Introduction

Limiting behavior

Optimal ordering policies

Future research

Stochastic Fluid Models in Inventory Control Problems

Vidyadhar G. Kulkarni

(Joint work with Keqi Yan)

Department of Statistics and Operations Research University of North Carolina at Chapel Hill

March, 2006

Vidyadhar G. Kulkarni

Introduction

Limiting behavior

Optimal ordering policies

Future research

Outline

2

3

Introduction

Limiting behavior Stability condition Differential equations Solution to the differential equations

Optimal ordering policies Basic EOQ models State-dependent ordering policy Stochastic leadtimes

4 Future research

Introduction

- Limiting behavior
- Optimal ordering policies
- **Future research**

The Model

- A background process {Z(t), t ≥ 0}. "Almost" an irreducible CTMC, finite state space S, generator Q.
- A fluid level process $\{X(t), t \ge 0\}$.
- When Z(t) = i, X(t) changes at rate R_i .
- When the fluid level hits zero in state *i*, it instantaneously jumps to *q*, and the background process jumps to *j* with probability α_{ij}.

Vidyadhar G. Kulkarni

Introduction

- Limiting behavior Stability condition Differential equations Solution
- Optimal ordering policies
- Future research

Outline

2

Introduction

Limiting behavior Stability condition

Differential equations Solution to the differential equations

Optimal ordering policies Basic EOQ models State-dependent ordering policy Stochastic leadtimes

Future research

Vidyadhar G. Kulkarni

Introduction

Limiting behavior Stability condition Differential equations Solution

Optimal ordering policies

Future research

Stability Condition

The bivariate Markov process $\{(X(t), Z(t))\}$ has a limiting distribution

 $G_j(x) := \lim_{t \to \infty} P\{X(t) > x, Z(t) = j\}, \quad x \ge 0, t \ge 0, i \in S,$

if the expected net production rate

$$\sum_{i\in S}\pi_iR_i<0,$$

where π_i satisfies

 $\begin{cases} \pi Q = 0\\ \pi e = 1. \end{cases}$

Vidyadhar G. Kulkarni

Introduction

Limiting behavior Stability condition Differential equations Solution

Optimal ordering policies

Future research

Outline

2

Introduction

Limiting behavior Stability condition Differential equations Solution to the differential equations

Optimal ordering policies Basic EOQ models State-dependent ordering policy Stochastic leadtimes

Future research

Introduction

Limiting behavior Stability condition Differential equations Solution

Optimal ordering policies

Future research

Notation

• The row vector

 $G(x) := [G_1(x), ..., G_n(x)].$

• Its derivative

$$G'(x) := \left[rac{dG_1(x)}{dx}, ..., rac{dG_n(x)}{dx}
ight].$$

Diagonal matrix

$$R := \begin{pmatrix} R_1 & & \\ & R_2 & \\ & & \ddots & \\ & & & R_n \end{pmatrix}$$

University of North Carolina at Chapel Hill

Vidyadhar G. Kulkarni

Introduction

Limiting behavior Stability condition Differential equations Solution

Optimal ordering policies

Future research

Differential Equations

Theorem: Limiting Distribution The limiting distribution G(x) satisfies

 $\begin{aligned} G'(x)R &= G(x)Q + \beta, & \text{if } x < q, \\ G'(x)R &= G(x)Q, & \text{if } x > q, \end{aligned}$

where the row vector $\beta := G'(0)RA$. The boundary conditions are given by

 $egin{aligned} &\lim_{x o \infty} G(x) = 0, \ &G_j(q^+) = G_j(q^-), & orall j: R_j
eq 0, \ &G_j'(0) = 0, & orall j: R_j > 0, \ &G(0) \ e = 1. \end{aligned}$

Introduction

Limiting behavior Stability condition Differential equations Solution

Optimal ordering policies

Future research

Proof.

Differential Equations

G'(x)R = G(x)Q, if x > q. $G'(x)R = G(x)Q + \beta,$ if x < q.

• x > q, standard fluid model, • x < q, $\beta_j = \sum_{i:R_i < 0} R_i G_i(0) \alpha_{ij}$

the rate of transitions into state j due to the jump of the inventory level from 0 to q.

