YEP workshop at EURANDOM March 23, 2006

Polynuclear growth on a flat substrate and edge scaling of GOE eigenvalues

Patrik Lino Ferrari
in collaboration with
Michael Prähofer and Herbert Spohn

Technische Universität München

http://www-m5.ma.tum.de/pers/ferrari/

- Growth in $1+1$ dimension
- The polynuclear growth (PNG) model: flat growth has GOE Tracy-Widom distributed fluctuations
- Flat PNG and GOE random matrices: point processes
- Flat PNG and Young tableaux

Growth in $1+1$ dimension

Growth models: part of non-equilibrium statistical mechanics Example: flame front of a burning paper

The flame propagates from below, the burned region is black

Universality picture

statistical properties of the surface for large growth time: dependent only on the global properties of dynamics (dimension, locality of growth, conservation laws, symmetries)

Universality picture

statistical properties of the surface for large growth time:
dependent only on the global properties of dynamics (dimension, locality of growth, conservation laws, symmetries)
Quantity to study (observable): surface height $x \mapsto h(x, t)$

1) macroscopic behavior

$$
\left(h(t \xi, t) / t \rightarrow h_{\operatorname{det}}(\xi)\right)
$$

2) scaling exponents (of fluctuations and spatial correlations)
3) scaling function and/or limit process of the surface height

Universality picture

statistical properties of the surface for large growth time: dependent only on the global properties of dynamics (dimension, locality of growth, conservation laws, symmetries)
Quantity to study (observable): surface height $x \mapsto h(x, t)$

1) macroscopic behavior

$$
\left(h(t \xi, t) / t \rightarrow h_{\operatorname{det}}(\xi)\right)
$$

2) scaling exponents (of fluctuations and spatial correlations)
3) scaling function and/or limit process of the surface height

KPZ class of growth model (one-dimensional substrate)

- fluctuation exponent: $1 / 3$
- spatial correlation exponent: $2 / 3$
- scaling functions ??? \Rightarrow analyze simplied solvable models
\Rightarrow Study the polynuclear growth (PNG) model

A growth model of a surface on a one dimensional substrate
Studied observables: statistical properties of the surface for large growth time t

The surface is described by a function $h(x, t) \in \mathbb{Z}, x \in \mathbb{R}, t \in \mathbb{R}_{+}$, or by the position of the up- and down-jumps

A nucleation is a pair of an up- and a down-jump

The PNG dynamics has a

- deterministic part: the up-jumps moves to the left, the down-jumps to the right, with speed 1 . When two jumps meet, they simply merge
- stochastic part: the nucleations form a space-time Poisson process with intensity $\varrho(x, t)$

- Initial condition: $h(x, 0)=0, x \in \mathbb{R}$
- Nucleations with constant intensity, $\rho(x, t)=2, x \in \mathbb{R}, t \geq 0$
$\Rightarrow h(x, t) \sim 2 t$: a macroscopically flat profile
- The fluctuations scales as $t^{1 / 3}$
(Baik, Rains '00; Prähofer, Spohn '00)

$$
\lim _{t \rightarrow \infty} \mathbb{P}\left(h(0, t) \leq 2 t+s t^{1 / 3}\right)=F_{1}\left(2^{2 / 3} s\right)
$$

where F_{1} is the GOE Tracy-Widom distribution

How to analyze the PNG surface? Extension to multilayer PNG
At each t, we define a set of non-intersecting line ensemble, $\left\{x \mapsto h_{\ell}(x, t), \ell \leq 0\right\}$:

- the nucleations of level $j, j \leq-1$, occur when at level $j+1$ there is an annihilation (no information is lost),
- the deterministic dynamics is the same for all level lines

The physical surface height is $h_{0} \equiv h$
Animation

Point process for the flat PNG

Point process η_{t} on \mathbb{Z}

$$
\eta_{t}(j)= \begin{cases}1, & \text { if there is a line at height } j, \\ 0, & \text { otherwise }\end{cases}
$$

Support of the point process $\left(\eta_{t}=1\right)$ denoted by the \bullet dots

- Last particle of η_{t} is the height of the flat PNG

- Edge scaling of the height

$$
h^{\text {edge }}(0, t)=\frac{h(0, t)-2 t}{t^{1 / 3} 2^{-2 / 3}}
$$

- Point process edge scaling

$$
\eta_{t}^{\text {edge }}(u)=t^{1 / 3} 2^{-2 / 3} \eta_{t}\left(\left[2 t+u t^{1 / 3} 2^{-2 / 3}\right]\right)
$$

Theorem [P.L. Ferrari '04]
$\eta_{t}^{\text {edge }}$ converges weakly to a Pfaffian point process η^{GOE}, whose n-point correlation functions are given by

$$
\rho^{(n)}\left(x_{1}, \ldots, x_{n}\right)=\operatorname{Pf}\left(K^{\mathrm{GOE}}\left(x_{i}, x_{j}\right)\right)_{1 \leq i, j \leq n}
$$

with $K^{\mathrm{GOE}}\left(x_{i}, x_{j}\right)$ a 2×2 matrix kernel coming from GOE random matrices.

