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Outline 1

Growth in 1 + 1 dimension

The polynuclear growth (PNG) model: flat growth has
GOE Tracy-Widom distributed fluctuations

Flat PNG and GOE random matrices: point processes

Flat PNG and Young tableaux
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Growth in 1 + 1 dimension 2

Growth models: part of non-equilibrium statistical mechanics

Example: flame front of a burning paper

The flame propagates from below, the burned region is black
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Growth in 1 + 1 dimension 3

Universality picture

statistical properties of the surface for large growth time:
dependent only on the global properties of dynamics
(dimension, locality of growth, conservation laws, symmetries)

Quantity to study (observable): surface height x 7→ h(x, t)

1) macroscopic behavior (h(tξ, t)/t → hdet(ξ))
2) scaling exponents (of fluctuations and spatial correlations)

3) scaling function and/or limit process of the surface height

KPZ class of growth model (one-dimensional substrate)

fluctuation exponent: 1/3
spatial correlation exponent: 2/3
scaling functions ??? ⇒ analyze simplied solvable models

⇒ Study the polynuclear growth (PNG) model
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The polynuclear growth (PNG) model, 1 + 1 dimension 4

A growth model of a surface on a one dimensional substrate

Studied observables: statistical properties of the surface for large
growth time t

The surface is described by a function h(x, t) ∈ Z, x ∈ R, t ∈ R+,
or by the position of the up- and down-jumps

A nucleation is a pair of an up- and a down-jump

x

h(x, t)
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The PNG dynamics 5

The PNG dynamics has a

deterministic part: the up-jumps moves to the left, the
down-jumps to the right, with speed 1. When two jumps
meet, they simply merge

stochastic part: the nucleations form a space-time Poisson
process with intensity %(x, t)

x

h(x, t)
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The flat PNG 6

Initial condition: h(x, 0) = 0, x ∈ R
Nucleations with constant intensity, ρ(x, t) = 2, x ∈ R, t ≥ 0

⇒ h(x, t) ∼ 2t: a macroscopically flat profile

The fluctuations scales as t1/3

(Baik, Rains ’00; Prähofer, Spohn ’00)

lim
t→∞

P(h(0, t) ≤ 2t + st1/3) = F1(22/3s)

where F1 is the GOE Tracy-Widom distribution
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Extension to multilayer PNG 7

How to analyze the PNG surface? Extension to multilayer PNG

At each t, we define a set of non-intersecting line ensemble,
{x 7→ h`(x, t), ` ≤ 0}:

the nucleations of level j, j ≤ −1, occur when at level j + 1
there is an annihilation (no information is lost),

the deterministic dynamics is the same for all level lines

t t + 1 t + 2

The physical surface height is h0 ≡ h
Animation
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http://www-m5.ma.tum.de/pers/ferrari/homepage/animations/RSKFinalTalk.html


Point process for the flat PNG 8

Point process ηt on Z

ηt(j) =
{

1, if there is a line at height j,
0, otherwise

0

j

Support of the point process (ηt = 1) denoted by the • dots
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Fixed position: Edge scaling 9

Last particle of ηt is the height of the flat PNG

j

h(0, t)

∼ t1/3

2t

Edge scaling of the height

hedge(0, t) =
h(0, t)− 2t

t1/32−2/3

Point process edge scaling

ηedge
t (u) = t1/32−2/3ηt([2t + ut1/32−2/3])
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Fixed position: a Pfaffian point process 10

Theorem [P.L. Ferrari ’04]

ηedge
t converges weakly to a Pfaffian point process ηGOE, whose

n-point correlation functions are given by

ρ(n)(x1, . . . , xn) = Pf
(
KGOE(xi, xj)

)
1≤i,j≤n

with KGOE(xi, xj) a 2× 2 matrix kernel coming from GOE
random matrices.

