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Growth in 1 + 1 dimension

The polynuclear growth (PNG) model: flat growth has
GOE Tracy-Widom distributed fluctuations

Flat PNG and GOE random matrices: point processes

Flat PNG and Young tableaux

Introduction




n 1+ 1 dimension 2

Growth models: part of non-equilibrium statistical mechanics

Example: flame front of a burning paper

The flame propagates from below, the burned region is black
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Universality picture

statistical properties of the surface for large growth time:
dependent only on the global properties of dynamics
(dimension, locality of growth, conservation laws, symmetries)
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th in 1 + 1 dimension 3

Universality picture

statistical properties of the surface for large growth time:
dependent only on the global properties of dynamics
(dimension, locality of growth, conservation laws, symmetries)

Quantity to study (observable): surface height x — h(x,t)
1) macroscopic behavior (h(t&, t) /t — haet(§))
2) scaling exponents (of fluctuations and spatial correlations)

3) scaling function and/or limit process of the surface height
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hin 1+ 1 dimension 3

Universality picture

statistical properties of the surface for large growth time:
dependent only on the global properties of dynamics
(dimension, locality of growth, conservation laws, symmetries)

Quantity to study (observable): surface height x — h(x,t)

1) macroscopic behavior (h(t&, 1)/t — hget(£))
2) scaling exponents (of fluctuations and spatial correlations)

3) scaling function and/or limit process of the surface height

KPZ class of growth model (one-dimensional substrate)
o fluctuation exponent: 1/3
@ spatial correlation exponent: 2/3
@ scaling functions 7?7 = analyze simplied solvable models
= Study the polynuclear growth (PNG) model

Introduction




polynuclear growth (PNG) model, 1 + 1 dimension 4

A growth model of a surface on a one dimensional substrate

Studied observables: statistical properties of the surface for large
growth time ¢

The surface is described by a function h(z,t) € Z, x € R,t € Ry,
or by the position of the up- and down-jumps

A nucleation is a pair of an up- and a down-jump

h(z,t)

I—Il_’i_I /I;\I_II_

x

PNG model




PNG dynamics 5

The PNG dynamics has a

o deterministic part: the up-jumps moves to the left, the
down-jumps to the right, with speed 1. When two jumps
meet, they simply merge

@ stochastic part: the nucleations form a space-time Poisson
process with intensity o(z,t)

h(z,t)

e | F i'Fﬁ_q el

PNG model




flat PNG 6

e Initial condition: h(z,0) =0, z € R
o Nucleations with constant intensity, p(z,t) =2, x € R, t >0
= h(z,t) ~ 2t: a macroscopically flat profile

@ The fluctuations scales as /3
(Baik, Rains '00; Prahofer, Spohn '00)
Jlim P(h(0,t) < 2t + st!/3) = F(22/3s)
—00

where F} is the GOE Tracy-Widom distribution
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PNG model




sion to multilayer PNG 7

How to analyze the PNG surface? Extension to multilayer PNG

At each ¢, we define a set of non-intersecting line ensemble,
{z — he(z,t),0 < 0}:
@ the nucleations of level j, 7 < —1, occur when at level j + 1
there is an annihilation (no information is lost),

@ the deterministic dynamics is the same for all level lines
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The physical surface height is hg = h
Animation

Multi PNG



http://www-m5.ma.tum.de/pers/ferrari/homepage/animations/RSKFinalTalk.html

process for the flat PNG 8

Point process 7; on Z

(j) = 1, if there is a line at height j,
)= 0, otherwise
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Support of the point process (7, = 1) denoted by the e dots

Multi PNG




d position: Edge scaling 9

@ Last particle of 7, is the height of the flat PNG

~ t1/3 .
J
o0 o o o o o . | °
2t h(0,t)
o Edge scaling of the height
h(0,t) — 2t
d. _ )
heeee(0,1) = t1/39—2/3

@ Point process edge scaling

77;edge(u) _ t1/32_2/377t([2t + ut1/32_2/3])
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position: a Pfaffian point process

Theorem [P.L. Ferrari '04]
1798 converges weakly to a Pfaffian point process nOF  whose

n-point correlation functions are given by

Pz, ... xp) = Pf(KGOE(a:i, l‘]))

1<i,j<n

with K9OE (2, 2;) a 2 x 2 matrix kernel coming from GOE
random matrices.