Introduction

Limiting behavior Stability condition Differential equations Solution

Optimal ordering policies

Future research

Proof. (continued)

Boundary Conditions

 $\bigcirc \lim_{x\to\infty} G(x) = 0.$ • G(x) complementary probability at x. • Continuity at q. • $\frac{1}{G'(0)R_i}$: the expected time between two G(0)e = 1• $G_j(0) = \lim_{t \to \infty} P\{X(t) \in [0, \infty), Z(t) = j\}.$

Introduction

Limiting behavior Stability condition Differential equations Solution

Optimal ordering policies

Future research

Proof. (continued)

Boundary Conditions

 $\bigcirc \lim_{x\to\infty} G(x) = 0.$ • G(x) complementary probability at x. $\bigcirc G_i(q^+) = G_i(q^-), \forall j : R_i \neq 0$ • Continuity at q. • $\frac{1}{G'(0)R_i}$: the expected time between two G(0)e = 1• $G_j(0) = \lim_{t \to \infty} P\{X(t) \in [0, \infty), Z(t) = j\}.$

Introduction

Limiting behavior Stability condition Differential equations Solution

Optimal ordering policies

Future research

Proof. (continued)

Boundary Conditions

 $\lim_{x\to\infty} G(x) = 0.$ • G(x) complementary probability at x. 2 $G_i(q^+) = G_i(q^-), \forall j : R_i \neq 0$ • Continuity at q. $\bigcirc G'_i(0) = 0, \forall j : R_i > 0$ • $\frac{1}{G'(0)R_i}$: the expected time between two consecutive visits to the state (0, i). G(0)e = 1• $G_j(0) = \lim_{t \to \infty} P\{X(t) \in [0, \infty), Z(t) = j\}.$

Introduction

Limiting behavior Stability condition Differential equations Solution

Optimal ordering policies

Future research

Proof. (continued)

Boundary Conditions

 $\bigcirc \lim_{x\to\infty} G(x) = 0.$ • G(x) complementary probability at x. 2 $G_i(q^+) = G_i(q^-), \forall j : R_i \neq 0$ • Continuity at *q*. **3** $G'_i(0) = 0, \forall j : R_i > 0$ • $\frac{1}{G'(0)R_i}$: the expected time between two consecutive visits to the state (0, i). G(0)e = 1• $G_j(0) = \lim_{t \to \infty} P\{X(t) \in [0, \infty), Z(t) = j\}.$

Introduction

Limiting behavior Stability condition Differential equations Solution

Optimal ordering policies

Future research

Outline

2

Introduction

Limiting behavior Stability condition Differential equations Solution to the differential equations

Optimal ordering policies Basic EOQ models State-dependent ordering policy Stochastic leadtimes

Future research

Vidyadhar G. Kulkarni

Introduction

Limiting behavior Stability condition Differential equations Solution

Optimal ordering policies

Future research

Notation

Let (λ_i, ϕ_i) be an (eigenvalue, eigenvector) pair that solves

$$\phi_i(\lambda_i R - Q) = 0.$$

Fact: There is exactly one eigenvalue 0, and its corresponding eigenvector is π .

Introduction

Limiting behavior Stability condition Differential equations Solution

Optimal ordering policies

Future research

Solution to the Differential Equations

Theorem: Solving the differential equations by solving a linear system

The solution to the differential equations is given by

$$G(x) = \begin{cases} ce^{\Lambda x} \Phi + sx\pi + d & x < q, \\ ae^{\Lambda x} \Phi & x > q, \end{cases}$$

where *a*, *c*, *d* and *s* are the unique solution to the following system of equations:

$$c \wedge \Phi R + s \pi R + dQ = 0,$$

$$(ae^{\Lambda q} \Phi - ce^{\Lambda q} \Phi - sq\pi - d)I_{R \neq 0} = 0,$$

$$a_i = 0, \quad \forall i : \lambda_i \ge 0,$$

$$\sum_{i=0}^m c_i \lambda_i \phi_{ij} + s\pi_j = 0, \quad \forall j : R_j > 0,$$

$$(c \Phi + d)e = 1,$$

$$d e = 1.$$

University of North Carolina at Chapel Hill

Vidyadhar G. Kulkarni

Introduction

Limiting behavior Stability condition Differential equations Solution

Optimal ordering policies

Future research

Proof.

