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Model definition

Consider the partial sums

Sn = X1 + . . . + Xn

with
X1, X2, . . . i.i.d., Xi ∼ N(−β, 1), β > 0

The Gaussian random walk is then defined as

{Sn : n ≥ 0} ; S0 = 0

We are interested in the all-time maximum

Mβ = max{Sn : n ≥ 0}

We consider the moments EM k
β and the role of the drift β
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Motivation for studying EM k
β

Queues in conventional heavy traffic

Scaled version of the queue behaves approximately as Mβ

• G/G/1 queue: Kingman (1962,1965)

Queues in Halfin-Whitt scaling

In the limit, the queue behaves exactly as Mβ

• G/M/N queue: Halfin-Whitt (1981)

• G/D/N queue: Jelenkovíc-Mandelbaum-Momčilovíc (2004)

• Call centers: Borst-Mandelbaum-Reiman (2004)

Equidistant sampling of Brownian motion

• Testing for drift: Chernoff (1965)

• Corrected diffusion approximations: Siegmund (1979,1985)

• Option pricing: Broadie-Glasserman-Kou (1997)
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Queues and Halfin-Whitt scaling

Example
Wλ,n+1 = (Wλ,n + Aλ,n − s)+

where Aλ,n is Poisson distributed with mean λ < s. Let

Wλ = lim
n→∞

Wλ,n
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Queues and Halfin-Whitt scaling

Example
Wλ,n+1 = (Wλ,n + Aλ,n − s)+

where Aλ,n is Poisson distributed with mean λ < s. Let

Wλ = lim
n→∞

Wλ,n

Square-root staffing
s = λ + β

√
λ

and

W = lim
λ→∞

1√
λ
Wλ

gives

W
d
= (W + N(−β, 1))+ d

= max{Sn : n ≥ 0} =: Mβ
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Outline

1. Exact expression for EMβ

2. Exact expressions for all moments EM k
β

3. Equidistant sampling of Brownian motion
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"Despite the apparent simplicity of the problem, there does
not seem to be an explicit expression even for EMβ..., but it
is possible to give quite sharp inequalities and asymptotic
results for small β."

(Sir John Kingman, 1965)
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"Despite the apparent simplicity of the problem, there does
not seem to be an explicit expression even for EMβ..., but it
is possible to give quite sharp inequalities and asymptotic
results for small β."

(Sir John Kingman, 1965)

Kingman showed that for β ↓ 0

EMβ =
1

2β
− c +O(β)

where

c =
1√
2π

∞∑
n=1

1√√
n(
√

n +
√

n− 1)2
≈ 0.58
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"Despite the apparent simplicity of the problem, there does
not seem to be an explicit expression even for EMβ..., but it
is possible to give quite sharp inequalities and asymptotic
results for small β."

(Sir John Kingman, 1965)

Kingman showed that for β ↓ 0

EMβ =
1

2β
− c +O(β)

where

c =
1√
2π

∞∑
n=1

1√√
n(
√

n +
√

n− 1)2
= −

ζ(1
2)√
2π
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Riemann zeta function

The Riemann zeta function ζ is defined as

ζ(s) =

∞∑
n=1

n−s, Re s > 1

This definition is extended by analytic continuation to the entire
complex plane except s = 1, where ζ has a simple pole.

Calculation of ζ is routine.
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Theorem

For 0 < β < 2
√

π we have

EMβ =
1

2β
+

ζ(1
2)√
2π

+
1

4
β +

β2

√
2π

∞∑
r=0

ζ(−1
2 − r)

r!(2r + 1)(2r + 2)

(
−β2

2

)r
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Proof

For Mβ = max{Sn : n ≥ 0} we have from Spitzer’s identity

J1(β) := EMβ =

∞∑
n=1

1

n
ES+

n

From Sn ∼ N(−βn, n) we get

J1(β) =

∞∑
n=1

1

n
√

2π

∫ ∞

β
√

n

(
√

nx− βn)e−x2/2dx

Upon changing variables according to y = x/
√

n ...
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Proof (cont’d)

... we can write J1(β) as

J1(β) =

∞∑
n=1

n1/2

√
2π

∫ ∞

β

(y − β)e−
1
2ny2

dy

Differentiating twice w.r.t. β yields ?

