBalanced full utilization

ν1 = α1μ1 = (1− α2)λ1
ν2 = α2μ2 = (1− α1)λ2

λ1 μ1

λ2μ2

ν1

ν2

12 n1

n2

∞

∞

Both machines work all time and no flow accumulates implies:

Gideon Weiss, University of Haifa, Push Pull, ©2006 7

Balanced full utilizationBalanced full utilization

ν1 =
λ1μ1(μ2 − λ2)
μ1μ2 − λ1λ2

ν2 =
λ2μ2(μ1 − λ1)
μ1μ2 − λ1λ2

λ1 μ1

λ2μ2

ν1

ν2

12 n1

n2

∞

∞

Gideon Weiss, University of Haifa, Push Pull, ©2006 8

Balanced full utilizationBalanced full utilization

ν1 =
λ1μ1(μ2 − λ2)
μ1μ2 − λ1λ2

ν2 =
λ2μ2(μ1 − λ1)
μ1μ2 − λ1λ2

How does it behave?

λ1 μ1

λ2μ2

ν1

ν2

12 n1

n2

∞

∞

Gideon Weiss, University of Haifa, Push Pull, ©2006 9

The Rybko Stolyar networkThe Rybko Stolyar network

Traffic intensity/offered load

ρ1 =
α1
μ1

+
α2
λ2

ρ2 =
α2
μ2

+
α1
λ1

λ1 μ1

λ2μ2

α1

α2

12

Gideon Weiss, University of Haifa, Push Pull, ©2006 10

The Rybko Stolyar networkThe Rybko Stolyar network

Traffic intensity

Heavy traffic: α1 /, α2 / ⇒ ρ1 /, ρ2 /

Balanced heavy traffic: α1 → ν1, α2 → ν2

λ1 μ1

λ2μ2

α1

α2

12

ρ1 =
α1
μ1

+
α2
λ2

ρ2 =
α2
μ2

+
α1
λ1

Gideon Weiss, University of Haifa, Push Pull, ©2006 11

Push pull system - inherently stable casePush pull system - inherently stable case

λ1 < μ1

λ2 < μ2

λ1 μ1

λ2μ2

ν1

ν2

n1

n2

12

Gideon Weiss, University of Haifa, Push Pull, ©2006 12

Push pull system - inherently stable casePush pull system - inherently stable case

λ1 < μ1

λ2 < μ2

0,0 1,0 2,0 3,0 4,0 5,0

0,1

0,2

0,3

0,4

n1

n2

μ1 μ1 μ1 μ1 μ1 μ1

λ1 λ1 λ1 λ1 λ1 λ1

λ2

λ2

λ2

λ2

λ2 μ2

μ2

μ2

μ2

μ2

Last buffer first serve, priority to pull over push

λ1 μ1

λ2μ2

ν1

ν2

n1

n2

12
 �

 �

Gideon Weiss, University of Haifa, Push Pull, ©2006 13

Push pull system - inherently stable casePush pull system - inherently stable case

λ1 < μ1

λ2 < μ2

0,0 1,0 2,0 3,0 4,0 5,0

0,1

0,2

0,3

0,4

n1

n2

μ1 μ1 μ1 μ1 μ1 μ1

λ1 λ1 λ1 λ1 λ1 λ1

λ2

λ2

λ2

λ2

λ2 μ2

μ2

μ2

μ2

μ2

P(n1,n2) =

1−
λ2
μ2

⎛
⎝⎜

⎞
⎠⎟

1−
λ1
μ1

λ2
μ2

1−
λ1
μ1

⎛
⎝⎜

⎞
⎠⎟

λ1
μ1

⎛
⎝⎜

⎞
⎠⎟

n1
, n2 = 0

1−
λ1
μ1

⎛
⎝⎜

⎞
⎠⎟

1−
λ1
μ1

λ2
μ2

1−
λ2
μ2

⎛
⎝⎜

⎞
⎠⎟

λ2
μ2

⎛
⎝⎜

⎞
⎠⎟

n2
, n1 = 0

⎧

⎨

⎪
⎪
⎪
⎪⎪

⎩

⎪
⎪
⎪
⎪
⎪

λ1 μ1

λ2μ2

ν1

ν2

n1

n2

12
 �

 �

Gideon Weiss, University of Haifa, Push Pull, ©2006 14

Push pull system - inherently stable casePush pull system - inherently stable case

