Moments of the maximum of the Gaussian random walk

A.J.E.M. Janssen (Philips Research)
Johan S.H. van Leeuwaarden (Eurandom)

Model definition

Consider the partial sums

$$
S_{n}=X_{1}+\ldots+X_{n}
$$

with

$$
X_{1}, X_{2}, \ldots \text { i.i.d., } \quad X_{i} \sim N(-\beta, 1), \quad \beta>0
$$

The Gaussian random walk is then defined as

$$
\left\{S_{n}: n \geq 0\right\} \quad ; \quad S_{0}=0
$$

We are interested in the all-time maximum

$$
M_{\beta}=\max \left\{S_{n}: n \geq 0\right\}
$$

We consider the moments $\mathbb{E} M_{\beta}^{k}$ and the role of the drift β

Gaussian random walk with drift $=-0.1$

Queues in conventional heavy traffic
Scaled version of the queue behaves approximately as M_{β}

- $G / G / 1$ quеие: Kingman $(1962,1965)$

Queues in Halfin-Whitt scaling
In the limit, the queue behaves exactly as M_{β}

- G/M/N queue: Halfin-Whitt (1981)
- $G / D / N$ queue: Jelenković-Mandelbaum-Momčilović (2004)
- Call centers: Borst-Mandelbaum-Reiman (2004)

Equidistant sampling of Brownian motion

- Testing for drift: Chernoff (1965)
- Corrected diffusion approximations: Siegmund $(1979,1985)$
- Option pricing: Broadie-Glasserman-Kou (1997)

Queues and Halfin-Whitt scaling

Example

$$
W_{\lambda, n+1}=\left(W_{\lambda, n}+A_{\lambda, n}-s\right)^{+}
$$

where $A_{\lambda, n}$ is Poisson distributed with mean $\lambda<s$. Let

$$
W_{\lambda}=\lim _{n \rightarrow \infty} W_{\lambda, n}
$$

Queues and Halfin-Whitt scaling

Example

$$
W_{\lambda, n+1}=\left(W_{\lambda, n}+A_{\lambda, n}-s\right)^{+}
$$

where $A_{\lambda, n}$ is Poisson distributed with mean $\lambda<s$. Let

$$
W_{\lambda}=\lim _{n \rightarrow \infty} W_{\lambda, n}
$$

Square-root staffing

$$
s=\lambda+\beta \sqrt{\lambda}
$$

and

$$
W=\lim _{\lambda \rightarrow \infty} \frac{1}{\sqrt{\lambda}} W_{\lambda}
$$

gives

$$
W \stackrel{d}{=}(W+N(-\beta, 1))^{+} \stackrel{d}{=} \max \left\{S_{n}: n \geq 0\right\}=: M_{\beta}
$$

Outline

1. Exact expression for $\mathbb{E} M_{\beta}$
2. Exact expressions for all moments $\mathbb{E} M_{\beta}^{k}$
3. Equidistant sampling of Brownian motion
"Despite the apparent simplicity of the problem, there does not seem to be an explicit expression even for $\mathbb{E} M_{\beta} \ldots$, but it is possible to give quite sharp inequalities and asymptotic results for small β."
(Sir John Kingman, 1965)
"Despite the apparent simplicity of the problem, there does not seem to be an explicit expression even for $\mathbb{E} M_{\beta} \ldots$, but it is possible to give quite sharp inequalities and asymptotic results for small β."
(Sir John Kingman, 1965)

Kingman showed that for $\beta \downarrow 0$

$$
\mathbb{E} M_{\beta}=\frac{1}{2 \beta}-c+\mathcal{O}(\beta)
$$

where

$$
c=\frac{1}{\sqrt{2 \pi}} \sum_{n=1}^{\infty} \frac{1}{\sqrt{\sqrt{n}(\sqrt{n}+\sqrt{n-1})^{2}}} \approx 0.58
$$

"Despite the apparent simplicity of the problem, there does not seem to be an explicit expression even for $\mathbb{E} M_{\beta} \ldots$, but it is possible to give quite sharp inequalities and asymptotic results for small β."
(Sir John Kingman, 1965)

