# Multiresolution based Smoothing 

Monika Meise Rahel Stichtenoth<br>University of Duisburg-Essen, SFB 475 University of Dortmund

## Contents

(1) Outline of the Problem

- Nonparametric Regression
- Data Closeness


## (2) Multiresolution Conditions (MRC) for Smoothing <br> - MRC for one-dimensional Problems <br> - Multiresolution based Smoothing

## Contents

(1) Outline of the Problem

- Nonparametric Regression
- Data Closeness
(2) Multiresolution Conditions (MRC) for Smoothing
- MRC for one-dimensional Problems
- Multiresolution based Smoothing
(3) MR-Smoothing by inhomogeneous Diffusion
- One-dimensional Diffusion Process
- Two-dimensional Diffusion Process
- MRC for two-dimensional Problems


## Contents

(1) Outline of the Problem

- Nonparametric Regression
- Data Closeness
(2) Multiresolution Conditions (MRC) for Smoothing
- MRC for one-dimensional Problems
- Multiresolution based Smoothing
(3) MR-Smoothing by inhomogeneous Diffusion
- One-dimensional Diffusion Process
- Two-dimensional Diffusion Process
- MRC for two-dimensional Problems


## Nonparametric Regression

## Situation

- Data $\left(x_{i}, y_{i}\right), i=0, \ldots, n$ with $x_{i} \in \mathbb{R}^{k}, k=1,2$ and $y_{i} \in \mathbb{R}$.
- Model $Y_{i}=f\left(x_{i}\right)+\sigma \varepsilon_{i}, \quad \varepsilon_{i}$ i.i.d. $\mathcal{N}(0,1)$
- Wanted: Decomposition $y_{i}=f_{n}\left(x_{i}\right)+r_{n}\left(x_{i}\right)$


## Smoothing Methods

- kernel estimator
- local polynomials
- smoothing splines
- wavelets


## Nonparametric Regression

Situation

- Data $\left(x_{i}, y_{i}\right), i=0, \ldots, n$ with $x_{i} \in \mathbb{R}^{k}, k=1,2$ and $y_{i} \in \mathbb{R}$.
- Model $Y_{i}=f\left(x_{i}\right)+\sigma \varepsilon_{i}, \quad \varepsilon_{i}$ i.i.d. $\mathcal{N}(0,1)$
- Wanted: Decomposition $y_{i}=f_{n}\left(x_{i}\right)+r_{n}\left(x_{i}\right)$

Smoothing Methods

- kernel estimator
- local polynomials
- smoothing splines
- wavelets
- ...


## Nonparametric Regression

Situation

- Data $\left(x_{i}, y_{i}\right), i=0, \ldots, n$ with $x_{i} \in \mathbb{R}^{k}, k=1,2$ and $y_{i} \in \mathbb{R}$.
- Model $Y_{i}=f\left(x_{i}\right)+\sigma \varepsilon_{i}, \quad \varepsilon_{i}$ i.i.d. $\mathcal{N}(0,1)$
- Wanted: Decomposition $y_{i}=f_{n}\left(x_{i}\right)+r_{n}\left(x_{i}\right)$

Smoothing Methods

- kernel estimator
- local polynomials
- smoothing splines

Different methods to balance data closeness and simplicity.

## Data Closeness



- Data closeness can best be evaluated considering the residuals of an approximation.
- A multiresolution analysis of the residuals can be used to decide whether an approximation is close enough to the data or not.


## Data Closeness



- Data closeness can best be evaluated considering the residuals of an approximation.
- A multiresolution analysis of the residuals can be used to decide whether an approximation is close enough to the data or not.