More precisely, for any m ∈ N and f1, . . . , fm ∈ C1
0 (R),

lim
t→∞

E

(
m∏

k=1

ηedge
t (fk)

)
= E

(
m∏

k=1

ηGOE(fk)

)

[Pf(A) =
√

det(A) if A is antisymmetric]
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Gaussian Orthogonal Ensemble (GOE) 11

Measure on N ×N real symmetric matrices

P(dH) =
1
Z ′

exp(−Tr(H2)/2N)dH,

dH =
∏

1≤i≤j≤N dHi,j is the product measure on the
independent coefficients of H

The induced measure on the eigenvalues λ1, . . . , λN is

P(dλ) =
1
Z

∏
1≤i<j≤N

|λi − λj |
N∏

i=1

e−λ2
i /2Ndλ

with dλ =
∏N

i=1 dλi
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Largest eigenvalue 12

Behavior for large N :

the largest eigenvalue, λmax, is ∼ 2N ,

with fluctuations on a N1/3 scale:

lim
N→∞

P(λmax ≤ 2N + sN1/3) = F1(s)

with F1 the GOE Tracy-Widom distribution

λ

λmax

∼ N1/3

2N
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Point process for GOE 13

Eigenvalues’ point process ηGOE
N on R:

ηGOE
N (λ) =

N∑
i=1

δ(λ− λi)

ηGOE
N is a Pfaffian point process (for even N)

The edge scaling of the point process is

N1/3ηGOE
N (2N + sN1/3) N→∞=⇒ ηGOE(s)

and converges to a Pfaffian point process ηGOE

ρ(n)(s1, . . . , sn) = Pf(KGOE(si, sj))1≤i,j≤n

with the KGOE a 2× 2 matrix kernel
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GOE kernel 14

KGOE
1,1 (ξ1, ξ2) =

∫
R+

dλ Ai(ξ1 + λ) Ai′(ξ2 + λ)− (ξ1 ↔ ξ2)

KGOE
1,2 (ξ1, ξ2) =

∫
R+

dλ Ai(ξ1 + λ) Ai(ξ2 + λ) +
1
2

Ai(ξ1)
∫
R+

dλ Ai(ξ2 − λ)

KGOE
2,1 (ξ1, ξ2) = −KGOE

1,2 (ξ2, ξ1)

KGOE
2,2 (ξ1, ξ2) =

1
4

∫
R+

dλ

∫ ∞

λ

dµAi(ξ2 − µ) Ai(ξ1 − λ)− (ξ1 ↔ ξ2)

Note: Ai is the Airy function
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PNG and GOE 15

PNG growth model GOE matrix ensemble

Multilayer PNG GOE eigenvalues

Point process ηt Point process ηGOE
N

Common limit point process (Pfaffian): ηGOE
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Young tableaux: an example 16

Consider the set S = {1, 2, . . . , 9}
Young diagram of shape λ = (4, 3, 1, 1)

One of the possible Young tableaux.
The numbers of S have to be put into the Young diagram but
have to be increasing along the rows and columns
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Space-time picture of the PNG 17

Space-time PNG, level 0

x

t
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Space-time picture of the PNG 17

Space-time PNG, level −1

x

t
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Space-time picture of the PNG 17

Space-time PNG, level −2

x

t
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Space-time picture of the PNG 17

Associated Young tableaux (whose first row length = PNG height)

x

t

Y (◦) =

0

1

2

3

4
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Symmetrization 18

Measure on associated Young tableaux too complicated

The height h(0, t) depends only on the nucleations in the
backwards light cone of (0, t)

The height h(0, t) is the number crossing of the black lines
along any time-like paths from {t = 0} to (0, t)
We can add the symmetric points with respect to {t = 0}

⇒ The new Young tableaux have a nice measure

x

t
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Young tableaux 19

As before, nucleation intensity % = 2
Mean # of nucleations in the backwards light-cone of (0, t):
At = t2

Symmetrization ⇒ Only Young tableaux Y with even rows,
shape λ(Y ) = (λ1, λ2, . . .), λi even, |λ(Y )| =

∑
k≥1 λk

Measure on the set of even-rows Young tableaux:

P(Y ) =
∑
n≥0

δ|λ(Y )|,2n e−At
An

t

n!︸ ︷︷ ︸
P(|λ(Y )|=2n)

dim(λ(Y ))
Zn

with Zn = # of Young tableaux with 2n entries and even rows
This measure appears also in a work of Borodin and Olshanski (’02)

Connection with the multilayer PNG height / point process:

hi(t) =
1
2
λ1−i + i, i = 0,−1,−2, . . .
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