λ1 < μ1

λ2 < μ2

0,0 1,0 2,0 3,0 4,0 5,0

0,1

0,2

0,3

0,4

n1

n2

μ1 μ1 μ1 μ1 μ1 μ1

λ1 λ1 λ1 λ1 λ1 λ1

λ2

λ2

λ2

λ2

λ2 μ2

μ2

μ2

μ2

μ2

P(n1,n2) =
1−

λ1
μ1

⎛
⎝⎜

⎞
⎠⎟

1−
λ2
μ2

⎛
⎝⎜

⎞
⎠⎟

1−
λ1
μ1

λ2
μ2

λ1
μ1

⎛
⎝⎜

⎞
⎠⎟

n1 λ2
μ2

⎛
⎝⎜

⎞
⎠⎟

n2
, n1 ⋅n2 = 0

Sample path consists of randomly switching between
M/M/1 periods of the two streams

λ1 μ1

λ2μ2

ν1

ν2

n1

n2

12
 �

 �

Gideon Weiss, University of Haifa, Push Pull, ©2006 15

Rybko Stolyar network - LBFS virtual machineRybko Stolyar network - LBFS virtual machine

Under LBFS the two pulling queues form a virtual machine -
only one works at any time

Conditions for stability (global stability of all work conserving policies)

ρ1 =
α1
μ1

+
α2
λ2

ρ2 =
α2
μ2

+
α1
λ1

virtual machine load=α1
μ1

+
α2
μ2

< 1

When , we can have but virtual machine load
LBFS will be unstable

λi > μi > 1

λ1 μ1

λ2μ2

α1

α2

12

 �
 �

ρ1, ρ2 < 1

Gideon Weiss, University of Haifa, Push Pull, ©2006 16

Push pull system - inherently unstable casePush pull system - inherently unstable case

λ1 > μ1

λ2 > μ2

0,0 1,0 2,0 3,0 4,0 5,0

0,1

0,2

0,3

0,4

n1

n2

μ1 μ1 μ1 μ1 μ1 μ1

λ1 λ1 λ1 λ1 λ1 λ1

λ2

λ2

λ2

λ2

λ2 μ2

μ2

μ2

μ2

μ2

Last buffer first serve, priority to pull over push:
All the states are transient

λ1 μ1

λ2μ2

ν1

ν2

n1

n2

12
 �

 �

Gideon Weiss, University of Haifa, Push Pull, ©2006 17

Push pull system - fixed threshold policyPush pull system - fixed threshold policy

λ1 > μ1

λ2 > μ2

Machine i : Monitor queue at Machine j,
if < sj Push,
if > sj Pull.

s1 : λ2
μ2

μ1
λ1

⎛
⎝⎜

⎞
⎠⎟

s1
< 1

s2 : λ1
μ1

μ2
λ2

⎛
⎝⎜

⎞
⎠⎟

s2
< 1

0,0

1,3

2,0 3,0 4,0 5,0

0,1

0,2

0,3

0,4

n1

n2

μ1 μ1 μ1 μ1 μ1 μ1

λ1 λ1

λ1 λ1 λ1 λ1

λ2

λ2

λ2

λ2

λ2

2,1

2,2

2,3

λ2

λ2

λ2
μ2

μ2

μ2

3,1

3,2

3,3

λ2

λ2

λ2

μ2

μ2

μ2

4,1

4,2

4,3

λ2

λ2

λ2

μ2

μ2

μ2

5,1

5,2

5,3

λ2

λ2

λ2
μ2

μ2

μ2

λ1 λ1

1,0

1,4
μ1

λ1 λ1

2,4

0,5

λ2

1,5
μ1

λ1 λ1

2,5

μ2

μ2

μ2

μ1

μ1 μ1

4,5

μ2

s2

s1

λ1 μ1

λ2μ2

ν1

ν2

n1

n2

12

Gideon Weiss, University of Haifa, Push Pull, ©2006 18

Push pull system - fixed threshold Steady State:Push pull system - fixed threshold Steady State:

Symmetric streams

m,0

μ1 μ1

λ1 λ1

λ2

μ2

m,1

m,s2

μ2

μ2

λ2

λ2

.....
Pm,n =

Ps,s

λ
μ

⎛
⎝⎜

⎞
⎠⎟
n

+
λ

λ−μ
λ
μ

⎛
⎝⎜

⎞
⎠⎟
n

−1
⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

λ
μ

⎛
⎝⎜

⎞
⎠⎟
s

+
λ

λ−μ
λ
μ

⎛
⎝⎜

⎞
⎠⎟
s

−1
⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

m = s,0 ≤ n ≤ s

Ps,s

λ
μ

+
λ

λ−μ
λ
μ

⎛
⎝⎜

⎞
⎠⎟
s

−1
⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥

m−s−1

λ
μ

⎛
⎝⎜

⎞
⎠⎟
s

+
λ

λ−μ
λ
μ

⎛
⎝⎜

⎞
⎠⎟
s

−1
⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥

m−s+1 2 λ
μ

⎛
⎝⎜

⎞
⎠⎟
n+1

+
λ

λ−μ
λ
μ

⎛
⎝⎜

⎞
⎠⎟
s

−
λ
μ

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

m > s,0 ≤ n ≤ s

⎧

⎨

⎪
⎪
⎪
⎪
⎪

⎩

⎪
⎪
⎪
⎪
⎪

Gideon Weiss, University of Haifa, Push Pull, ©2006 19

Maximum pressure policyMaximum pressure policy

Maximum pressure policy will stabilize any system with offered load <1
Consider MCQN with fluid dynamics described by

where R is the input output matrix, u(t) is the machine allocation, and is the
input rate.

The machine allocations (controls) are subject to resource constraints
Max pressure attempts to maximize the gradient of the sum of squares of queue

lengths

At any time t choose allocation u(t) such that

In balanced heavy traffic it optimizes the diffusion approximation

Maximum pressure policy will stabilize any system with offered load <1
Consider MCQN with fluid dynamics described by

where R is the input output matrix, u(t) is the machine allocation, and is the
input rate.

The machine allocations (controls) are subject to resource constraints
Max pressure attempts to maximize the gradient of the sum of squares of queue

lengths

At any time t choose allocation u(t) such that

In balanced heavy traffic it optimizes the diffusion approximation

d
dt

Q(t) = α − Ru(t)

α

d
dt

Qk
2(t) =

d
dtk

∑ ′Q (t)Q(t) = 2 ′Q (t)(α − Ru(t))

max ′Q (t)Ru(t) s.t. Au(t) ≤ 1, u(t) ≥ 0, u(t) is available

Gideon Weiss, University of Haifa, Push Pull, ©2006 20

Decisions for Decisions for max ′Q (t)Ru(t)

Machine 1 Push if Q11(t) − Q12(t) < Q22(t)
Pull if Q11(t) − Q12(t) > Q22(t)

Machine 2 Push if Q21(t) − Q22(t) < Q12(t)
Pull if Q21(t) − Q22(t) > Q12(t)

Machine 1 Push if ν1t − D11(t) − Q12(t) < Q22(t)
Pull if ν1t − D11(t) − Q12(t) > Q22(t)

Machine 2 Push if ν2t − D21(t) − Q22(t) < Q12(t)
Pull if ν2t − D21(t) − Q22(t) > Q12(t)

Rybko-Stolyar

Infinite supply push pull

λ1 μ1

λ2μ2

α1

α2

Q11(t) Q12 (t)

Q22(t) Q21(t)

12

λ1 μ1

λ2μ2

Q12 (t)

Q22(t)

ν1

ν2
ν2t − D11(t)