## 1-dim. Multiresolution Conditions

White noise MR criterion (Davies and Kovac, 2001)

- residuals $r_{n}\left(x_{i}\right)=y_{i}-f_{n}\left(x_{i}\right)$
- MR coefficients

- MR constraints (modulus of continuity of the Brownian motion)


## 1-dim. Multiresolution Conditions

White noise MR criterion (Davies and Kovac, 2001)

- residuals $r_{n}\left(x_{i}\right)=y_{i}-f_{n}\left(x_{i}\right)$
- MR coefficients

$$
w_{l}(r)=\frac{1}{\sqrt{|I|}} \sum_{x_{i} \in I} r_{n}\left(x_{i}\right), \quad|I|=\#\left\{x_{i} \mid x_{i} \in I\right\}
$$

- MR constraints (modulus of continuity of the Brownian motion)


## 1-dim. Multiresolution Conditions

White noise MR criterion (Davies and Kovac, 2001)

- residuals $r_{n}\left(x_{i}\right)=y_{i}-f_{n}\left(x_{i}\right)$
- MR coefficients

$$
w_{l}(r)=\frac{1}{\sqrt{|I|}} \sum_{x_{i} \in I} r_{n}\left(x_{i}\right), \quad|I|=\#\left\{x_{i} \mid x_{i} \in I\right\}
$$

- MR constraints (modulus of continuity of the Brownian motion)
$r_{n}$ look like Gaussian white noise $\quad: \Leftrightarrow \quad\left|w_{l}\right| \leq \sigma_{n} \sqrt{2.3 \log (n)} \quad \forall I$
- $\sigma_{n}=\frac{1.48}{\sqrt{2}} \operatorname{MED}\left(\left|y_{2}-y_{1}\right|, \ldots,\left|y_{n}-y_{n-1}\right|\right)\left(\right.$ e.g. $\left.\sigma=0.4, \sigma_{n}=0.4056\right)$


## 1-dim. Multiresolution Conditions

White noise MR criterion (Davies and Kovac, 2001)

- residuals $r_{n}\left(x_{i}\right)=y_{i}-f_{n}\left(x_{i}\right)$
- MR coefficients

$$
w_{l}(r)=\frac{1}{\sqrt{|I|}} \sum_{x_{i} \in I} r_{n}\left(x_{i}\right), \quad|I|=\#\left\{x_{i} \mid x_{i} \in I\right\}
$$

- MR constraints (modulus of continuity of the Brownian motion)
$r_{n}$ look like Gaussian white noise $\quad: \Leftrightarrow \quad\left|w_{l}\right| \leq \sigma_{n} \sqrt{2.3 \log (n)} \quad \forall I$
- $\sigma_{n}=\frac{1.48}{\sqrt{2}} \operatorname{MED}\left(\left|y_{2}-y_{1}\right|, \ldots,\left|y_{n}-y_{n-1}\right|\right)$ (e.g. $\sigma=0.4, \sigma_{n}=0.4056$ )


## 1-dim. Multiresolution Conditions

- Different sets of Intervals / can be used for the MR conditions.
- A dyadic scheme is usually sufficient.


## 1-dim. Multiresolution Conditions

- Different sets of Intervals / can be used for the MR conditions.
- A dyadic scheme is usually sufficient.
- MRC on different scales with threshold $\sigma_{n} \sqrt{ } 2.3 \log (n) \approx 1.62$


## 1-dim. Multiresolution Conditions

- Different sets of Intervals / can be used for the MR conditions.
- A dyadic scheme is usually sufficient.
- MRC on different scales with threshold $\sigma_{n} \sqrt{2.3 \log (n)} \approx 1.62$



## An Example: Locally Weighted Smoothing Splines

Iterative method to determine smoothing parameters $\lambda_{i}$ automatically in

$$
\min _{g} \sum_{i=1}^{n} \lambda_{i}\left(y_{i}-g\left(x_{i}\right)\right)^{2}+\int_{a}^{b}\left(g^{\prime \prime}(x)\right)^{2} d x .
$$



Approximation


First derivative

## An Example: Locally Weighted Smoothing Splines

Iterative method to determine smoothing parameters $\lambda_{i}$ automatically in

$$
\min _{g} \sum_{i=1}^{n} \lambda_{i}\left(y_{i}-g\left(x_{i}\right)\right)^{2}+\int_{a}^{b}\left(g^{\prime \prime}(x)\right)^{2} d x
$$



