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The Model
A background process {Z(t), t ≥ 0}. “Almost” an
irreducible CTMC, finite state space S, generator Q.

A fluid level process {X(t), t ≥ 0}.
When Z(t) = i, X(t) changes at rate Ri.

When the fluid level hits zero in state i, it instantaneously
jumps to q, and the background process jumps to j with
probability αij.

Vidyadhar G. Kulkarni University of North Carolina at Chapel Hill
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Stability Condition

The bivariate Markov process {(X(t), Z(t))} has a
limiting distribution

Gj(x) := lim
t→∞

P{X(t)>x, Z(t) = j}, x ≥ 0, t ≥ 0, i ∈ S,

if the expected net production rate∑
i∈S

πiRi < 0,

where πi satisfies {
πQ = 0
πe = 1.

Vidyadhar G. Kulkarni University of North Carolina at Chapel Hill
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Notation

The row vector

G(x) := [G1(x), ..., Gn(x)].

Its derivative

G′(x) :=

[
dG1(x)

dx
, ...,

dGn(x)
dx

]
.

Diagonal matrix

R :=


R1

R2
. . .

Rn

 .
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Differential Equations

Theorem: Limiting Distribution
The limiting distribution G(x) satisfies

G′(x)R = G(x)Q + β, if x < q,
G′(x)R = G(x)Q, if x > q,

where the row vector β := G′(0)RA. The boundary
conditions are given by

lim
x→∞

G(x) = 0,

Gj(q+) = Gj(q−), ∀j : Rj 6= 0,

G′j(0) = 0, ∀j : Rj > 0,

G(0) e = 1.

Vidyadhar G. Kulkarni University of North Carolina at Chapel Hill
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Proof.

Differential Equations

G′(x)R = G(x)Q, if x > q.

G′(x)R = G(x)Q + β, if x < q.

x > q, standard fluid model,
x < q, βj =

∑
i:Ri<0

RiGi(0)αij

the rate of transitions into state j due to the jump of
the inventory level from 0 to q.

Vidyadhar G. Kulkarni University of North Carolina at Chapel Hill
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Proof. (continued)

Boundary Conditions

1 lim
x→∞

G(x) = 0.

G(x) complementary probability at x.
2 Gj(q+) = Gj(q−), ∀j : Rj 6= 0

Continuity at q.

3 G′j(0) = 0, ∀j : Rj > 0
1

G′
j (0)Rj

: the expected time between two
consecutive visits to the state (0, j).

4 G(0)e = 1
Gj(0) = lim

t→∞
P{X(t) ∈ [0,∞), Z(t) = j}.

Vidyadhar G. Kulkarni University of North Carolina at Chapel Hill
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Notation

Let (λi, φi) be an (eigenvalue, eigenvector) pair that
solves

φi(λiR− Q) = 0.

Fact: There is exactly one eigenvalue 0, and its
corresponding eigenvector is π.

Λ :=


0

λ2
. . .

λn

 , Φ :=


π
φ2
...
φn

 .
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Solution to the Differential Equations

Theorem: Solving the differential equations by
solving a linear system
The solution to the differential equations is given by

G(x) =

{
ceΛxΦ + sxπ + d x < q,
aeΛxΦ x > q,

where a, c, d and s are the unique solution to the
following system of equations:

cΛΦR + sπR + dQ = 0,
(aeΛqΦ− ceΛqΦ− sqπ − d)IR 6=0 = 0,

ai = 0, ∀i : λi ≥ 0,
m∑

i=0
ciλiφij + sπj = 0, ∀j : Rj > 0,

(cΦ + d)e = 1,
d e = 1.

Vidyadhar G. Kulkarni University of North Carolina at Chapel Hill
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Proof.

1 cΛΦR + sπR + dQ = 0
sxπ + d is a particular solution to
G′(x)R = G(x)Q + β.

2 (aeΛqΦ− ceΛqΦ− sqπ − d)IR6=0 = 0
Gj(q+) = Gj(q−), ∀j : Rj 6= 0.

3 ai = 0, ∀i : λi ≥ 0
lim

x→∞
G(x) = 0.

4
m∑

i=0
ciλiφij + sπj = 0, ∀j : Rj > 0

G′j(0) = 0, ∀j : Rj > 0.
5 (cΦ + d)e = 1

G(0)e = 1.
6 d e = 1.

Uniquely determine all the coefficients.

Vidyadhar G. Kulkarni University of North Carolina at Chapel Hill
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A Special Case: R < 0 and A = I

Uniform distribution in steady state
When the net input rate is non-positive, i.e.,
Ri < 0,∀i, and A = I,

G(x) = (1− x/q)π, x ∈ [0, q].

Remark: In steady state,
(1) X ∼ U[0, q]; (2) X is independent of Z.