Kingman showed that for $\beta \downarrow 0$

$$
\mathbb{E} M_{\beta}=\frac{1}{2 \beta}-c+\mathcal{O}(\beta)
$$

where

$$
c=\frac{1}{\sqrt{2 \pi}} \sum_{n=1}^{\infty} \frac{1}{\sqrt{\sqrt{n}(\sqrt{n}+\sqrt{n-1})^{2}}}=-\frac{\zeta\left(\frac{1}{2}\right)}{\sqrt{2 \pi}}
$$

Riemann zeta function

The Riemann zeta function ζ is defined as

$$
\zeta(s)=\sum_{n=1}^{\infty} n^{-s}, \quad \operatorname{Re} s>1
$$

This definition is extended by analytic continuation to the entire complex plane except $s=1$, where ζ has a simple pole.

Calculation of ζ is routine.

Theorem

For $0<\beta<2 \sqrt{\pi}$ we have

$$
\mathbb{E} M_{\beta}=\frac{1}{2 \beta}+\frac{\zeta\left(\frac{1}{2}\right)}{\sqrt{2 \pi}}+\frac{1}{4} \beta+\frac{\beta^{2}}{\sqrt{2 \pi}} \sum_{r=0}^{\infty} \frac{\zeta\left(-\frac{1}{2}-r\right)}{r!(2 r+1)(2 r+2)}\left(\frac{-\beta^{2}}{2}\right)^{r}
$$

For $M_{\beta}=\max \left\{S_{n}: n \geq 0\right\}$ we have from Spitzer's identity

$$
J_{1}(\beta):=\mathbb{E} M_{\beta}=\sum_{n=1}^{\infty} \frac{1}{n} \mathbb{E} S_{n}^{+}
$$

From $S_{n} \sim N(-\beta n, n)$ we get

$$
J_{1}(\beta)=\sum_{n=1}^{\infty} \frac{1}{n \sqrt{2 \pi}} \int_{\beta \sqrt{n}}^{\infty}(\sqrt{n} x-\beta n) e^{-x^{2} / 2} \mathrm{~d} x
$$

Upon changing variables according to $y=x / \sqrt{n} \ldots$

Proof (cont'd)

... we can write $J_{1}(\beta)$ as

$$
J_{1}(\beta)=\sum_{n=1}^{\infty} \frac{n^{1 / 2}}{\sqrt{2 \pi}} \int_{\beta}^{\infty}(y-\beta) e^{-\frac{1}{2} n y^{2}} \mathrm{~d} y
$$

Differentiating twice w.r.t. β yields *

$$
J_{1}^{(2)}(\beta)=\sum_{n=1}^{\infty} \frac{n^{1 / 2}}{\sqrt{2 \pi}} e^{-\frac{1}{2} n \beta^{2}}
$$

using

$$
\frac{\mathrm{d}}{\mathrm{~d} \beta}\left[\int_{\beta}^{\infty} f(y, \beta) \mathrm{d} y\right]=-f(\beta, \beta)+\int_{\beta}^{\infty} \frac{\partial f}{\partial \beta}(y, \beta) \mathrm{d} y
$$

* Idea of Chang-Peres (1997) in their analysis of $\mathbb{P}\left(M_{\beta}=0\right)$

Lerch's transcendent

Lerch's transcendent Φ is defined as the analytic continuation of the series

$$
\Phi(z, s, v)=\sum_{n=0}^{\infty}(v+n)^{-s} z^{n}
$$

Note that $\zeta(s)=\Phi(1, s, 1)$.