Approximation


First derivative

## Multiresolution based Smoothing

In general: MR conditions can be used to improve or automate smoothing methods. They work as:

- stopping criterion in iterative procedures
- to determine locally defined smoothing parameters
- kernel estimators, local polynomials, smoothing splines
- inhomogeneos diffusion processes (cf. Stichtenoth)


## Multiresolution based Smoothing

In general: MR conditions can be used to improve or automate smoothing methods. They work as:

- stopping criterion in iterative procedures
- to determine locally defined smoothing parameters
- kernel estimators, local polynomials, smoothing splines
- inhomogeneos diffusion processes (cf. Stichtenoth)
- for inverse problems (cf. Mildenberger, Weinert)


## Multiresolution based Smoothing

In general: MR conditions can be used to improve or automate smoothing methods. They work as:

- stopping criterion in iterative procedures
- to determine locally defined smoothing parameters
- kernel estimators, local polynomials, smoothing splines
- inhomogeneos diffusion processes (cf. Stichtenoth)
- for inverse problems (cf. Mildenberger, Weinert)
- linear side conditions in (linear) optimization methods


## Multiresolution based Smoothing

In general: MR conditions can be used to improve or automate smoothing methods. They work as:

- stopping criterion in iterative procedures
- to determine locally defined smoothing parameters
- kernel estimators, local polynomials, smoothing splines
- inhomogeneos diffusion processes (cf. Stichtenoth)
- for inverse problems (cf. Mildenberger, Weinert)
- linear side conditions in (linear) optimization methods


## Multiresolution based Smoothing

In general: MR conditions can be used to improve or automate smoothing methods. They work as:

- stopping criterion in iterative procedures
- for inverse problems (cf. Mildenberger, Weinert)
- linear side conditions in (linear) optimization methods
- min $T V\left(f^{(k)}\right)$ (cf. Kovac)
- linear inverse problems


## Multiresolution based Smoothing

In general: MR conditions can be used to improve or automate smoothing methods. They work as:

- stopping criterion in iterative procedures
- linear side conditions in (linear) optimization methods
- $\min T V\left(f^{(k)}\right)$ (cf. Kovac)
- linear inverse problems


## Multiresolution based Smoothing

In general: MR conditions can be used to improve or automate smoothing methods. They work as:

- stopping criterion in iterative procedures
- linear side conditions in (linear) optimization methods
- $\min T V\left(f^{(k)}\right)$ (cf. Kovac)
- linear inverse problems


## An Example: min TV for Inverse Problems

- Model: $y=K f+\varepsilon$ with $\varepsilon_{i}$ i.i.d. $\mathcal{N}\left(0, \sigma^{2}\right)$
- Method: (find $f$ with minimal total variation s.t. Kf satisfies the MRC)


## An Example: min TV for Inverse Problems

- Model: $y=K f+\varepsilon$ with $\varepsilon_{i}$ i.i.d. $\mathcal{N}\left(0, \sigma^{2}\right)$
- Method: (find $f$ with minimal total variation s.t. Kf satisfies the MRC) $\min _{f} T V\left(f^{(k)}\right) \quad$ s.t. $\quad M K f \leq b$.


## An Example: min TV for Inverse Problems

- Model: $y=K f+\varepsilon$ with $\varepsilon_{i}$ i.i.d. $\mathcal{N}\left(0, \sigma^{2}\right)$
- Method: (find $f$ with minimal total variation s.t. $K f$ satisfies the MRC)

$$
\min _{f} T V\left(f^{(k)}\right) \quad \text { s.t. } \quad M K f \leq b .
$$

- Example: $K$ represents the Abel-Integration, $n=400, k=0, \sigma=0.4$


## An Example: min TV for Inverse Problems

- Model: $y=K f+\varepsilon$ with $\varepsilon_{i}$ i.i.d. $\mathcal{N}\left(0, \sigma^{2}\right)$
- Method: (find $f$ with minimal total variation s.t. $K f$ satisfies the MRC)

$$
\min _{f} T V\left(f^{(k)}\right) \quad \text { s.t. } \quad M K f \leq b .
$$