Vidyadhar G. Kulkarni University of North Carolina at Chapel Hill
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An Inventory Model

X(t) = inventory level at time t.
Z(t) = state of the environment at time t, a
CTMC with generator matrix Q.
Ri = rate at which inventory changes when
Z(t) = i.
The assumptions:

No back order.
Zero leadtimes.
Order when inventory reaches zero.
Order sizes independent of the environment
state.

{(X(t), Z(t)), t ≥ 0}: A special case of the fluid model
with jumps where A = I.

Vidyadhar G. Kulkarni University of North Carolina at Chapel Hill
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Cost Model

The costs:
h: holding cost of one unit of product per unit of
time;
k: fixed set-up cost to place an order;
p1: per unit purchasing cost;
p2: per unit production cost.

The goal: to compute the optimal q∗ that
minimizes the long-run total cost per unit of time.

Vidyadhar G. Kulkarni University of North Carolina at Chapel Hill
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Cost Rates Calculation

Total cost rate c(q) as a function of q

c(q) = ch(q) + co(q) + cp(q),

where ch(q), co(q) and cp(q) are the steady-state
holding, ordering, and production cost rates.

Theorem: Costs as functions of q

ch(q) = h
[
(c− a)Λ̃eΛqΦ +

s
2
πq2 + (d + c1π)q− cΛ̃Φ

]
e

co(q) = (k + p1q)(cΛΦ + sπ)Re

cp(q) = p2(cΦ + d)R̃e

Notation
Λ̃ = (0, 1

λ2
, ..., 1

λn
)

ri = production rate at state i
di = demand rate at state i

R̃ = diag(r1, r2, ...rn)
R = diag(R1, R2, ...Rn)
Ri = ri − di

Vidyadhar G. Kulkarni University of North Carolina at Chapel Hill
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Proof.

1 ch(q) =

h
[
(c− a)Λ̃eΛqΦ + s

2πq2 + (d + c1π)q− cΛ̃Φ
]

e

ch(q) = h
∑
j∈S

∫∞
x=0 Gj(x)dx.

2 co(q) = (k + p1q)(cΛΦ + sπ)Re

co(q) = (k + p1q)
∑
j∈S

G′j(0)Rj.

3 cp(q) = p2(cΦ + d)R̃e

cp(q) = p2
∑
j∈S

Gj(0)rj.

Vidyadhar G. Kulkarni University of North Carolina at Chapel Hill
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Optimality of EOQ with Stochastic
Production and Demand

Theorem: Stochastic EOQ formula
Suppose ∆ > 0. The optimal order size q∗ that
minimizes the total cost rate c(q) is given by:

q∗ =
√

2k∆/h,

where ∆ is the expected “net” demand rate

∆ = −
∑

i

πiRi.

Vidyadhar G. Kulkarni University of North Carolina at Chapel Hill
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Proof.

1 Decompose {X(t)} into {X1(t)} and {X2(t)} .
2 In steady state {X1(t)} has uniform distribution.

Decompose {X1(t)} into {Y0(t)} and {Y1(t)} .
Y0 ∼ U[0, q] (The special case).
Y1 ∼ U[0, q] (Construct a semi-Markov process).

3 {X2(t)} is independent of q.
4 c(q) = hq

2 + k∆
q + C.

5 q∗ =
√

2k∆
h .

Vidyadhar G. Kulkarni University of North Carolina at Chapel Hill
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Decompose {X(t)} into {X1(t)} and
{X2(t)}
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Correspondence of {X1(t)} and {Y0(t)}
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Correspondence of {X1(t)} and {Y1(t)}
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A Numerical Example

n identical independent machines.
Lifetime exp(µ), repair time exp(λ).
Z(t) = number of working machines at time t.
Background process {Z(t), t ≥ 0} : CTMC.

Vidyadhar G. Kulkarni University of North Carolina at Chapel Hill
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Inventory Level Process {X(t), t ≥ 0}

When there are i working machines,
Production rate i r.
Demand rate d (constant).
Ri = i r − d, positive, or negative.

When inventory level hits 0, an order of size q is
placed and arrives instantaneously.

Vidyadhar G. Kulkarni University of North Carolina at Chapel Hill
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Limiting Distribution

Complementary Cumulative Distribution Function

n = 3, d = 3, ri = 2.5 i, λ = 1, µ = 2, q = 3.
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Limiting Distribution

Probability Density Function

n = 3, d = 3, ri = 2.5 i, λ = 1, µ = 2, q = 3.
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d = n, ri = i r, λ = 1, µ = 2,
h = 10, k = 2, p1 = 8 and p2 = 5. Let r vary in (0, 3).

q∗ decreases with r .

q∗ reaches zero when r increases to 3.

For a fixed r, q∗ increases with n, but sublinearly.

Vidyadhar G. Kulkarni University of North Carolina at Chapel Hill
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An Extension: Backlogging Allowed

Basic model: place an order as soon as
inventory reaches 0.
Extended model:

Don’t place an order until backorders
accumulate to r.
b: backlogging cost of one unit of product per
unit of time;.

