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Presentation of the problem.

Consider a Brownian bridge in C from 0 to 0 of time duration 1

Fill in all the holes
Study the area of the hull obtained
Goal: compute the expected area.

Result: π
5 .

Figure: Random walk loop of 50000 steps and its hull.
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Quick definition of SLE .

Consider the differential equation

∂tgt(z) =
2

gt(z)−
√

κBt
, g0(z) = z,

where B is a 1-d Brownian motion and z ∈ H.

For z fixed the solution exists up to a time Tz .

Kt := {z ∈ H : Tz ≤ t}, and Ht = H \ Kt .

gt : Ht → H is a conformal transformation (1-1 and onto).

0 0

gt
Ht H

√
κBt
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SLE as a curve

Is there a curve γ : [0,∞) → H such that for each t , Ht is the
unbounded component of H \ γ[0, t ]?

Yes, Rohde and Schramm.

γ(0) = 0, lim|z|→∞ |γ(t)| = ∞, i.e., γ is an SLEκ from 0 to ∞ in H.

γ is very different for different κs:

κ ∈ [0, 4], simple curve, hence, γ[0, t ] = Kt ;
κ ∈ (4, 8), not simple, for a fixed z, z 6∈ γ[0,∞) a. s., but z ∈ ∪tKt ;
κ ∈ [8,∞), not simple and space filling.

For this talk we only need κ = 8
3 .

0 0

gt
Ht H

√
κBt

γ(t)
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Translate Brownian loop so as to stay in H.

“Need a point on the boundary to start SLE”

Identify the (almost surely) unique lowest point in the loop

Translate loop so that this lowest point is at (0, 0). Note: area is
not affected.

Denote this distribution on curves in H by µ1; if starting with a BM
of time duration t , then use µt .

Goal: Compute µ1(A).

The σ-finite measure

µbub =

∫ ∞

0

1
2 t2 µtdt

encodes µt

relates “nicely” to an SLE-type measure.
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Relationship between the Brownian and the SLE
measures.

Consider the conformal transformation mε : H → H

mε(z) =
εz

z + 1

Let ν be the law of an H-Brownian excursion. Then,

mε ◦ ν is the law of an h-transform of Brownian motion
from 0 to ε in H

µbub = lim
ε→0

1
ε2 (mε ◦ ν)

Let ν̃ be the law of an SLE8/3 in H from 0 to ∞. Then,

mε(ν̃) is the law of an SLE from 0 to ε in H
Define

µsle = lim
ε→0

1
ε2 mε(ν̃)
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Relationship between the Brownian and the SLE
measures.

Recall: ν = H−Brownian excursion; ν̃ = SLE8/3.

LSW showed that 5 independent ν equal 8 independent ν̃.

Easy consequence: 5
8µbub = µsle as measures on filled-in

bubbles.
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Strategy for finding the expected area of the Brownian
loop.

Use

µbub =

∫ ∞

0

1
2 t2 µtdt

to relate our fixed-time quantity (Brownian loop of time duration 1)
to a geometric-type quantity for µbub.

Since (5/8)µbub = µsle, we can use SLE techniques to compute
the geometric quantity.
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Relating the fixed-time quantity and the geometric
quantity.

Let γ∗ be the radius of the curve γ, i.e., γ∗ = sup0≤t≤tγ |γ(t)|. Consider
the “expected" area under the law µbub “restricted" to curves with
γ∗ ∈ [1, 1 + δ).

µbub(A; γ∗ ∈ [1, 1 + δ)) =

∫
A(γ)1{γ∗∈[1,1+δ)}dµbub

=

∫ ∞

0

1
2t2

∫
A(γ)1{γ∗∈[1,1+δ)}dµt dt

=

∫ ∞

0

1
2t2 t

∫
A(γ)1{γ∗∈[ 1√

t
, 1+δ√

t
)}dµ1 dt

=

∫
A(γ)

∫ ∞

0

1
2t

1{t∈[( 1
γ∗ )2,( 1+δ

γ∗ )2)}dt dµ1

= log(1 + δ)µ1(A) = log(1 + δ)E(A)
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Expressing E(A) in terms of SLE .

Since 5
8µbub = µsle, we have

8
5

lim
δ→0

µsle(A; γ∗ ∈ [1, 1 + δ))

log(1 + δ)
= E(A).