- Example: $K$ represents the Abel-Integration, $n=400, k=0, \sigma=0.4$




## 1-dim. Diffusion Process

$$
\tilde{f}(x, t)=\frac{1}{\sqrt{4 \pi t}} \int_{-\infty}^{\infty} y(s) \cdot \exp \left(-\frac{(x-s)^{2}}{4 t}\right) d s
$$

$\tilde{f}(x, t)$ satisfies the heat equation

$$
\frac{\partial}{\partial t} \tilde{f}(x, t)-\frac{\partial^{2}}{\partial x^{2}} \tilde{f}(x, t)=0
$$

with the given data as starting points $\tilde{f}\left(x_{i}, 0\right)=y_{i}$.
$\tilde{f}_{t}=$ diffusion process with homogeneous Neumann conditions stopped at $t$ $t=$ smoothing parameter

## 1-dim. Diffusion Process

$$
\tilde{f}(x, t)=\frac{1}{\sqrt{4 \pi t}} \int_{-\infty}^{\infty} y(s) \cdot \exp \left(-\frac{(x-s)^{2}}{4 t}\right) d s
$$

$\tilde{f}(x, t)$ satisfies the heat equation

$$
\frac{\partial}{\partial t} \tilde{f}(x, t)-\frac{\partial^{2}}{\partial x^{2}} \tilde{f}(x, t)=0
$$

with the given data as starting points $\tilde{f}\left(x_{i}, 0\right)=y_{i}$.
$\tilde{f}_{t}=$ diffusion process with homogeneous Neumann conditions stopped at $t$ $t=$ smoothing parameter

## 1-dim. Diffusion Process

$$
\tilde{f}(x, t)=\frac{1}{\sqrt{4 \pi t}} \int_{-\infty}^{\infty} y(s) \cdot \exp \left(-\frac{(x-s)^{2}}{4 t}\right) d s
$$

$\tilde{f}(x, t)$ satisfies the heat equation

$$
\frac{\partial}{\partial t} \tilde{f}(x, t)-\frac{\partial^{2}}{\partial x^{2}} \tilde{f}(x, t)=0
$$

with the given data as starting points $\tilde{f}\left(x_{i}, 0\right)=y_{i}$.
$\tilde{f}_{t}=$ diffusion process with homogeneous Neumann conditions stopped at $t$ $t=$ smoothing parameter

## Local Smoothing Parameter

How can we realize a local smoothing parameter?

## $\Longrightarrow$ inhomogeneous diffusion process



## $a(x)=$ thermal diffusivity at $x$, new smoothing parameter

$\tilde{f}_{a}(x):=$ inhomogeneous diffusion process stopped at $t=1$

## Local Smoothing Parameter

How can we realize a local smoothing parameter?
$\Longrightarrow$ inhomogeneous diffusion process

$$
\frac{\partial}{\partial t} \tilde{f}(x, t)-\mathbf{a}(\mathbf{x})\left(\frac{\partial^{2}}{\partial x^{2}} \tilde{f}(x, t)\right)=0
$$

$a(x)=$ thermal diffusivity at $x$, new smoothing parameter
$\tilde{f}_{a}(x):=$ inhomogeneous diffusion process stopped at $t=1$

## MRC to select local Smoothing Parameter automatically

## goal:

find the smoothest among all the estimators $\left\{\tilde{f}_{a} ; a(x) \geq 0\right\}$ which satisfies the white noise MR criterion
i.e. find the largest $a(x) \geq 0$, so that $\tilde{f}_{a}$ satisfies the MR criterion

## $\Longrightarrow$ iterative algorithm

## MRC to select local Smoothing Parameter automatically

## goal:

find the smoothest among all the estimators $\left\{\tilde{f}_{a} ; a(x) \geq 0\right\}$ which satisfies the white noise MR criterion
i.e. find the largest $a(x) \geq 0$, so that $\tilde{f}_{a}$ satisfies the MR criterion
$\Longrightarrow$ iterative algorithm

