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@ A background process {Z(#),t > 0}. “Almost” an
Introduction irreducible CTMC, finite state space S, generator Q.

@ A fluid level process {X(t),¢ > 0}.
@ When Z(r) = i, X(¢) changes at rate R;.

Limiting behavior

Optimal ordering

policies @ When the fluid level hits zero in state i, it instantaneously
jumps to ¢, and the background process jumps to j with
Future research probability .
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The bivariate Markov process {(X(z),Z(r))} has a
limiting distribution

Gj(x) == lim P{X(1)>x,Z(1) =j}, x=0,0>0,i€S,

if the expected net production rate

ZW,‘R,’ < 0,

icS

where 7; satisfies

0 =0
me = 1.
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Introduction @ The row vector

Limiting behavior
Stability condition
Differential equations

Solution @ lts derivative
Optimal ordering

G(x) = [G1(x), ..., Gu(¥)].

policies G/(x) . dG(x) . dG,(x)

2 ey
Future research dx dx

@ Diagonal matrix

Ry
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Theorem: Limiting Distribution

The limiting distribution G(x) satisfies

GWR=GWE+p,  Hx<q,
G'(x)R = G(x)0, if x > g,

where the row vector 5 := G'(0)RA. The boundary
conditions are given by

lim G(x) = 0,
Giq")=Gilq7), VR #0,
G;(0)
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Proof.

Differential Equations

G'(x)R = G(x)Q, ifx > gq.
G (x)R = G(x)Q + 3, if x < gq.

@ x > ¢, standard fluid model,
Qo x <gq, ﬂj = Z RiGi(O)Oéij
i:R; <0
the rate of transitions into state j due to the jump of
the inventory level from 0 to g.
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@ lim G(x) =0.

X— 00

o G(x) complementary probability at x.
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@ lim G(x) =0.

X—00
o G(x) complementary probability at x.
Q Gi(¢")=Gi(q7), Vj: R #0
o Continuity at g.
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@ lim G(x) =0.

X— 00

o G(x) complementary probability at x.
Q Gi(¢")=Gi(q7), Vj: R #0

o Continuity at g.
Q GJ’.(O):0, Vji:R; >0

° G,( : the expected time between two

consecutlve visits to the state (0, /).
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@ lim G(x) =0.

X— 00

o G(x) complementary probability at x.
Q Gi(¢")=Gi(q7), Vj: R #0

o Continuity at g.
Q GJ’-(O):O, Vji:R; >0

° G,( : the expected time between two
consecutlve visits to the state (0, /).
Q G(0)e=1

° Gj(0) = Ilim P{X(zr) € [0,00), Z(t) = j}
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Limiting behavior Let (\;, ¢:) be an (eigenvalue, eigenvector) pair that
Stability condition SOIVeS

Differential equations

Solution ¢,’(AiR - Q) =0.

Optimal ordering

policies Fact: There is exactly one eigenvalue 0, and its

corresponding eigenvector is .
Future research
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Theorem: Solving the differential equations by
solving a linear system

The solution to the differential equations is given by

ce™Mo +sxr+d  x<gq,
ae’™o x> q,

where a, ¢, d and s are the unique solution to the
following system of equations:

cNOR + stR+dQ =0,
(aeM® — ceMd — sqm — d)Igso =0,

a; =0V, Vi : )\,’ > O,
m
C,‘/\i(lﬁ,'j + s =0, vj Rj > 0,
i=0
(cd+d)e =1,

de =1
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Q APR+s7R+dQ =0
o sxm + d is a particular solution to
G'(x)R = G(x)0 + B.



Fluid Models in
Inventory Control

Introduction

Limiting behavior
Stability condition
Differential equations
Solution

Optimal ordering
policies

Future research

Q APR+s7R+dQ =0
o sxm + d is a particular solution to
G'(x)R = G(x)0 + B.
Q (ae1® — ceMP — sqm — d)Ig0 =0
° Gi(q")=Gjlg™), Vj:R#0.
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Q APR+s7R+dQ =0
o sxm + d is a particular solution to
G'(x)R = G(x)Q + B.
Q (ae1® — ceMP — sqm — d)Ig0 =0
° Gi(q")=Gjlg™), Vj:R#0.
Qa,-:O, Vl)\,ZO
o lim G(x) =0.