Vidyadhar G. Kulkarni University of North Carolina at Chapel Hill
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Stochastic EOQ with Backlogging

Theorem: Stochastic EOQ with backlogging
Suppose A = I, ∆ > 0. Then

q∗ =

√
2k(b + h)∆

hb

r∗ =

(
h

b + h

)
q∗.

Remark: This is equivalent to the deterministic
EOQ formula with backlogging.

Proof. sample path is the same as in basic model
except for a shift in the y-axis.

Vidyadhar G. Kulkarni University of North Carolina at Chapel Hill
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State-dependent Ordering Policy

Basic model: one common order size q.
Extended model: place an order of size qi if the
environment state is i at the time of ordering.
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Method 1: Piecewise Function

G′(x)R =

�
G(x)Q, when x > qm

G(x)Q + β(i), when qi−1 < x < qi, ∀i ∈ S

β(i) = G′(0)RI(i)

I(i) =

0
BBBBBBBB@

i− 1 i
1 0
...

. . .
i− 1 0
i 1
...

. . .
n 1

1
CCCCCCCCA

.
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Method 2: Sample Path Decomposition

the Inventory Level Process and
the Cycle Type Process
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Sample Path Decomposition Method

I(t): cycle type at time t.
{(X(t), Z(t)), t ≥ 0} restrict to I(t) = i is a special
case of the basic fluid model with

A =

0
BBBB@

i

1 0 ... 1 ... 0
2 0 ... 1 ... 0
.
.
. ... ... ... ... ...
n 0 ... 1 ... 0

1
CCCCA

.

p(i) = lim
t→∞

P{I(t) = i}
steady-state probability that the system is in the
i-th type cycle (SMP).

G(x) =
∑

i:Ri<0

G(i)(x)p(i)
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Advantages of Method 2

1 Complexity in matrix calculation.
Method 1: we need to solve m groups of
equations simultaneously.
Method 2: solve m groups of equations
separately.

2 Varying ranges of qi’s.
Method 1: qi varies in [qi−1, qi+1].
Method 2: no need to specify ranges.
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A Machine Shop Example

n = 2, d = 2, ri = i r, λ = 1, µ = 2,
h = 5, k = 0.5, p1 = 5 and p2 = 8. Let r vary in (0, 3).
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Stochastic Leadtimes

Basic model: external orders arrive
instantaneously.
Extended model: leadtimes are iid exp(µ)
random variables.
X(t): inventory level at time t;
Z(t): external environment state at time t;
O(t): number of outstanding orders at time t;
W(t) = (Z(t), O(t)).
P(t): inventory position at time t,
P(t) = X(t) + q O(t).

Policy: External orders of size q are placed when
the inventory position reaches r.
Observation: {(P(t), W(t)), t ≥ 0} is a fluid model
with jumps.
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Sample Path of

the Inventory Position Process and
the Inventory Level Process
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One External Supplier with
Limited Number of Outstanding Orders

Let G(i)(x) = lim
t→∞

P{X(t) > x, O(t) = i}

Then G(x) = G(i)(x− i q),∀i ∈ {0, 1, . . . , N}
G(0)

′

(x)R = G(0)(x)Q + µG(1)(x)

G(i)
′

(x)R = G(i)(x)Q + µG(i+1)(x) + G(i−1)
′

(0)R
i = 1, 2, . . . , N − 1

G(N)
′

(x)R = G(N)(x)Q + µG(N)(x) + G(N−1)
′

(0)R
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One External Supplier with
Limited Number of Outstanding Orders

Ḡ(x) := [G(0)(x), G(1)(x), . . . , G(N)(x)]

Q̄ :=

0
BBB@

Q
µI Q− µI

. . .
. . .
µI Q− µI

1
CCCA

Ā :=

0
BBBBB@

0 I
0 I

. . .
. . .

0 I
I

1
CCCCCA
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Infinite External Suppliers

G(0)
′
(x)R = G(0)(x)Q + µG(1)(x)

G(i)
′
(x)R = G(i)(x)Q + (i + 1)µG(i+1)(x) + G(i−1)

′
(0)R

i = 1, 2, . . .

Q̄ :=

0
BBBBB@

Q . . .
µI Q− µI . . .

2µI Q− 2µI . . .
3µI Q− 3µI . . .

. . .

1
CCCCCA

Ā :=

0
BBB@

0 I . . .
0 I . . .

0 I . . .

. . .

1
CCCA
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Future Research

State-Dependent Cost Rates
Basic model: state-independent linear cost
rates.
Extended model: cost rates depend on the
environmental process.

SMP Background Process
Basic model: CTMC background process.
Extended model: SMP background process.
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Thank you!

Questions?

Vidyadhar G. Kulkarni
Chairman,

Department of Statistics and Operations Research,
CB 3260 University of North Carolina,

Chapel Hill, NC, USA, 27599
Phone: 919-962-3837

Fax: 919-962-0391
vkulkarn@email.unc.edu

http://www.unc.edu/∼vkulkarn/
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