The expected area of the Brownian loop in the plane

José A. Trujillo Ferreras (joint with Christophe Garban)

March 24th 2006

José A. Trujillo Ferreras (FIM-ETH)

Expected area of the Brownian loop

March 24th 2006 1 / 23

The area of the Brownian loop

- Presentation of the problem
- Some background on SLE.
- Overview of the idea of the proof
- Sketch of proof

2 Expected areas for regions of arbitrary index

The area of the Brownian loop Presentation of the problem Some background on SLE

- Some background on SLE.
- Overview of the idea of the proof
- Sketch of proof

2

Expected areas for regions of arbitrary index

 $\bullet\,$ Consider a Brownian bridge in $\mathbb C$ from 0 to 0 of time duration 1

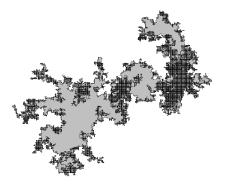


Figure: Random walk loop of 50000 steps and its hull.

José A. Trujillo Ferreras (FIM-ETH)

- $\bullet\,$ Consider a Brownian bridge in $\mathbb C$ from 0 to 0 of time duration 1
- Fill in all the holes

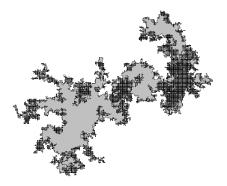


Figure: Random walk loop of 50000 steps and its hull.

José A. Trujillo Ferreras (FIM-ETH)

- $\bullet\,$ Consider a Brownian bridge in $\mathbb C$ from 0 to 0 of time duration 1
- Fill in all the holes
- Study the area of the hull obtained

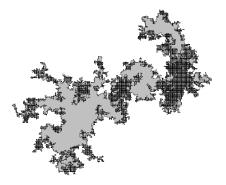


Figure: Random walk loop of 50000 steps and its hull.

José A. Trujillo Ferreras (FIM-ETH)

- Consider a Brownian bridge in $\mathbb C$ from 0 to 0 of time duration 1
- Fill in all the holes
- Study the area of the hull obtained
- Goal: compute the expected area.

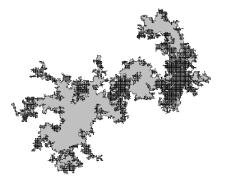


Figure: Random walk loop of 50000 steps and its hull.

José A. Trujillo Ferreras (FIM-ETH)

- Consider a Brownian bridge in $\mathbb C$ from 0 to 0 of time duration 1
- Fill in all the holes
- Study the area of the hull obtained
- Goal: compute the expected area. Result: $\frac{\pi}{5}$.

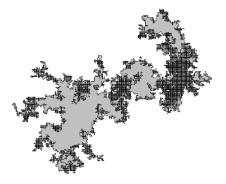


Figure: Random walk loop of 50000 steps and its hull.

José A. Trujillo Ferreras (FIM-ETH)

The area of the Brownian loop Presentation of the problem Some background on SLE.

- Overview of the idea of the proof
- Sketch of proof

Expected areas for regions of arbitrary index

-

$$\partial_t g_t(z) = rac{2}{g_t(z) - \sqrt{\kappa}B_t}, \qquad g_0(z) = z,$$

where *B* is a 1-*d* Brownian motion and $z \in \mathbb{H}$.

$$\partial_t g_t(z) = rac{2}{g_t(z) - \sqrt{\kappa}B_t}, \qquad g_0(z) = z,$$

where *B* is a 1-*d* Brownian motion and $z \in \mathbb{H}$.

• For z fixed the solution exists up to a time T_z .

$$\partial_t g_t(z) = rac{2}{g_t(z) - \sqrt{\kappa}B_t}, \qquad g_0(z) = z,$$

where *B* is a 1-*d* Brownian motion and $z \in \mathbb{H}$.