X— 00



Fluid Models in
Inventory Control

Introduction

Limiting behavior
Stability condition
Differential equations
Solution

Optimal ordering
policies

Future research

Q APR+s7R+dQ =0
o sxm + d is a particular solution to
G'(x)R = G(x)Q + B.
Q (ae1® — ceMP — sqm — d)Ig0 =0
° Gi(q")=Gjlg™), Vj:R#0.
Qa,-:O, Vl)\,ZO
o lim G(x) =0.

m
Q ZC,’)\[QZS,:/+S7T/':0, Vj:Rj>0
i=0

° G/(0)=0, Vj:R;>0.
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Q APR+s7R+dQ =0
o sxm + d is a particular solution to
G'(x)R = G(x)Q + B.
Q (ae1® — ceMP — sqm — d)Ig0 =0
° Gi(q")=Gjlg™), Vj:R#0.
Qa,-:O, Vl)\,ZO
o lim G(x) =0.

m
Q ZC,’)\[QZS,:/+S7T/':0, Vj:Rj>0
i=0
Qo G;(O) =0, Vji:R >0.

Q (cP+de=1
o G(0)e = 1.
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Q APR+s7R+dQ =0

Introduction . . .
o sxm + d is a particular solution to

Limiting behavior G'(x)R = G(x)Q + B.

Stability condition A A

Differential equations Q (Cl@ 1P — ce"1P — sqm — d)IR7éO =0
T ° Gla") =Gla ), WiR#0,
MGl O o — 0. Vi >0

Future research e xll»rgo Gl =

m
Q > chidyj+sm=0, Vji:R >0
i=0
° GI(0)=0, Vj:R >0.
Q (¢ +d)e=1
o G(0)e = 1.
Qde=1.

o Uniquely determine all the coefficients.
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Uniform distribution in steady state

When the net input rate is non-positive, i.e.,
R; < 0,Vi,and A = I,

G(x) = (1 —x/q)m, x € [0,q].

Remark: In steady state,
(1) X ~ U|0, g]; (2) X is independent of Z.

.

time t
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@ X(r) = inventory level at time .

@ Z(r) = state of the environment at time ¢, a
CTMC with generator matrix Q.

@ R; = rate at which inventory changes when
Z(t) =i.

@ The assumptions:

No back order.

Zero leadtimes.

Order when inventory reaches zero.

Order sizes independent of the environment
state.

{(X(1),Z(t)),t > 0}: A special case of the fluid model
with jumps where A = 1.

(]

© 0 o
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@ The costs:

@ h: holding cost of one unit of product per unit of
time;
o k: fixed set-up cost to place an order;
@ p;: per unit purchasing cost;
@ p,: per unit production cost.
@ The goal: to compute the optimal ¢* that
minimizes the long-run total cost per unit of time.
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Total cost rate ¢(g) as a function of ¢

c(q) = cn(q) + colq) + cp(q),

where ¢;(q), c,(¢) and c,(q) are the steady-state
holding, ordering, and production cost rates.

Theorem: Costs as functions of g

cnl(q) =h [(C - 0)7\6/\"49 + %ﬁqz + (d+c1m)g — cAo| e

co(q) = (k+ p19)(cAP + sm)Re
cp(q) = p2(c® + d)Re

Notation 1 1
A= (07 BV RS )Tn)
r; = production rate at state i

d; = demand rate at state i

R = diag(r1, 72, ...1)

R = diag(Ri, R, ..

R,':r,'*di

R,)
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° =¥ i(x)dx.
State-dependent Ch(q) %fx:() Gl(x) %
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Q ailq) =
h [(c — a)AMO + S7g? + (d + c1m)g — c/N\CD} e
o ci(q)=nh gf):o Gj(x)dx.

Q co(q) = (k+pi1g)(cA® + s7)Re

° ¢(q) = (k+p1g) %ZSG,’»(O)RJ'-
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Q cn(q) =
h [(c — a)AMO + S7g? + (d + c1m)g — c/N\CD} e
o ci(q)=nh gf):o Gj(x)dx.
Q co(q) = (k+pi1g)(cA® + s7)Re

° ¢(q) = (k+p1g) %ZSG,’»(O)RJ'-

Q Cp(q) = PZ(CCD + d)INQe

° ¢(q) = p2 3 Gj(0)r;.

JES
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Theorem: Stochastic EOQ formula

Suppose A > 0. The optimal order size ¢* that
minimizes the total cost rate ¢(g) is given by:

q* = \/2kDA/h,

where A is the expected “net” demand rate

A= —Zﬂ'l‘Ri.
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@ Decompose {X(t)} into {X;(#)} and {X>(¢)} .
Q@ In steady state {X;(¢)} has uniform distribution.
o Decompose {X;(t)} into {Yo(¢)} and {Y;(¢)} .
@ Yy ~ UJ0,q] (The special case).
@ Y ~ UJ0,q] (Construct a semi-Markov process).