ν2t − D11(t) 12

∞

∞

Gideon Weiss, University of Haifa, Push Pull, ©2006 21

Rybko Stolyar network under max pressureRybko Stolyar network under max pressure

ρ = 0.9 ρ = 0.99

ρ = 1.2
ρ = 1.0

λ
μ

= 1.25

Gideon Weiss, University of Haifa, Push Pull, ©2006 22

Push Pull network under max pressurePush Pull network under max pressure

ρ = 0.9 ρ = 0.99

ρ = 1.2ρ = 1.0

λ
μ

= 1.25

Gideon Weiss, University of Haifa, Push Pull, ©2006 23

Push Pull under max pressure - trying for full utilizationPush Pull under max pressure - trying for full utilization

Sample of
4 more runs

λ
μ

= 1.25

ρ = 1.0

Gideon Weiss, University of Haifa, Push Pull, ©2006 24

How good is max pressure? How good is max pressure?

Rybko-Stolyar Infinite supply push pull

Max pressure attempts to balance the queues, minimize sum of squares

For infinite supply it will balance fluctuations in supply with queues

Using the fixed threshold, fluctuations in supply may be twice as big,
But: Average number in the two queues (with full utilization)

E(queues)= 11.86 (s1=s2=4)

λ1 μ1

λ2μ2

α1

α2

Q11(t) Q12 (t)

Q22(t) Q21(t)

12

λ1 μ1

λ2μ2

Q12 (t)

Q22(t)

ν1

ν2
ν2t − D11(t)

ν2t − D11(t) 12

∞

∞

Gideon Weiss, University of Haifa, Push Pull, ©2006 25

Push pull system - balancing diagonal policyPush pull system - balancing diagonal policy

Symmetric
λ > μ

Machine i : Compare queue to machine j,
if other queue longer - Pull,
if your queue longer - Push,

equal queues pull

0,0

1,3

2,0 3,0 4,0 5,0

0,1

0,2

0,3

0,4

n1

2,1

2,2

2,3

3,1

3,2

3,3

4,1

4,2

4,3

5,1

5,2

5,3

1,0

1,4 2,4

0,5 1,5 2,5 4,5

λ

λ

λ λ

1,1

μ

1,2

μ

μ

3,4 4,4 5,4

μ

3,5 5,5

n2

λ μ ν
n1

n2

12

λμ
ν

E(queues)= 12.37
(compared to 11.86 For fixed threshold)

λ
μ

= 1.25

Gideon Weiss, University of Haifa, Push Pull, ©2006 26

Push pull balancing diagonal policy - steady statePush pull balancing diagonal policy - steady state

Symmetric
λ > μ

0,0

1,3

2,0 3,0 4,0 5,0

0,1

0,2

0,3

0,4

n1

2,1

2,2

2,3

3,1

3,2

3,3

4,1

4,2

4,3

5,1

5,2

5,3

1,0

1,4 2,4

0,5 1,5 2,5 4,5

λ

λ

λ λ

1,1

μ

1,2

μ

μ

3,4 4,4 5,4

μ

3,5 5,5

n2

Pm,0 = P0,0
λ
μ

λ
μ

+
λ

λ−μ
λ
μ

⎛
⎝⎜

⎞
⎠⎟

m−1
−1

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

λ
μ

⎛
⎝⎜

⎞
⎠⎟

m−1
+

λ
λ−μ

λ
μ

⎛
⎝⎜

⎞
⎠⎟

m−1
−1

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

m−1

Pm,m = P0,0
λ
μ

⎛
⎝⎜

⎞
⎠⎟

2
λ
μ

+
λ

λ−μ
λ
μ

⎛
⎝⎜

⎞
⎠⎟

m−1
−1

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

λ
μ

⎛
⎝⎜

⎞
⎠⎟

m−1
+

λ
λ−μ

λ
μ

⎛
⎝⎜

⎞
⎠⎟

m−1
−1

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

m−1

Pm,n = P0,0
λ
μ

⎛
⎝⎜

⎞
⎠⎟

2
λ
μ

+
λ

λ−μ
λ
μ

⎛
⎝⎜

⎞
⎠⎟

m−1
−1

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥

m−2

λ
μ

⎛
⎝⎜

⎞
⎠⎟

m−1
+

λ
λ−μ

λ
μ

⎛
⎝⎜

⎞
⎠⎟

m−1
−1

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥

m−1 2 λ
μ

⎛
⎝⎜

⎞
⎠⎟

n
+

λ
λ−μ

λ
μ

⎛
⎝⎜

⎞
⎠⎟

m−2
−1

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

m > n

Gideon Weiss, University of Haifa, Push Pull, ©2006 27

Generalized threshold policiesGeneralized threshold policies

We define two monotone threshold curves, above the levels s1, s2
and use those for our policy
We define and appropriate Lyapunov function, and use
Foster Lyapunov criterion to show that all of these are stable.