Let Pε be the law of an SLE8/3 from 0 to ε in H.

Recalling µsle = limε→0(1/ε2)Pε,

8
5

lim
δ→0

lim
ε→0

Pε(A; γ∗ ∈ [1, 1 + δ))

ε2 log(1 + δ)
= E(A).

By Fubini,

8
5

∫
D+

lim
δ→0

lim
ε→0

Pε{z inside γ, γ∗ ∈ [1, 1 + δ)}
ε2 log(1 + δ)

dA(z) = E(A).
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Computing Pε{z inside γ, γ∗ ∈ [1, 1 + δ)}; an SLE
computation.

z
m−1

ε

1 1 + δ 0−1ε0

m−1
ε (z)

∆ε

Pε{z inside γ, γ∗ ∈ [1, 1 + δ)} =

Pε{z inside γ, γ∗ < 1 + δ} − Pε{z inside γ, γ∗ < 1}

Let P denote the law of SLE from 0 to ∞, then

Pε{z inside γ, γ∗ < 1} = P{m−1
ε (z) right of γ, γ avoids ∆ε}

= P{m−1
ε (z) right of γ| γ avoids ∆ε}P{γ avoids ∆ε}

Slide does not use κ = 8/3.
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Computing Pε{z inside γ, γ∗ ∈ [1, 1 + δ)}; an SLE
computation.

z
m−1

ε

1 1 + δ 0−1ε0

m−1
ε (z)

Φε

0

Φε(m
−1
ε (z))

∆ε

Φε : H \∆ε → H, Φε(0) = 0,Φε(∞) = ∞,Φ′
ε(∞) = 1.

P{m−1
ε (z) right of γ|γ avoids ∆ε}P{γ avoids ∆ε} =

P{Φε(m−1
ε (z)) right of γ}Φ′

ε(0)5/8

Slide uses κ = 8/3. I.e., the conformal restriction property.
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Computing the probability that z is to the right of an
SLEκ (think κ ≤ 4).

By scale invariance. f (θ) = P{z = reiθ is to the right of γ}.

Xt : H \ γ(0, t ] → H Xt(∞) = ∞, X ′
t (∞) = 1, Xt(γ(t)) = 0.

0 0

Xt
z

Xt (z)

γ(t)

P(z is on the right |Ft) = P(Xt(z) is on the right) = f (arg(Xt)).

I.e., f (arg(Xt)) is a martingale.
Note: Xt(z) = gt(z)−

√
κBt . Then, use the differential equation for

gt(z) and Ito’s formula to get an SDE for f (arg(Xt)).
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Computing the probability that z is to the right of an
SLEκ (think κ ≤ 4).

dt-term must be zero. Implies second order ODE for f .

Using the boundary conditions f (0) = 1, f (π) = 0. We get

f (θ) =
1∫ π

0 (sin u)
2(4−κ)

κ du

∫ π

θ
(sin u)

2(4−κ)
κ du.

In particular, for κ = 8
3 :

P{z is to the right of γ[0,∞)} = 1/2 + 1/2 cos(θ).

Note we assumed that f was C2 to apply Ito’s.

But, repeat same (rigorous) Ito calculation with f above, then
f (arg(Xt)) is a martingale.

f (z) = f (arg(X0)) = E[f (arg(X∞))] = P{z right of γ}.
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Expected areas for regions of arbitrary index.

Figure: Different indices in a random walk of 50000 steps, black areas
correspond to index 0.
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Decomposition of area inside loop according to index.

(Bt)0≤t≤1 a Brownian loop in C starting at 0. nz the index of z.

For n 6= 0, let Wn denote the area of the set of points of index
nz = n.

Wn =

∫
C

1{nz=n}dz ,

∴ E(Wn) =

∫
C

P{nz = n}dz .

Let W0 be the area of the set of points inside the loop with index
zero:

W0 =

∫
C

1{nz=0}∩{z is inside}dz .

Total area inside the loop, A, satisfies

A =
∑
n∈Z

Wn,

∴ E(A) =
π

5
=

∑
n∈Z

E(Wn).

José A. Trujillo Ferreras (FIM-ETH) Expected area of the Brownian loop March 24th 2006 21 / 23



Decomposition of area inside loop according to index.

(Bt)0≤t≤1 a Brownian loop in C starting at 0. nz the index of z.