• $sx\pi + d$ is a particular solution to $G'(x)R = G(x)Q + \beta.$ • $G_i(q^+) = G_i(q^-), \quad \forall j : R_i \neq 0.$ • $\lim G(x) = 0.$ $\bigcirc \sum c_i \lambda_i \phi_{ij} + s\pi_j = 0, \quad \forall j : R_j > 0$ • $G'_i(0) = 0, \quad \forall j : R_i > 0.$ ($c\Phi + d$)e = 1• G(0)e = 1. **(a)** d e = 1. Uniquely determine all the coefficients.

Vidyadhar G. Kulkarni

Introduction

Limiting behavior Stability condition Differential equations Solution

Optimal ordering policies

Future research

Proof.

• $sx\pi + d$ is a particular solution to $G'(x)R = G(x)O + \beta.$ (a) $(ae^{\Lambda q}\Phi - ce^{\Lambda q}\Phi - sq\pi - d)I_{R\neq 0} = 0$ • $G_i(q^+) = G_i(q^-), \quad \forall j : R_i \neq 0.$ • $\lim G(x) = 0.$ $\bigcirc \sum c_i \lambda_i \phi_{ij} + s\pi_j = 0, \quad \forall j : R_j > 0$ • $G'_i(0) = 0, \quad \forall j : R_i > 0.$ (c Φ + d)e = 1 • G(0)e = 1. **(a)** d e = 1. Uniquely determine all the coefficients.

Vidyadhar G. Kulkarni

Introduction

Limiting behavior Stability condition Differential equations Solution

Optimal ordering policies

Future research

Proof.

• $sx\pi + d$ is a particular solution to $G'(x)R = G(x)O + \beta.$ (a) $(ae^{\Lambda q}\Phi - ce^{\Lambda q}\Phi - sq\pi - d)I_{R\neq 0} = 0$ • $G_i(q^+) = G_i(q^-), \quad \forall j : R_i \neq 0.$ $a_i = 0, \quad \forall i : \lambda_i > 0$ • $\lim_{x\to\infty} G(x) = 0.$ $\bigcirc \sum c_i \lambda_i \phi_{ij} + s\pi_j = 0, \quad \forall j : R_j > 0$ • $G'_i(0) = 0, \quad \forall j : R_i > 0.$ (c Φ + d)e = 1 • G(0)e = 1. **(a)** d e = 1. Uniquely determine all the coefficients.

Vidyadhar G. Kulkarni

Introduction

Limiting behavior Stability condition Differential equations Solution

Optimal ordering policies

Future research

Proof.

• $sx\pi + d$ is a particular solution to $G'(x)R = G(x)O + \beta.$ $(ae^{\Lambda q}\Phi - ce^{\Lambda q}\Phi - sq\pi - d)I_{R\neq 0} = 0$ • $G_i(q^+) = G_i(q^-), \quad \forall j : R_i \neq 0.$ $\bigcirc a_i = 0, \quad \forall i : \lambda_i \geq 0$ • $\lim_{x\to\infty} G(x) = 0.$ • $G'_i(0) = 0, \quad \forall j : R_i > 0.$ (c Φ + d)e = 1 • G(0)e = 1. **(a)** d e = 1. Uniquely determine all the coefficients.

Introduction

Limiting behavior Stability condition Differential equations Solution

Optimal ordering policies

Future research

Proof.

• $sx\pi + d$ is a particular solution to $G'(x)R = G(x)O + \beta.$ $(ae^{\Lambda q}\Phi - ce^{\Lambda q}\Phi - sq\pi - d)I_{R\neq 0} = 0$ • $G_i(q^+) = G_i(q^-), \quad \forall j : R_i \neq 0.$ $\bigcirc a_i = 0, \quad \forall i : \lambda_i \geq 0$ • $\lim_{x\to\infty} G(x) = 0.$ • $G'_i(0) = 0, \quad \forall j : R_i > 0.$ (c Φ + d)e = 1 • G(0)e = 1. **(a)** d e = 1. Uniquely determine all the coefficients.

Introduction

Limiting behavior Stability condition Differential equations Solution

Optimal ordering policies

Future research

Proof.

• $sx\pi + d$ is a particular solution to $G'(x)R = G(x)O + \beta.$ (a) $(ae^{\Lambda q}\Phi - ce^{\Lambda q}\Phi - sq\pi - d)I_{R\neq 0} = 0$ • $G_i(q^+) = G_i(q^-), \quad \forall j : R_i \neq 0.$ $a_i = 0, \quad \forall i : \lambda_i > 0$ • $\lim_{x \to \infty} G(x) = 0.$ • $G'_i(0) = 0, \quad \forall j : R_i > 0.$ (c Φ + d)e = 1 • G(0)e = 1. **(a)** d e = 1. Uniquely determine all the coefficients.