J
(2)
1 (β) =

∞∑
n=1

n1/2

√
2π

e−
1
2nβ2

using

d

dβ

[ ∫ ∞

β

f (y, β)dy
]

= −f (β, β) +

∫ ∞

β

∂f

∂β
(y, β)dy

? Idea of Chang-Peres (1997) in their analysis of P(Mβ = 0)
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Lerch’s transcendent

Lerch’s transcendent Φ is defined as the analytic continuation of
the series

Φ(z, s, v) =

∞∑
n=0

(v + n)−szn

Note that ζ(s) = Φ(1, s, 1).

Lemma

For | ln z| < 2π, s 6= 1, 2, 3, . . ., and v 6= 0,−1,−2, . . . we have

Φ(z, s, v) =
Γ(1− s)

zv
(ln 1/z)s−1 + z−v

∞∑
r=0

ζ(s− r, v)
(ln z)r

r!

with ζ(s, v) := Φ(1, s, v) the Hurwitz zeta function.

Proof Bateman §1.11(8)
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Proof (cont’d)

J
(2)
1 (β) =

∞∑
n=1

n1/2

√
2π

e−
1
2nβ2

=
1√
2π

e−
1
2β2

Φ(z = e−
1
2β2

, s = −1
2, v = 1)

Using Bateman’s result we get for 0 < β < 2
√

π

J
(2)
1 (β)−

Γ(3
2)√

2π23/2

1

β3
=

1√
2π

∞∑
r=0

ζ(−r − 1
2)

(−1
2β

2)r

r!

The rhs is a well-behaved function of β. Integrating twice yields

J1(β)− 1

2β
= L0 + L1β +

1√
2π

∞∑
r=0

ζ(−r − 1
2)(−

1
2)

rβ2r+2

r!(2r + 1)(2r + 2)

where L1 and L0 are integration constants
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Proof (cont’d)

These can be found using Euler-Maclaurin summation, among
other things.

L0 =
ζ(1/2)√

2π
, L1 =

1

4

This in total gives

EMβ =
1

2β
+

ζ(1
2)√
2π

+
1

4
β +

β2

√
2π

∞∑
r=0

ζ(−1
2 − r)

r!(2r + 1)(2r + 2)

(
−β2

2

)r
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Cumulants

The k-th cumulant of a random variable A is defined as the k-th
derivative of log EesA evaluated at s = 0.
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Cumulants

The k-th cumulant of a random variable A is defined as the k-th
derivative of log EesA evaluated at s = 0.

Spitzer’s identity leads to

E(esMβ) = exp
{ ∞∑

n=1

1

n
E(esS+

n − 1)
}

, Re s ≤ 0

Thus

log E(esMβ) =

∞∑
n=1

1

n

∫ ∞

0
(sx + 1

2s
2x2 + . . .)fS+

n
(x)dx

with fS+
n

the density function of S+
n , and

dk

(ds)k
log E(esMβ)

∣∣∣
s=0

=

∞∑
n=1

1

n
E((S+

n )k) =: Jk(β), k = 1, 2, . . .
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Recall

J1(β) = EMβ ; J2(β) = VarMβ ; J3(β) = E(Mβ − EMβ)
3

and all moments of Mβ follow from the cumulants and vice versa.

Using Sn ∼ N(−βn, n), it follows that

Jk(β) =

∞∑
n=1

1

n
√

2π

∫ ∞

β
√

n

(
√

nx− βn)ke−x2/2dx

It obviously holds that

J0(β) =

∞∑
n=1

1

n
P(Sn > 0)

From Spitzer’s identity we then know that

J0(β) = − ln P(Mβ = 0)
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Theorem

Assume 0 < β < 2
√

π. There holds

J0(β)
?
= − ln β − ln 2

2
−

ζ(1
2)√
2π

β − 1√
2π

∞∑
r=1

ζ(−r + 1
2)(−

1
2)

rβ2r+1

r!(2r + 1)

and for k = 1, 2, . . .