Gideon Weiss, University of Haifa, Push Pull, ©2006 28

A dynamic programming problemA dynamic programming problem

For full utilization, or for a given throughput, find actions to
minimize expected queue lengths: Restless bandit indexes?

λ1 λ1

λ1

�

λ1

λ2

n1

λ2

�

λ2

μ1

�

μ1
μ2

�

μ2

Machine 1 choices
Machine 2 choices

n2

λ1 μ1

λ2μ2

ν1

ν2

12 n1

n2

∞

∞

Gideon Weiss, University of Haifa, Push Pull, ©2006 29

What next?What next?

We have looked at a small system that can work
at full utilization and not be congested

μ1λ1

μ2
λ2

ν1

ν2

Gideon Weiss, University of Haifa, Push Pull, ©2006 30

What next?What next?

We have looked at a small system that can work
at full utilization and not be congested

Provided we feed it infinite supply of work

∞
μ1λ1

μ2
λ2

ν1

ν2 ∞

Gideon Weiss, University of Haifa, Push Pull, ©2006 31

What next?What next?

The challenge is to have a large network working at full utilization
with no congestion, on a dynamic basis - by online control which
assures supply of work at selected points.

Leads to fluid optimal fluid control, solved as a continuous linear program

∞

ν1

ν2

∞
∞

Gideon Weiss, University of Haifa, Push Pull, ©2006 32

What next?What next?

The challenge is to have a large network working at full utilization
with no congestion, on a dynamic basis - by online control which
assures supply of work at selected points.

Leads to fluid optimal fluid control, solved as a continuous linear program

Gideon Weiss, University of Haifa, Push Pull, ©2006 33

SummarySummary

We presented a small MCQN with 2 infinite virtual buffers and compared
it to the similar Rybko-Stolyar network.

The infinite supply of work, infinite virtual buffers, present a new paradigm
for MCQN in balanced heavy traffic

Maximum pressure policies can be adapted to MCQN w infinite virtual buffers
and they achieve pathwise stability under full utilization, similar to the Rybko
-Stolyar network. However, at full utilization the system will become congested
with null recurrent queues that scale as √n to a diffusion

The greater controllability of MCQN with virtual infinite buffers allows full
utilization of the system in which all the random fluctuations are pushed to
the input and output of the system, and all the internal queues are not congested

	Systems with unlimited supply of work:�MCQN with infinite virtual buffers�A Push Pull multiclass system
	Queue vs Manufacturing machine:
	Queue vs Manufacturing machine:
	Infinite supply of work - infinite virtual buffers
	Infinite supply of work - infinite virtual buffers
	Infinite supply of work - infinite virtual buffers
	Balanced full utilization
	Balanced full utilization
	Balanced full utilization
	The Rybko Stolyar network
	The Rybko Stolyar network
	Push pull system - inherently stable case
	Push pull system - inherently stable case
	Push pull system - inherently stable case
	Push pull system - inherently stable case
	Rybko Stolyar network - LBFS virtual machine
	Push pull system - inherently unstable case
	Push pull system - fixed threshold policy
	Push pull system - fixed threshold Steady State:
	Maximum pressure policy
	Decisions for
	Rybko Stolyar network under max pressure
	Push Pull network under max pressure
	Push Pull under max pressure - trying for full utilization
	How good is max pressure?
	Push pull system - balancing diagonal policy
	Push pull balancing diagonal policy - steady state
	Generalized threshold policies
	A dynamic programming problem
	What next?
	What next?
	What next?
	What next?
	Summary