Q {Xx(r)}is independent of g.
Qclg)=4+% .

o q ZkA
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policies @ Z(t) = number of working machines at time .
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State dependon @ Background process {Z(¢),t > 0} : CTMC.
Stochastic leadtimes
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@ When there are i working machines,
] ] o Production rate i r.

peimalopaiing o Demand rate d (constant).

policies

. ® R, =ir—d, positive, or negative.

e e @ When inventory level hits 0, an order of size g is

Stochastic leadtimes placed and arrives instantaneously.
Future research

Limiting behavior

vl
-
=

inventory

v

time t
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n=3,d=3,r=25iA=1,p=2,q9g=3.

—G'x)
012

Probability Density Function

01F

0.08

0.06 1

0041

002

15
Inventory Level =



Fluid Models in
Inventory Control

d=nri=ir,\=1,u=2,
h=10,k=2,p; =8andp, =5. Let rvary in (0, 3).

. 15 T T T T
Introduction s
Limiting behavior ned
Optimal ordering =3
policies A e T e T e e e 4
Basic EOQ models ol
State-dependent
ordering policy net
Stochastic leadtimes
05} 8
Future research
3 i i | i i
0 05 1 15 2 25 3

Optimal order size vs. production rate.
@ ¢" decreases with r .

@ 4" reaches zero when r increases to 3.

@ For afixed r, ¢* increases with n, but sublinearly.
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ntroduction @ Basic model: place an order as soon as

inventory reaches 0.

Optimal ordering o Extended model:
policies

. o Don't place an order until backorders
State-dependent accumulate to r.

ordering policy . . q
Stochastic leadtimes o b: backlogging cost of one unit of product per
unit of time;.

Limiting behavior

Future research
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Theorem: Stochastic EOQ with backlogging
Suppose A =1, A > 0. Then

. kbt h)A
T=N""mw

x h *
= (Hh>q

Remark: This is equivalent to the deterministic
EOQ formula with backlogging.

Proof. sample path is the same as in basic model
except for a shift in the y-axis.
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@ Basic model: one common order size g.

@ Extended model: place an order of size ¢; if the
environment state is i at the time of ordering.

X(t)

.
1
ne2)

IE)=m-2 Z(S)=-m EZ(S)=m-1 25y =1
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state-.depen(-jent o G,(X)R _ G(X)Q7 @ whenx > gp )
ordering policy G(x)0+ B, wheng | <x<g,Vies

Stochastic leadtimes

Future research

o g = G'(0)RID
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@ I(r): cycle type at time 1.

@ {(X(t),Z(r)),t > 0} restrict to I(r) = i is a special
case of the basic fluid model with

0 pl) = lim P{I(r) = i}

steady-state probability that the system is in the
i-th type cycle (SMP).

i:R; <0

G@) = > GO J
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@ Complexity in matrix calculation.
o Method 1: we need to solve m groups of
equations simultaneously.

o Method 2: solve m groups of equations
separately.

@ Varying ranges of g;’s.
o Method 1: ¢; varies in [gi—1, git1]-
o Method 2: no need to specify ranges.
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Introduction h=5,k=0.5,p =5andp, = 8. Let rvary in (0, 3).

Limiting behavior
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~
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Optimal order size vs. production rate.
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Stochastic leadtimes
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) @ Basic model: external orders arrive
Introduction

instantaneously.
Limiting behavior . o
o ' ord @ Extended model: leadtimes are iid exp(u)
ptimal ordering .
el random variables.

Basic EOQ models

State-dependent
ordering policy

X(r): inventory level at time r;
Z(r): external environment state at time ;
O(1): number of outstanding orders at time 7;
W(r) = (Z(1), O(1)).

P(t): inventory position at time ¢,

P(1) = X(1) + q O(1).

Policy: External orders of size ¢ are placed when
the inventory position reaches r.

Observation: {(P(z), W(z)),t > 0} is a fluid model
with jumps.

Stochastic leadtimes

Future research
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o Let GO (x) = lim PX(1) > x,0(r) = i}

) =
oThenGx) GO(x—iq),Vie{0,1,...,N}

°>’<x)R GOx)0 + uGM (x)

0 (x)R = GO (x)Q + uGi) (x) + GG ()R
=1,2,. =1l

° G< ) ()R = G(N)(x)Q + UG (x) + GV (0)R
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State-Dependent Cost Rates

@ Basic model: state-independent linear cost
rates.

@ Extended model: cost rates depend on the
environmental process.

SMP Background Process
@ Basic model: CTMC background process.
@ Extended model: SMP background process.
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Questions?
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Phone: 919-962-3837
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