- For z fixed the solution exists up to a time T_z.
- $K_t := \{z \in \mathbb{H} : T_z \leq t\}$, and $H_t = \mathbb{H} \setminus K_t$.

$$\partial_t g_t(z) = rac{2}{g_t(z) - \sqrt{\kappa}B_t}, \qquad g_0(z) = z,$$

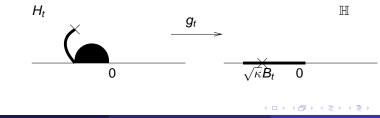
where *B* is a 1-*d* Brownian motion and $z \in \mathbb{H}$.

- For z fixed the solution exists up to a time T_z.
- $K_t := \{z \in \mathbb{H} : T_z \leq t\}$, and $H_t = \mathbb{H} \setminus K_t$.
- $g_t : H_t \to \mathbb{H}$ is a conformal transformation (1-1 and onto).

$$\partial_t g_t(z) = rac{2}{g_t(z) - \sqrt{\kappa}B_t}, \qquad g_0(z) = z,$$

where *B* is a 1-*d* Brownian motion and $z \in \mathbb{H}$.

- For z fixed the solution exists up to a time T_z .
- $K_t := \{z \in \mathbb{H} : T_z \leq t\}$, and $H_t = \mathbb{H} \setminus K_t$.
- $g_t: H_t \to \mathbb{H}$ is a conformal transformation (1-1 and onto).



Is there a curve γ : [0,∞) → H such that for each t, Ht is the unbounded component of H \ γ[0, t]?

A (10) > A (10) > A (10)

Is there a curve γ : [0,∞) → H such that for each t, H_t is the unbounded component of H \ γ[0, t]?
 Yes, Rohde and Schramm.

A (10) > A (10) > A (10)

Is there a curve γ : [0,∞) → H such that for each t, H_t is the unbounded component of H \ γ[0, t]?
 Yes, Rohde and Schramm.

• $\gamma(0) = 0$, $\lim_{|z| \to \infty} |\gamma(t)| = \infty$, i.e., γ is an SLE_{κ} from 0 to ∞ in \mathbb{H} .

A D A D A D A

- Is there a curve γ : [0,∞) → H such that for each t, H_t is the unbounded component of H \ γ[0, t]?
 Yes, Rohde and Schramm.
- $\gamma(0) = 0$, $\lim_{|z| \to \infty} |\gamma(t)| = \infty$, i.e., γ is an SLE_{κ} from 0 to ∞ in \mathbb{H} .
- γ is very different for different κ s:

伺 ト イヨ ト イヨ ト

Is there a curve γ : [0,∞) → H such that for each t, H_t is the unbounded component of H \ γ[0, t]?
 Yes, Rohde and Schramm.

• $\gamma(0) = 0$, $\lim_{|z| \to \infty} |\gamma(t)| = \infty$, i.e., γ is an SLE_{κ} from 0 to ∞ in \mathbb{H} .

• γ is very different for different κ s:

• $\kappa \in [0, 4]$, simple curve, hence, $\gamma[0, t] = K_t$;

伺 ト イヨ ト イヨ ト

- Is there a curve γ : [0,∞) → H such that for each t, H_t is the unbounded component of H \ γ[0, t]?
 Yes, Rohde and Schramm.
- $\gamma(0) = 0$, $\lim_{|z| \to \infty} |\gamma(t)| = \infty$, i.e., γ is an SLE_{κ} from 0 to ∞ in \mathbb{H} .
- γ is very different for different κ s:
 - $\kappa \in [0, 4]$, simple curve, hence, $\gamma[0, t] = K_t$;
 - $\kappa \in (4, 8)$, not simple, for a fixed $z, z \notin \gamma[0, \infty)$ a. s., but $z \in \cup_t K_t$;

< 回 > < 回 > < 回 > -

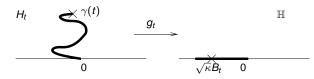
- Is there a curve γ : [0,∞) → H such that for each t, H_t is the unbounded component of H \ γ[0, t]?
 Yes, Rohde and Schramm.
- $\gamma(0) = 0$, $\lim_{|z| \to \infty} |\gamma(t)| = \infty$, i.e., γ is an SLE_{κ} from 0 to ∞ in \mathbb{H} .
- γ is very different for different κ s:
 - $\kappa \in [0, 4]$, simple curve, hence, $\gamma[0, t] = K_t$;
 - $\kappa \in (4, 8)$, not simple, for a fixed $z, z \notin \gamma[0, \infty)$ a. s., but $z \in \cup_t K_t$;
 - $\kappa \in [8, \infty)$, not simple and space filling.