More precisely, for any $m \in \mathbb{N}$ and $f_{1}, \ldots, f_{m} \in C_{0}^{1}(\mathbb{R})$,

$$
\lim _{t \rightarrow \infty} \mathbb{E}\left(\prod_{k=1}^{m} \eta_{t}^{\mathrm{edge}}\left(f_{k}\right)\right)=\mathbb{E}\left(\prod_{k=1}^{m} \eta^{\mathrm{GOE}}\left(f_{k}\right)\right)
$$

$[\operatorname{Pf}(A)=\sqrt{\operatorname{det}(A)}$ if A is antisymmetric]

- Measure on $N \times N$ real symmetric matrices

$$
\mathbb{P}(\mathrm{d} H)=\frac{1}{Z^{\prime}} \exp \left(-\operatorname{Tr}\left(H^{2}\right) / 2 N\right) \mathrm{d} H
$$

$\mathrm{d} H=\prod_{1 \leq i \leq j \leq N} \mathrm{~d} H_{i, j}$ is the product measure on the independent coefficients of H

- The induced measure on the eigenvalues $\lambda_{1}, \ldots, \lambda_{N}$ is

$$
\mathbb{P}(\mathrm{d} \lambda)=\frac{1}{Z} \prod_{1 \leq i<j \leq N}\left|\lambda_{i}-\lambda_{j}\right| \prod_{i=1}^{N} e^{-\lambda_{i}^{2} / 2 N} \mathrm{~d} \lambda
$$

with $\mathrm{d} \lambda=\prod_{i=1}^{N} \mathrm{~d} \lambda_{i}$

Behavior for large N :

- the largest eigenvalue, $\lambda_{\text {max }}$, is $\sim 2 N$,
- with fluctuations on a $N^{1 / 3}$ scale:

$$
\lim _{N \rightarrow \infty} \mathbb{P}\left(\lambda_{\max } \leq 2 N+s N^{1 / 3}\right)=F_{1}(s)
$$

with F_{1} the GOE Tracy-Widom distribution

- Eigenvalues' point process $\eta_{N}^{\text {GOE }}$ on \mathbb{R} :

$$
\eta_{N}^{\operatorname{GOE}}(\lambda)=\sum_{i=1}^{N} \delta\left(\lambda-\lambda_{i}\right)
$$

$\eta_{N}^{\text {GOE }}$ is a Pfaffian point process (for even N)

- The edge scaling of the point process is

$$
N^{1 / 3} \eta_{N}^{\mathrm{GOE}}\left(2 N+s N^{1 / 3}\right) \stackrel{N \rightarrow \infty}{\Longrightarrow} \eta^{\mathrm{GOE}}(s)
$$

and converges to a Pfaffian point process η^{GOE}

$$
\rho^{(n)}\left(s_{1}, \ldots, s_{n}\right)=\operatorname{Pf}\left(K^{\mathrm{GOE}}\left(s_{i}, s_{j}\right)\right)_{1 \leq i, j \leq n}
$$

with the K^{GOE} a 2×2 matrix kernel
$K_{1,1}^{\mathrm{GOE}}\left(\xi_{1}, \xi_{2}\right)=\int_{\mathbb{R}_{+}} \mathrm{d} \lambda \operatorname{Ai}\left(\xi_{1}+\lambda\right) \operatorname{Ai}^{\prime}\left(\xi_{2}+\lambda\right)-\left(\xi_{1} \leftrightarrow \xi_{2}\right)$
$K_{1,2}^{\mathrm{GOE}}\left(\xi_{1}, \xi_{2}\right)=\int_{\mathbb{R}_{+}} \mathrm{d} \lambda \operatorname{Ai}\left(\xi_{1}+\lambda\right) \operatorname{Ai}\left(\xi_{2}+\lambda\right)+\frac{1}{2} \operatorname{Ai}\left(\xi_{1}\right) \int_{\mathbb{R}_{+}} \mathrm{d} \lambda \operatorname{Ai}\left(\xi_{2}-\lambda\right)$
$K_{2,1}^{\mathrm{GOE}}\left(\xi_{1}, \xi_{2}\right)=-K_{1,2}^{\mathrm{GOE}}\left(\xi_{2}, \xi_{1}\right)$
$K_{2,2}^{\mathrm{GOE}}\left(\xi_{1}, \xi_{2}\right)=\frac{1}{4} \int_{\mathbb{R}_{+}} \mathrm{d} \lambda \int_{\lambda}^{\infty} \mathrm{d} \mu \operatorname{Ai}\left(\xi_{2}-\mu\right) \operatorname{Ai}\left(\xi_{1}-\lambda\right)-\left(\xi_{1} \leftrightarrow \xi_{2}\right)$
Note: Ai is the Airy function