Jk(β) =
(k − 1)!

2k
β−k +

k∑
j=0

(
k

j

)
(−1)jΓ(k−j+1

2 )
√

2π
ζ(−1

2k −
1
2j + 1)2

k−j−1
2 βj

+
(−1)k+1k!√

2π

∞∑
r=0

ζ(−k − r + 1
2)(−

1
2)

rβ2r+k+1

r!(2r + 1) · · · (2r + k + 1)

? Result of Chang-Peres (1997)
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Proof

1. Use Spitzer’s identity and normality of Sn to obtain

Jk(β) =

∞∑
n=1

nk−1/2

√
2π

∫ ∞

β

(y − β)ke−
1
2ny2

dy

2. Differentiate k + 1 times under the integral sign

J
(k+1)
k (β) = (−1)k+1k!

∞∑
n=1

nk−1/2

√
2π

e−
1
2nβ2

3. Rewrite the expression in terms of Lerch’s transcendent

4. Apply Bateman’s result

5. Integrate k + 1 times and find the k + 1 integration constants
using Euler-Maclaurin summation
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Equidistant sampling of Brownian motion

Let {Bt : t ≥ 0} be a BM with B0 = 0, drift −β and variance 1, so
that

Bt = −βt + Wt,

where {Wt : t ≥ 0} is a Wiener process. Let

M̃ = max{Bt : t ≥ 0}

It is well known that P(M̃ ≥ x) = e−2βx and so the k-th cumulant
of M̃ equals

(k − 1)!

2k
β−k



JJ J N I II

The GRW results from (equidistantly) sampling this BM,
and by increasing the sampling frequency the GRW will
converge to the BM.
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Redefine the GRW as

{Sn(β, ν) : n = 0, 1, . . .},

where
Sn(β, ν) = 0 , Sn(β, ν) = Xν,1 + . . . + Xν,n

with
Xν,1, Xν,2, . . . i.i.d. , Xi ∼ N(−β/ν, 1/ν)

Let
Mν,β = max{Sn(β, ν) : n = 0, 1, . . .}.

Earlier definition corresponds to ν = 1 with M1,β =: Mβ.
Since

Mν,β
d
= ν−1/2Mν−1/2β,

all characteristics of Mν,β can be expressed in those of Mβ.
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Say we sample the BM at points

0,
1

ν
,

2

ν
,

3

ν
, . . .

with ν some positive integer. From our results on EMβ we find
that

EM̃ − EMν,β = −
ζ(1

2)√
2πν

+O(1/ν)

Similar result obtained by Asmussen, Glynn and Pitman (1995).
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Say we sample the BM at points

0,
1

ν
,

2

ν
,

3

ν
, . . .

with ν some positive integer. From our results on EMβ we find
that

EM̃ − EMν,β = −
ζ(1

2)√
2πν

+O(1/ν)

Similar result obtained by Asmussen, Glynn and Pitman (1995).
However, we can easily obtain

EM̃ − EMν,β = −
ζ(1

2)√
2πν

+
β

4ν
+O(ν−3/2)

Moreover, our exact analysis of Mβ leads to asymptotic expres-
sions up to any order, for all cumulants of the maximum. E.g.

VarM̃ − VarMν,β = − 1

4ν
−

2ζ(−1
2)√

2π

β

ν3/2
+O(ν−2)
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Other, related and future work

1. Exact expressions for P(M = 0), EMβ, VarMβ

(with A.J.E.M. Janssen)

2. Exact expressions for all cumulants Jk(β), bounds, analytic
continuation for all values of β > 0 (not only for 0 < β < 2

√
π)

(with A.J.E.M. Janssen)

3. Discrete queue and Halfin-Whitt scaling
(with A.J.E.M. Janssen and Bert Zwart)

lim
λ→∞

1√
λ
Wλ

d
= max{Sn : n ≥ 0} = Mβ