For n 6= 0, let Wn denote the area of the set of points of index
nz = n.

Wn =

∫
C

1{nz=n}dz ,

∴ E(Wn) =

∫
C

P{nz = n}dz .

Let W0 be the area of the set of points inside the loop with index
zero:

W0 =

∫
C

1{nz=0}∩{z is inside}dz .

Total area inside the loop, A, satisfies

A =
∑
n∈Z

Wn,

∴ E(A) =
π

5
=

∑
n∈Z

E(Wn).

José A. Trujillo Ferreras (FIM-ETH) Expected area of the Brownian loop March 24th 2006 21 / 23



Decomposition of area inside loop according to index.

(Bt)0≤t≤1 a Brownian loop in C starting at 0. nz the index of z.

For n 6= 0, let Wn denote the area of the set of points of index
nz = n.

Wn =

∫
C

1{nz=n}dz , ∴ E(Wn) =

∫
C

P{nz = n}dz .

Let W0 be the area of the set of points inside the loop with index
zero:

W0 =

∫
C

1{nz=0}∩{z is inside}dz .

Total area inside the loop, A, satisfies

A =
∑
n∈Z

Wn,

∴ E(A) =
π

5
=

∑
n∈Z

E(Wn).

José A. Trujillo Ferreras (FIM-ETH) Expected area of the Brownian loop March 24th 2006 21 / 23



Decomposition of area inside loop according to index.

(Bt)0≤t≤1 a Brownian loop in C starting at 0. nz the index of z.

For n 6= 0, let Wn denote the area of the set of points of index
nz = n.

Wn =

∫
C

1{nz=n}dz , ∴ E(Wn) =

∫
C

P{nz = n}dz .

Let W0 be the area of the set of points inside the loop with index
zero:

W0 =

∫
C

1{nz=0}∩{z is inside}dz .

Total area inside the loop, A, satisfies

A =
∑
n∈Z

Wn,

∴ E(A) =
π

5
=

∑
n∈Z

E(Wn).

José A. Trujillo Ferreras (FIM-ETH) Expected area of the Brownian loop March 24th 2006 21 / 23



Decomposition of area inside loop according to index.

(Bt)0≤t≤1 a Brownian loop in C starting at 0. nz the index of z.

For n 6= 0, let Wn denote the area of the set of points of index
nz = n.

Wn =

∫
C

1{nz=n}dz , ∴ E(Wn) =

∫
C

P{nz = n}dz .

Let W0 be the area of the set of points inside the loop with index
zero:

W0 =

∫
C

1{nz=0}∩{z is inside}dz .

Total area inside the loop, A, satisfies

A =
∑
n∈Z

Wn,

∴ E(A) =
π

5
=

∑
n∈Z

E(Wn).

José A. Trujillo Ferreras (FIM-ETH) Expected area of the Brownian loop March 24th 2006 21 / 23



Decomposition of area inside loop according to index.

(Bt)0≤t≤1 a Brownian loop in C starting at 0. nz the index of z.

For n 6= 0, let Wn denote the area of the set of points of index
nz = n.

Wn =

∫
C

1{nz=n}dz , ∴ E(Wn) =

∫
C

P{nz = n}dz .

Let W0 be the area of the set of points inside the loop with index
zero:

W0 =

∫
C

1{nz=0}∩{z is inside}dz .

Total area inside the loop, A, satisfies

A =
∑
n∈Z

Wn, ∴ E(A) =
π

5
=

∑
n∈Z

E(Wn).
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Yor’s index law for a Brownian bridge.

Theorem (M. Yor)

Write z = reiθ, with r 6= 0. Then,

P(nz = n) = e−r2
[Ψr ((2n − 1)π)−Ψr ((2n + 1)π)] if n ∈ Z \ 0 ,

P(nz = 0) = 1 + e−r2
[Ψr (−π)−Ψr (π)] ,

where ∀x 6= 0,

Ψr (x) =
x
π

∫ ∞

0
e−r2 cosh(t) dt

t2 + x2 .
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Values of expected areas of any index.

Yor ⇒
E(Wn) =

1
2πn2 , ∀n 6= 0.

∑
n∈Z\{0}

1
2πn2 = 2

1
2π

π2

6
.

E(W0) =
π

5
− π

6
=

π

30
.
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