## Diffusion Process with locally adapted a


computing time: 0.5 sec (kernel estimator: 163 sec )

## 2-dim. Diffusion Process

- inhomogeneous heat equation

$$
\frac{\partial}{\partial t} \tilde{f}(\mathbf{x}, t)-a(\mathbf{x}) \Delta \tilde{f}(\mathbf{x}, t)=0
$$

- estimator $\tilde{f}_{a}$ :
inhomogeneous diffusion process stopped at $t=1$ with
- diffusivity $a(x)$
- starting values $\tilde{f}\left(x_{i j}, 0\right)=y_{i j}$
- homogeneous Neumann conditions $\nabla \tilde{f}(x, t)=0$ for $x \in \partial([0,1] \times[0,1])$


## 2-dim. Diffusion Process

- inhomogeneous heat equation

$$
\frac{\partial}{\partial t} \tilde{f}(\mathbf{x}, t)-a(\mathbf{x}) \Delta \tilde{f}(\mathbf{x}, t)=0
$$

- estimator $\tilde{f}_{2}$ : inhomogeneous diffusion process stopped at $t=1$ with
- diffusivity $a(\mathbf{x})$
- starting values $\tilde{f}\left(x_{i j}, 0\right)=y_{i j}$
- homogeneous Neumann conditions $\nabla \tilde{f}(\mathbf{x}, t)=0$ for $\mathbf{x} \in \partial([0,1] \times[0,1])$


## Noisy Dataset



## 2-dim. Multiresolution Conditions

- MR criterion for bivariate data:

$$
\begin{aligned}
w_{P} & =\frac{1}{\sqrt{|P|}} \sum_{x_{i j} \in P} r_{n}\left(x_{i j}\right) \\
\left|w_{P}\right| & \leq \sigma_{n} \sqrt{2.3 \log n} \quad \forall P \in \mathcal{P}
\end{aligned}
$$

- $\sigma_{n}=\frac{1.48}{2} \operatorname{MED}\left(\left|y_{i+1, j+1}-y_{i+1, j}+y_{i, j+1}-y_{i, j}\right|\right)$
- the partition $\mathcal{P}$ should
- include different scales
- be fine enough to detect also small features
- allow a fast computation of the MR coefficients


## 2-dim. Multiresolution Conditions

- MR criterion for bivariate data:

$$
\begin{aligned}
w_{P} & =\frac{1}{\sqrt{|P|}} \sum_{x_{i j} \in P} r_{n}\left(x_{i j}\right) \\
\left|w_{P}\right| & \leq \sigma_{n} \sqrt{2.3 \log n} \quad \forall P \in \mathcal{P}
\end{aligned}
$$

- $\sigma_{n}=\frac{1.48}{2} \operatorname{MED}\left(\left|y_{i+1, j+1}-y_{i+1, j}+y_{i, j+1}-y_{i, j}\right|\right)$
- the partition $\mathcal{P}$ should
- include different scales
- be fine enough to detect also small features
- allow a fast computation of the MR coefficients


## MRC: different Partitions $\mathcal{P}$

different partitions $\mathcal{P}$ :

- dyadic squares
- wedges
- dyadic squares on 2 levels


## Dyadic Squares and Wedges

## dyadic squares


wedges


## Dyadic Squares on 2 Levels

first level

| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |  | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |  | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 |  | 0 | 0 | 0 |  | 0 | 0 | 0 |  | 0 | 0 | 0 |



## second level




$\tilde{f}_{a}$ for dyadic Squares on 2 Levels


## $\tilde{f}_{a}$ for dyadic Squares on 2 Levels



## The End

## Thank you for your attention!

contact:
monika.meise@uni-due.de rahel.stichtenoth@uni-due.de
www.stat-math.uni-essen.de

## Iteration Steps



4 Return