Introduction

Limiting behavior Stability condition Differential equations Solution

Optimal ordering policies

Future research

A Special Case: R < 0 and A = I

Uniform distribution in steady state

When the net input rate is non-positive, i.e., $R_i < 0, \forall i$, and A = I,

$$G(x) = (1 - x/q)\pi, \qquad x \in [0, q].$$

Remark: In steady state, (1) $X \sim U[0, q]$; (2) X is independent of Z.

University of North Carolina at Chapel Hill

Vidyadhar G. Kulkarni

Introduction

Limiting behavior

Optimal ordering policies

Basic EOQ models

State-dependent ordering policy Stochastic leadtimes

Future research

Outline

Introduction

Limiting behavior Stability condition Differential equations Solution to the differential equations

3 Optimal ordering policies Basic EOQ models

State-dependent ordering policy Stochastic leadtimes

Future research

Introduction

- Limiting behavior
- Optimal ordering policies
- Basic EOQ models
- State-dependent ordering policy Stochastic leadtimes
- **Future research**

An Inventory Model

- X(t) = inventory level at time t.
- *Z*(*t*) = state of the environment at time *t*, a CTMC with generator matrix *Q*.
- R_i = rate at which inventory changes when Z(t) = i.
- The assumptions:
 - No back order.
 - Zero leadtimes.
 - Order when inventory reaches zero.
 - Order sizes independent of the environment state.

 $\{(X(t), Z(t)), t \ge 0\}$: A special case of the fluid model with jumps where A = I.

- Introduction
- Limiting behavior
- Optimal ordering policies
- Basic EOQ models
- State-dependent ordering policy Stochastic leadtimes
- **Future research**

Cost Model

The costs:

- *h*: holding cost of one unit of product per unit of time;
- k: fixed set-up cost to place an order;
- p1: per unit purchasing cost;
- *p*₂: per unit production cost.
- The goal: to compute the optimal *q*^{*} that minimizes the long-run total cost per unit of time.

Introduction

Limiting behavior

Optimal ordering policies

Basic EOQ models

State-dependent ordering policy Stochastic leadtimes

Future research

Cost Rates Calculation

Total cost rate c(q) as a function of q

$$c(q) = c_h(q) + c_o(q) + c_p(q),$$

where $c_h(q)$, $c_o(q)$ and $c_p(q)$ are the steady-state holding, ordering, and production cost rates.

Theorem: Costs as functions of q

$$c_h(q) = h\left[(c-a)\tilde{\Lambda}e^{\Lambda q}\Phi + \frac{s}{2}\pi q^2 + (d+c_1\pi)q - c\tilde{\Lambda}\Phi\right]e$$

$$c_o(q) = (k+p_1q)(c\Lambda\Phi + s\pi)Re$$

$$c_p(q) = p_2(c\Phi + d)\tilde{R}e$$

Notation $\tilde{\Lambda} = (0, \frac{1}{\lambda_2}, ..., \frac{1}{\lambda_n})$ $r_i = \text{production rate at state } i$ $d_i = \text{demand rate at state } i$

 $\tilde{R} = \text{diag}(r_1, r_2, ...r_n)$ $R = \text{diag}(R_1, R_2, ...R_n)$ $R_i = r_i - d_i$

Vidyadhar G. Kulkarni

Introduction

- Limiting behavior
- Optimal ordering policies Basic EOQ models
- State-dependent ordering policy Stochastic leadtimes

Future research

Proof.

•
$$c_h(q) =$$

 $h\left[(c-a)\tilde{\Lambda}e^{\Lambda q}\Phi + \frac{s}{2}\pi q^2 + (d+c_1\pi)q - c\tilde{\Lambda}\Phi\right]e$
• $c_h(q) = h\sum_{j\in S} \int_{x=0}^{\infty} G_j(x)dx.$
• $c_o(q) = (k+p_1q)(c\Lambda\Phi + s\pi)Re$
• $c_o(q) = (k+p_1q)\sum_{j\in S} G'_j(0)R_j.$
• $c_p(q) = p_2(c\Phi + d)\tilde{R}e$
• $c_o(a) = p_2\sum_{j\in S} G_j(0)r_j.$

Vidyadhar G. Kulkarni

Introduction

- Limiting behavior
- Optimal ordering policies Basic EOQ models
- State-dependent ordering policy Stochastic leadtimes

Future research

Proof.