Lemma

For $|\ln z|<2 \pi, s \neq 1,2,3, \ldots$, and $v \neq 0,-1,-2, \ldots$ we have

$$
\Phi(z, s, v)=\frac{\Gamma(1-s)}{z^{v}}(\ln 1 / z)^{s-1}+z^{-v} \sum_{r=0}^{\infty} \zeta(s-r, v) \frac{(\ln z)^{r}}{r!}
$$

with $\zeta(s, v):=\Phi(1, s, v)$ the Hurwitz zeta function.
Proof Bateman §1.11(8)

Proof (cont'd)

$$
\begin{aligned}
J_{1}^{(2)}(\beta) & =\sum_{n=1}^{\infty} \frac{n^{1 / 2}}{\sqrt{2 \pi}} e^{-\frac{1}{2} n \beta^{2}} \\
& =\frac{1}{\sqrt{2 \pi}} e^{-\frac{1}{2} \beta^{2}} \Phi\left(z=e^{-\frac{1}{2} \beta^{2}}, s=-\frac{1}{2}, v=1\right)
\end{aligned}
$$

Using Bateman's result we get for $0<\beta<2 \sqrt{\pi}$

$$
J_{1}^{(2)}(\beta)-\frac{\Gamma\left(\frac{3}{2}\right)}{\sqrt{2 \pi} 2^{3 / 2}} \frac{1}{\beta^{3}}=\frac{1}{\sqrt{2 \pi}} \sum_{r=0}^{\infty} \zeta\left(-r-\frac{1}{2}\right) \frac{\left(-\frac{1}{2} \beta^{2}\right)^{r}}{r!}
$$

The rhs is a well-behaved function of β. Integrating twice yields

$$
J_{1}(\beta)-\frac{1}{2 \beta}=L_{0}+L_{1} \beta+\frac{1}{\sqrt{2 \pi}} \sum_{r=0}^{\infty} \frac{\zeta\left(-r-\frac{1}{2}\right)\left(-\frac{1}{2}\right)^{r} \beta^{2 r+2}}{r!(2 r+1)(2 r+2)}
$$

where L_{1} and L_{0} are integration constants

Proof (cont'd)

These can be found using Euler-Maclaurin summation, among other things.

$$
L_{0}=\frac{\zeta(1 / 2)}{\sqrt{2 \pi}} \quad, \quad L_{1}=\frac{1}{4}
$$

This in total gives

$$
\mathbb{E} M_{\beta}=\frac{1}{2 \beta}+\frac{\zeta\left(\frac{1}{2}\right)}{\sqrt{2 \pi}}+\frac{1}{4} \beta+\frac{\beta^{2}}{\sqrt{2 \pi}} \sum_{r=0}^{\infty} \frac{\zeta\left(-\frac{1}{2}-r\right)}{r!(2 r+1)(2 r+2)}\left(\frac{-\beta^{2}}{2}\right)^{r}
$$

Cumulants
The k-th cumulant of a random variable A is defined as the k-th derivative of $\log \mathbb{E} e^{s A}$ evaluated at $s=0$.

The k-th cumulant of a random variable A is defined as the k-th derivative of $\log \mathbb{E} e^{s A}$ evaluated at $s=0$.

Spitzer's identity leads to

$$
\mathbb{E}\left(e^{s M_{\beta}}\right)=\exp \left\{\sum_{n=1}^{\infty} \frac{1}{n} \mathbb{E}\left(e^{s S_{n}^{+}}-1\right)\right\}, \quad \operatorname{Re} s \leq 0
$$

Thus

$$
\log \mathbb{E}\left(e^{s M_{\beta}}\right)=\sum_{n=1}^{\infty} \frac{1}{n} \int_{0}^{\infty}\left(s x+\frac{1}{2} s^{2} x^{2}+\ldots\right) f_{S_{n}^{+}}(x) \mathrm{d} x
$$

with $f_{S_{n}^{+}}$the density function of S_{n}^{+}, and

$$
\left.\frac{\mathrm{d}^{k}}{(\mathrm{~d} s)^{k}} \log \mathbb{E}\left(e^{s M_{\beta}}\right)\right|_{s=0}=\sum_{n=1}^{\infty} \frac{1}{n} \mathbb{E}\left(\left(S_{n}^{+}\right)^{k}\right)=: \quad J_{k}(\beta), \quad k=1,2, \ldots
$$