Consider the set $S=\{1,2, \ldots, 9\}$

- Young diagram of shape $\lambda=(4,3,1,1)$

Consider the set $S=\{1,2, \ldots, 9\}$

- Young diagram of shape $\lambda=(4,3,1,1)$
- One of the possible Young tableaux.

The numbers of S have to be put into the Young diagram but have to be increasing along the rows and columns

1	3		9
2			
6			
8			

Space-time PNG, level 0

Space-time PNG, level -1

Space-time PNG, level -2

Associated Young tableaux (whose first row length $=$ PNG height)

- Measure on associated Young tableaux too complicated
- The height $h(0, t)$ depends only on the nucleations in the backwards light cone of $(0, t)$

- Measure on associated Young tableaux too complicated
- The height $h(0, t)$ depends only on the nucleations in the backwards light cone of $(0, t)$

- Measure on associated Young tableaux too complicated
- The height $h(0, t)$ depends only on the nucleations in the backwards light cone of $(0, t)$
- The height $h(0, t)$ is the number crossing of the black lines along any time-like paths from $\{t=0\}$ to $(0, t)$

- Measure on associated Young tableaux too complicated
- The height $h(0, t)$ depends only on the nucleations in the backwards light cone of $(0, t)$
- The height $h(0, t)$ is the number crossing of the black lines along any time-like paths from $\{t=0\}$ to $(0, t)$
- We can add the symmetric points with respect to $\{t=0\}$
\Rightarrow The new Young tableaux have a nice measure

- As before, nucleation intensity $\varrho=2$
- Mean \# of nucleations in the backwards light-cone of $(0, t)$: $A_{t}=t^{2}$
- Symmetrization \Rightarrow Only Young tableaux Y with even rows, shape $\lambda(Y)=\left(\lambda_{1}, \lambda_{2}, \ldots\right), \lambda_{i}$ even, $|\lambda(Y)|=\sum_{k \geq 1} \lambda_{k}$
- As before, nucleation intensity $\varrho=2$
- Mean \# of nucleations in the backwards light-cone of $(0, t)$: $A_{t}=t^{2}$
- Symmetrization \Rightarrow Only Young tableaux Y with even rows, shape $\lambda(Y)=\left(\lambda_{1}, \lambda_{2}, \ldots\right), \lambda_{i}$ even, $|\lambda(Y)|=\sum_{k \geq 1} \lambda_{k}$
- Measure on the set of even-rows Young tableaux:

$$
\mathbb{P}(Y)=\sum_{n \geq 0} \delta_{|\lambda(Y)|, 2 n} \underbrace{e^{-A_{t}} \frac{A_{t}^{n}}{n!}}_{\mathbb{P}(|\lambda(Y)|=2 n)} \frac{\operatorname{dim}(\lambda(Y))}{Z_{n}}
$$

with $Z_{n}=\#$ of Young tableaux with $2 n$ entries and even rows This measure appears also in a work of Borodin and Olshanski ('02)

- As before, nucleation intensity $\varrho=2$
- Mean \# of nucleations in the backwards light-cone of $(0, t)$: $A_{t}=t^{2}$
- Symmetrization \Rightarrow Only Young tableaux Y with even rows, shape $\lambda(Y)=\left(\lambda_{1}, \lambda_{2}, \ldots\right), \lambda_{i}$ even, $|\lambda(Y)|=\sum_{k \geq 1} \lambda_{k}$
- Measure on the set of even-rows Young tableaux:

$$
\mathbb{P}(Y)=\sum_{n \geq 0} \delta_{|\lambda(Y)|, 2 n} \underbrace{e^{-A_{t}} \frac{A_{t}^{n}}{n!}}_{\mathbb{P}(|\lambda(Y)|=2 n)} \frac{\operatorname{dim}(\lambda(Y))}{Z_{n}}
$$

with $Z_{n}=\#$ of Young tableaux with $2 n$ entries and even rows This measure appears also in a work of Borodin and Olshanski ('02)

- Connection with the multilayer PNG height / point process:

$$
h_{i}(t)=\frac{1}{2} \lambda_{1-i}+i, \quad i=0,-1,-2, \ldots
$$