Vidyadhar G. Kulkarni

Introduction

- Limiting behavior
- Optimal ordering policies Basic EOQ models
- State-dependent ordering policy Stochastic leadtimes

Future research

Proof.

Vidyadhar G. Kulkarni

Introduction

Limiting behavior

Optimal ordering policies

Basic EOQ models State-dependent ordering policy Stochastic leadtimes

Future research

Optimality of EOQ with Stochastic Production and Demand

Theorem: Stochastic EOQ formula

Suppose $\Delta > 0$. The optimal order size q^* that minimizes the total cost rate c(q) is given by:

$$q^* = \sqrt{2k\Delta/h},$$

where Δ is the expected "net" demand rate

$$\Delta = -\sum_i \pi_i R_i.$$

Vidyadhar G. Kulkarni

Introduction

- Limiting behavior
- Optimal ordering policies
- Basic EOQ models
- State-dependent ordering policy Stochastic leadtimes

Future research

Proof.

Decompose {X(t)} into {X₁(t)} and {X₂(t)}.
In steady state {X₁(t)} has uniform distribution.

Decompose {X₁(t)} into {Y₀(t)} and {Y₁(t)}.
Y₀ ~ U[0,q] (The special case).
Y₁ ~ U[0,q] (Construct a semi-Markov process).

{X₂(t)} is independent of q.
c(q) = hq/2 + kA/q + C.
q* = √2kA/h.

Introduction

- Limiting behavior
- Optimal ordering policies
- Basic EOQ models
- State-dependent ordering policy Stochastic leadtimes
- **Future research**

Decompose $\{X(t)\}$ into $\{X_1(t)\}$ and $\{X_2(t)\}$

University of North Carolina at Chapel Hill

Vidyadhar G. Kulkarni

Introduction

Limiting behavior

Optimal ordering policies Basic EOQ models

State-dependent ordering policy Stochastic leadtimes

Future research

Correspondence of $\{X_1(t)\}$ and $\{Y_0(t)\}$

University of North Carolina at Chapel Hill

Vidyadhar G. Kulkarni

Introduction

Limiting behavior

Optimal ordering policies Basic EOQ models

State-dependent ordering policy Stochastic leadtimes

Future research

Correspondence of $\{X_1(t)\}$ and $\{Y_1(t)\}$

Vidyadhar G. Kulkarni

Introduction

- Limiting behavior
- Optimal ordering policies
- Basic EOQ models
- State-dependent ordering policy Stochastic leadtimes

Future research

Vidyadhar G. Kulkarni

A Numerical Example

- *n* identical independent machines.
- Lifetime $exp(\mu)$, repair time $exp(\lambda)$.
- Z(t) = number of working machines at time t.
- Background process $\{Z(t), t \ge 0\}$: CTMC.

Introduction

- Limiting behavior
- Optimal ordering policies
- **Basic EOQ models**
- State-dependent ordering policy Stochastic leadtimes

Future research

Inventory Level Process $\{X(t), t \ge 0\}$

• When there are *i* working machines,

- Production rate *i r*.
- Demand rate *d* (constant).
- $R_i = i r d$, positive, or negative.
- When inventory level hits 0, an order of size *q* is placed and arrives instantaneously.

Vidyadhar G. Kulkarni

Introduction

Limiting behavior

Optimal ordering policies Basic EOQ models

State-dependent ordering policy Stochastic leadtimes

Future research

Limiting Distribution

Complementary Cumulative Distribution Function

University of North Carolina at Chapel Hill

Vidyadhar G. Kulkarni

Introduction

Limiting behavior

Optimal ordering policies Basic EOQ models

State-dependent ordering policy Stochastic leadtimes

Future research

Limiting Distribution

Probability Density Function

University of North Carolina at Chapel Hill

Vidyadhar G. Kulkarni

- Introduction
- Limiting behavior
- Optimal ordering policies Basic EQQ models
- State-dependent ordering policy Stochastic leadtimes
- **Future research**

 $d = n, r_i = i r, \lambda = 1, \mu = 2,$ $h = 10, k = 2, p_1 = 8$ and $p_2 = 5$. Let *r* vary in (0,3).

- q^* decreases with r.
- q^* reaches zero when r increases to 3.
- For a fixed r, q^* increases with n, but sublinearly.