Recall

$$
J_{1}(\beta)=\mathbb{E} M_{\beta} \quad ; \quad J_{2}(\beta)=\operatorname{Var} M_{\beta} \quad ; \quad J_{3}(\beta)=\mathbb{E}\left(M_{\beta}-\mathbb{E} M_{\beta}\right)^{3}
$$

and all moments of M_{β} follow from the cumulants and vice versa.
Using $S_{n} \sim N(-\beta n, n)$, it follows that

$$
J_{k}(\beta)=\sum_{n=1}^{\infty} \frac{1}{n \sqrt{2 \pi}} \int_{\beta \sqrt{n}}^{\infty}(\sqrt{n} x-\beta n)^{k} e^{-x^{2} / 2} \mathrm{~d} x
$$

It obviously holds that

$$
J_{0}(\beta)=\sum_{n=1}^{\infty} \frac{1}{n} \mathbb{P}\left(S_{n}>0\right)
$$

From Spitzer's identity we then know that

$$
J_{0}(\beta)=-\ln \mathbb{P}\left(M_{\beta}=0\right)
$$

Theorem

Assume $0<\beta<2 \sqrt{\pi}$. There holds

$$
J_{0}(\beta) \stackrel{\star}{=}-\ln \beta-\frac{\ln 2}{2}-\frac{\zeta\left(\frac{1}{2}\right)}{\sqrt{2 \pi}} \beta-\frac{1}{\sqrt{2 \pi}} \sum_{r=1}^{\infty} \frac{\zeta\left(-r+\frac{1}{2}\right)\left(-\frac{1}{2}\right)^{r} \beta^{2 r+1}}{r!(2 r+1)}
$$

and for $k=1,2, \ldots$

$$
\begin{aligned}
J_{k}(\beta) & =\frac{(k-1)!}{2^{k}} \beta^{-k}+\sum_{j=0}^{k}\binom{k}{j} \frac{(-1)^{j} \Gamma\left(\frac{k-j+1}{2}\right)}{\sqrt{2 \pi}} \zeta\left(-\frac{1}{2} k-\frac{1}{2} j+1\right) 2^{\frac{k-j-1}{2}} \beta^{j} \\
& +\frac{(-1)^{k+1} k!}{\sqrt{2 \pi}} \sum_{r=0}^{\infty} \frac{\zeta\left(-k-r+\frac{1}{2}\right)\left(-\frac{1}{2}\right)^{r} \beta^{2 r+k+1}}{r!(2 r+1) \cdots(2 r+k+1)}
\end{aligned}
$$

* Result of Chang-Peres (1997)

1. Use Spitzer's identity and normality of S_{n} to obtain

$$
J_{k}(\beta)=\sum_{n=1}^{\infty} \frac{n^{k-1 / 2}}{\sqrt{2 \pi}} \int_{\beta}^{\infty}(y-\beta)^{k} e^{-\frac{1}{2} n y^{2}} \mathrm{~d} y
$$

2. Differentiate $k+1$ times under the integral sign

$$
J_{k}^{(k+1)}(\beta)=(-1)^{k+1} k!\sum_{n=1}^{\infty} \frac{n^{k-1 / 2}}{\sqrt{2 \pi}} e^{-\frac{1}{2} n \beta^{2}}
$$

3. Rewrite the expression in terms of Lerch's transcendent
4. Apply Bateman's result
5. Integrate $k+1$ times and find the $k+1$ integration constants using Euler-Maclaurin summation

Equidistant sampling of Brownian motion

Let $\left\{B_{t}: t \geq 0\right\}$ be a BM with $B_{0}=0$, drift $-\beta$ and variance 1 , so that

$$
B_{t}=-\beta t+W_{t},
$$

where $\left\{W_{t}: t \geq 0\right\}$ is a Wiener process. Let

$$
\tilde{M}=\max \left\{B_{t}: t \geq 0\right\}
$$

It is well known that $\mathbb{P}(\tilde{M} \geq x)=e^{-2 \beta x}$ and so the k-th cumulant of \tilde{M} equals

$$
\frac{(k-1)!}{2^{k}} \beta^{-k}
$$

The GRW results from (equidistantly) sampling this BM, and by increasing the sampling frequency the GRW will converge to the BM.

Equidistant sampling of BM (drift=-0.1, variance $=1$).