More precisely, for any m € N and f1,..., fm € C}(R),
m
hm E <H edge ) (H OE (fx )
[Pf(A) = y/det(A) if A is antisymmetric]

Multi PNG




ssian Orthogonal Ensemble (GOE)

@ Measure on N x N real symmetric matrices

P(dH) = % exp(—Tr(H?)/2N)dH,

dH = [],<;<j<n dH;; is the product measure on the
independent coefficients of H

@ The induced measure on the eigenvalues A1, ..., Ay is

N
1
P(N) = - T =21 eV ax
1<i<j<N i=1

with dx = [T, d),




yest eigenvalue

Behavior for large N:
@ the largest eigenvalue, Apax, is ~ 2N,

@ with fluctuations on a N1/3 scale:

lim P(Amax < 2N + sN'/3) = Fy(s)

N—oo

with F; the GOE Tracy-Widom distribution

~ N1/3




t process for GOE

@ Eigenvalues' point process n]%OE on R:

N
n§OP ) =D 6 =)

=1

nGOF is a Pfaffian point process (for even N)

@ The edge scaling of the point process is
N1/3m(\}[OE(2N + le/?’) N;go nGOE(s)
and converges to a Pfaffian point process n%OF

p(n)(817 ceey S?’Z) - Pf(KGOE(s’L’ SJ))ISZJSTL

with the KGOF 3 2 x 2 matrix kernel




E kernel

KiPP (6, &) = [ DAIG VA (@)~ (6 = &)
+

KEPP(E.6) = [ dAAiG + N A6 +0) + 5 Ai6) [ araite— )

+

K§1OE(§1,§2) = —K%)E(fzafl)

KEPPEne) = 1 [ [ auaite—mai - N - - &)

Note: Ai is the Airy function




and GOE

PNG growth model

¢

GOE matrix ensemble

Multilayer PNG

¢

#

GOE eigenvalues

Point process 7,

#

™

Point process n](\;,OE
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Common limit point process (Pfaffian): 7

GOE




ng tableaux: an example

Consider the set S ={1,2,...,9}
@ Young diagram of shape A = (4,3,1,1)

Young tableaux




g tableaux: an example

Consider the set S ={1,2,...,9}
@ Young diagram of shape A = (4,3,1,1)
@ One of the possible Young tableaux.

The numbers of S have to be put into the Young diagram but
have to be increasing along the rows and columns

Young tableaux




ice-time picture of the PNG

Space-time PNG, level 0

N

Young tableaux




ice-time picture of the PNG

Space-time PNG, level —1

t

Young tableaux




ice-time picture of the PNG

Space-time PNG, level —2

t

Young tableaux




e-time picture of the PNG

Associated Young tableaux (whose first row length = PNG height)

Y (o) = 2

Young tableaux




metrization

@ Measure on associated Young tableaux too complicated
@ The height h(0,t) depends only on the nucleations in the
backwards light cone of (0, t)

Young tableaux
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etrization

@ Measure on associated Young tableaux too complicated

@ The height h(0,t) depends only on the nucleations in the
backwards light cone of (0, t)

@ The height h(0,t) is the number crossing of the black lines
along any time-like paths from {t = 0} to (0,¢)

Young tableaux




etrization

@ Measure on associated Young tableaux too complicated
@ The height h(0,t) depends only on the nucleations in the
backwards light cone of (0, t)
@ The height h(0,t) is the number crossing of the black lines
along any time-like paths from {t = 0} to (0,¢)
@ We can add the symmetric points with respect to {t = 0}
= The new Young tableaux have a nice measure

t

Young tableaux




ng tableaux

@ As before, nucleation intensity ¢ = 2

@ Mean # of nucleations in the backwards light-cone of (0,¢):
A =1t?

@ Symmetrization = Only Young tableaux Y with even rows,
shape A(Y) = (A1, Az,...), A even, [A(Y)| =D 451 Ak

Young tableaux




o tableaux

@ As before, nucleation intensity ¢ = 2
@ Mean # of nucleations in the backwards light-cone of (0,¢):
A =1t?
@ Symmetrization = Only Young tableaux Y with even rows,
shape A(Y) = (A1, Az,...), A even, [A(Y)| =D 451 Ak
@ Measure on the set of even-rows Young tableaux:
4 A7 dim(A(Y))

PY) = Z dA(Y)|,2n € py 7
n>0 H/_/ n

P(IA(Y)[=2n)

with Z,, = # of Young tableaux with 2n entries and even rows
This measure appears also in a work of Borodin and Olshanski ('02)

Young tableaux




o tableaux

@ As before, nucleation intensity ¢ = 2
@ Mean # of nucleations in the backwards light-cone of (0,¢):
A =1t?
@ Symmetrization = Only Young tableaux Y with even rows,
shape A(Y) = (A1, Az,...), A even, [A(Y)| =D 451 Ak
@ Measure on the set of even-rows Young tableaux:
4 A7 dim(A(Y))

PY) = Z dA(Y)|,2n € py 7
n>0 H/_/ n

P(IA(Y)[=2n)

with Z,, = # of Young tableaux with 2n entries and even rows
This measure appears also in a work of Borodin and Olshanski ('02)

e Connection with the multilayer PNG height / point process:

1
hi(t) = 5)\17@'—%2’, 1=0,—-1,-2,...

Young tableaux
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