Vidyadhar G. Kulkarni

Introduction

- Limiting behavior
- Optimal ordering policies

Basic EOQ models

State-dependent ordering policy Stochastic leadtimes

Future research

An Extension: Backlogging Allowed

- Basic model: place an order as soon as inventory reaches 0.
- Extended model:
 - Don't place an order until backorders accumulate to *r*.
 - *b*: backlogging cost of one unit of product per unit of time;.

Introduction

Limiting behavior

Optimal ordering policies

Basic EOQ models

State-dependent ordering policy Stochastic leadtimes

Future research

Stochastic EOQ with Backlogging

Theorem: Stochastic EOQ with backlogging

Suppose A = I, $\Delta > 0$. Then

$$q^* = \sqrt{\frac{2k(b+h)\Delta}{hb}}$$
$$r^* = \left(\frac{h}{b+h}\right)q^*.$$

Remark: This is equivalent to the deterministic EOQ formula with backlogging.

Proof. sample path is the same as in basic model except for a shift in the *y*-axis.

Introduction

Limiting behavior

Optimal ordering policies Basic EOQ models State-dependent

ordering policy Stochastic leadtimes

Future research

Outline

3)

Introduction

Limiting behavior Stability condition Differential equations Solution to the differential equations

Optimal ordering policies Basic EOQ models State-dependent ordering policy Stochastic leadtimes

Future research

Introduction

- Limiting behavior
- Optimal ordering policies
- Basic EOQ models State-dependent ordering policy Stochastic leadtimes

Future research

State-dependent Ordering Policy

- Basic model: one common order size *q*.
- Extended model: place an order of size q_i if the environment state is *i* at the time of ordering.

University of North Carolina at Chapel Hill

Vidyadhar G. Kulkarni

Introduction

Limiting behavior

Optimal ordering policies Basic EOQ models

State-dependent ordering policy Stochastic leadtimes

Future research

Method 1: Piecewise Function

• $G'(x)R = \begin{cases} G(x)Q, & \text{when } x > q_m \\ G(x)Q + \beta^{(i)}, & \text{when } q_{i-1} < x < q_i, \forall i \in S \end{cases}$

Introduction

- Limiting behavior
- Optimal ordering policies Basic EQQ models
- State-dependent ordering policy Stochastic leadtimes
- **Future research**

Method 2: Sample Path Decomposition

the Inventory Level Process and the Cycle Type Process

Vidyadhar G. Kulkarni

Introduction

- Limiting behavior
- Optimal ordering policies
- Basic EOQ models State-dependent ordering policy Stochastic leadtimes

Future research

Sample Path Decomposition Method

- I(t): cycle type at time t.
- $\{(X(t), Z(t)), t \ge 0\}$ restrict to I(t) = i is a special case of the basic fluid model with

$$A = \begin{bmatrix} i \\ 0 & \dots & 1 & \dots & 0 \\ 0 & \dots & 1 & \dots & 0 \\ \vdots \\ n & & \ddots & \ddots & \dots & \dots \\ 0 & \dots & 1 & \dots & 0 \end{bmatrix}.$$

• $p^{(i)} = \lim_{t \to \infty} P\{I(t) = i\}$ steady-state probability that the system is in the *i*-th type cycle (SMP).

$$G(x) = \sum_{i:R_i < 0} G^{(i)}(x) p^{(i)}$$

University of North Carolina at Chapel Hill

Vidyadhar G. Kulkarni

Introduction

Limiting behavior

Optimal ordering policies

Basic EOQ models

State-dependent ordering policy

Stochastic leadtimes

Future research

Advantages of Method 2

Complexity in matrix calculation.

- Method 1: we need to solve *m* groups of equations simultaneously.
- Method 2: solve *m* groups of equations separately.

2 Varying ranges of q_i 's.

- Method 1: q_i varies in $[q_{i-1}, q_{i+1}]$.
- Method 2: no need to specify ranges.

- Introduction
- Limiting behavior
- Optimal ordering policies
- Basic EOQ models State-dependent ordering policy Stochastic leadtimes
- **Future research**

A Machine Shop Example

 $n = 2, d = 2, r_i = i r, \lambda = 1, \mu = 2,$ $h = 5, k = 0.5, p_1 = 5 \text{ and } p_2 = 8.$ Let r vary in (0,3).