Equidistant sampling of BM (drift=-0.1, variance=1). Steps of size: 1.0.

Equidistant sampling of BM (drift=-0.1, variance=1). Steps of size: 0.5 .

Equidistant sampling of BM (drift=-0.1, variance=1). Steps of size: 0.1 .

Equidistant sampling of $B M$ (drift=-0.1, variance=1). Steps of size: 0.01 .

Redefine the GRW as

$$
\left\{S_{n}(\beta, \nu): n=0,1, \ldots\right\}
$$

where

$$
S_{n}(\beta, \nu)=0 \quad, \quad S_{n}(\beta, \nu)=X_{\nu, 1}+\ldots+X_{\nu, n}
$$

with

$$
X_{\nu, 1}, X_{\nu, 2}, \ldots \text { i.i.d. } \quad, \quad X_{i} \sim N(-\beta / \nu, 1 / \nu)
$$

Let

$$
M_{\nu, \beta}=\max \left\{S_{n}(\beta, \nu): n=0,1, \ldots\right\} .
$$

Earlier definition corresponds to $\nu=1$ with $M_{1, \beta}=: M_{\beta}$. Since

$$
M_{\nu, \beta} \stackrel{d}{=} \nu^{-1 / 2} M_{\nu^{-1 / 2} \beta},
$$

all characteristics of $M_{\nu, \beta}$ can be expressed in those of M_{β}.

Say we sample the BM at points

$$
0, \frac{1}{\nu}, \frac{2}{\nu}, \frac{3}{\nu}, \ldots
$$

with ν some positive integer. From our results on $\mathbb{E} M_{\beta}$ we find that

$$
\mathbb{E} \tilde{M}-\mathbb{E} M_{\nu, \beta}=-\frac{\zeta\left(\frac{1}{2}\right)}{\sqrt{2 \pi \nu}}+\mathcal{O}(1 / \nu)
$$

Similar result obtained by Asmussen, Glynn and Pitman (1995).

Say we sample the BM at points

$$
0, \frac{1}{\nu}, \frac{2}{\nu}, \frac{3}{\nu}, \ldots
$$

with ν some positive integer. From our results on $\mathbb{E} M_{\beta}$ we find that

$$
\mathbb{E} \tilde{M}-\mathbb{E} M_{\nu, \beta}=-\frac{\zeta\left(\frac{1}{2}\right)}{\sqrt{2 \pi \nu}}+\mathcal{O}(1 / \nu)
$$

Similar result obtained by Asmussen, Glynn and Pitman (1995). However, we can easily obtain

$$
\mathbb{E} \tilde{M}-\mathbb{E} M_{\nu, \beta}=-\frac{\zeta\left(\frac{1}{2}\right)}{\sqrt{2 \pi \nu}}+\frac{\beta}{4 \nu}+\mathcal{O}\left(\nu^{-3 / 2}\right)
$$

Moreover, our exact analysis of M_{β} leads to asymptotic expressions up to any order, for all cumulants of the maximum. E.g.

$$
\operatorname{Var} \tilde{M}-\operatorname{Var} M_{\nu, \beta}=-\frac{1}{4 \nu}-\frac{2 \zeta\left(-\frac{1}{2}\right)}{\sqrt{2 \pi}} \frac{\beta}{\nu^{3 / 2}}+\mathcal{O}\left(\nu^{-2}\right)
$$

Other, related and future work

1. Exact expressions for $\mathbb{P}(M=0), \mathbb{E} M_{\beta}, \operatorname{Var} M_{\beta}$ (with A.J.E.M. Janssen)
2. Exact expressions for all cumulants $J_{k}(\beta)$, bounds, analytic continuation for all values of $\beta>0$ (not only for $0<\beta<2 \sqrt{\pi}$) (with A.J.E.M. Janssen)
3. Discrete queue and Halfin-Whitt scaling (with A.J.E.M. Janssen and Bert Zwart)

$$
\lim _{\lambda \rightarrow \infty} \frac{1}{\sqrt{\lambda}} W_{\lambda} \stackrel{d}{=} \max \left\{S_{n}: n \geq 0\right\}=M_{\beta}
$$