Vidyadhar G. Kulkarni Univ

Introduction

Limiting behavior

Optimal ordering policies

Basic EOQ models State-dependent ordering policy Stochastic leadtimes

Future research

Outline

3

Introduction

Limiting behavior Stability condition Differential equations Solution to the differential equations

Optimal ordering policies Basic EOQ models State-dependent ordering policy Stochastic leadtimes

Future research

Vidyadhar G. Kulkarni

- Introduction
- Limiting behavior
- Optimal ordering policies
- Basic EOQ models State-dependent ordering policy Stochastic leadtimes

Future research

Stochastic Leadtimes

- Basic model: external orders arrive instantaneously.
- Extended model: leadtimes are iid exp(µ) random variables.
- X(t): inventory level at time t;
- *Z*(*t*): external environment state at time *t*;
- *O*(*t*): number of outstanding orders at time *t*;
- W(t) = (Z(t), O(t)).
- P(t): inventory position at time t, P(t) = X(t) + q O(t).

Policy: External orders of size q are placed when the inventory position reaches r. **Observation:** $\{(P(t), W(t)), t \ge 0\}$ is a fluid model with jumps.

Introduction

Limiting behavior

Optimal ordering policies

Basic EOQ models State-dependent ordering policy Stochastic leadtimes

Future research

Sample Path of

the Inventory Position Process and the Inventory Level Process

University of North Carolina at Chapel Hill

Vidyadhar G. Kulkarni

Introduction

- Limiting behavior
- Optimal ordering policies
- Basic EOQ models State-dependent ordering policy Stochastic leadtimes

Future research

One External Supplier with Limited Number of Outstanding Orders

• Let $G^{(i)}(x) = \lim_{t \to \infty} P\{X(t) > x, O(t) = i\}$ • Then $G(x) = G^{(i)}(x - i q), \forall i \in \{0, 1, \dots, N\}$ • $G^{(0)'}(x)R = G^{(0)}(x)Q + \mu G^{(1)}(x)$ • $G^{(i)'}(x)R = G^{(i)}(x)Q + \mu G^{(i+1)}(x) + G^{(i-1)'}(0)R$ $i = 1, 2, \dots, N - 1$ • $G^{(N)'}(x)R = G^{(N)}(x)Q + \mu G^{(N)}(x) + G^{(N-1)'}(0)R$

Introduction

- Limiting behavior
- Optimal ordering policies

Basic EOQ models State-dependent ordering policy Stochastic leadtimes

Future research

One External Supplier with Limited Number of Outstanding Orders

•
$$\bar{G}(x) := [G^{(0)}(x), G^{(1)}(x), \dots, G^{(N)}(x)]$$

Vidyadhar G. Kulkarni

Introduction

Limiting behavior

Optimal ordering policies

Basic EOQ models State-dependent ordering policy Stochastic leadtimes

Future research

Infinite External Suppliers

• $G^{(0)'}(x)R = G^{(0)}(x)Q + \mu G^{(1)}(x)$ • $G^{(i)'}(x)R = G^{(i)}(x)Q + (i+1)\mu G^{(i+1)}(x) + G^{(i-1)'}(0)R$ $i = 1, 2, \ldots$ $\bullet \ \bar{Q} := \begin{pmatrix} Q & & & & \\ \mu I & Q - \mu I & & & \\ & 2\mu I & Q - 2\mu I & & \\ & & 3\mu I & Q - 3\mu I & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & &$ $\bullet \ \bar{A} := \left(\begin{array}{ccc} \bullet & I & \dots \\ & 0 & I & \dots \\ & & 0 & I & \dots \\ & & & \ddots \end{array} \right)$

University of North Carolina at Chapel Hill

Vidyadhar G. Kulkarni

- Introduction
- Limiting behavior
- Optimal ordering policies
- **Future research**

Future Research

State-Dependent Cost Rates

- Basic model: state-independent linear cost rates.
- Extended model: cost rates depend on the environmental process.

SMP Background Process

- Basic model: CTMC background process.
- Extended model: SMP background process.

- Introduction
- Limiting behavior
- Optimal ordering policies
- **Future research**

Thank you!

Questions?

Vidyadhar G. Kulkarni Chairman, Department of Statistics and Operations Research, CB 3260 University of North Carolina, Chapel Hill, NC, USA, 27599 Phone: 919-962-3837 Fax: 919-962-0391 vkulkarn@email.unc.edu http://www.unc.edu/~vkulkarn/