< 回 > < 回 > < 回 > -

Is there a curve γ : [0,∞) → H such that for each t, H_t is the unbounded component of H \ γ[0, t]?
 Yes, Rohde and Schramm.

•
$$\gamma(0) = 0$$
, $\lim_{|z| \to \infty} |\gamma(t)| = \infty$, i.e., γ is an SLE_{κ} from 0 to ∞ in \mathbb{H} .

- γ is very different for different κ s:
 - $\kappa \in [0, 4]$, simple curve, hence, $\gamma[0, t] = K_t$;
 - $\kappa \in (4, 8)$, not simple, for a fixed $z, z \notin \gamma[0, \infty)$ a. s., but $z \in \cup_t K_t$;
 - $\kappa \in [8, \infty)$, not simple and space filling.
- For this talk we only need $\kappa = \frac{8}{3}$.



The area of the Brownian loop Presentation of the problem

- Some background on SLE.
- Overview of the idea of the proof
- Sketch of proof

2

Expected areas for regions of arbitrary index

• "Need a point on the boundary to start SLE"

A >

- B

- "Need a point on the boundary to start SLE"
- Identify the (almost surely) unique lowest point in the loop

- "Need a point on the boundary to start SLE"
- Identify the (almost surely) unique lowest point in the loop
- Translate loop so that this lowest point is at (0,0). Note: area is not affected.

- "Need a point on the boundary to start SLE"
- Identify the (almost surely) unique lowest point in the loop
- Translate loop so that this lowest point is at (0,0). Note: area is not affected.

- "Need a point on the boundary to start SLE"
- Identify the (almost surely) unique lowest point in the loop
- Translate loop so that this lowest point is at (0,0). Note: area is not affected.
- **Goal:** Compute $\mu_1(A)$.

- "Need a point on the boundary to start SLE"
- Identify the (almost surely) unique lowest point in the loop
- Translate loop so that this lowest point is at (0,0). Note: area is not affected.
- **Goal:** Compute $\mu_1(A)$.

The σ -finite measure

$$\mu^{\rm bub} = \int_0^\infty \frac{1}{2\,t^2} \mu_t dt$$

• encodes μ_t

• relates "nicely" to an SLE-type measure.

Consider the conformal transformation $m_{\varepsilon}:\mathbb{H}\rightarrow\mathbb{H}$

$$\mathsf{m}_{\epsilon}(z) = rac{\epsilon z}{z+1}$$

Consider the conformal transformation $m_{\varepsilon}:\mathbb{H}\rightarrow\mathbb{H}$

$$\mathsf{m}_{\epsilon}(z) = rac{\epsilon z}{z+1}$$

• Let ν be the law of an \mathbb{H} -Brownian excursion. Then,

Consider the conformal transformation $m_{\varepsilon}:\mathbb{H}\rightarrow\mathbb{H}$

$$\mathsf{m}_{\epsilon}(z) = rac{\epsilon z}{z+1}$$

- Let ν be the law of an \mathbb{H} -Brownian excursion. Then,
 - m_ϵ ∘ ν is the law of an *h*-transform of Brownian motion from 0 to ϵ in ℍ

Consider the conformal transformation $m_{\varepsilon}:\mathbb{H}\rightarrow\mathbb{H}$

$$\mathsf{m}_{\epsilon}(z) = rac{\epsilon z}{z+1}$$

- Let ν be the law of an \mathbb{H} -Brownian excursion. Then,
 - m_ϵ ∘ ν is the law of an *h*-transform of Brownian motion from 0 to ϵ in ℍ

۲

$$\mu^{\mathsf{bub}} = \lim_{\epsilon \to 0} \frac{1}{\epsilon^2} (\mathsf{m}_{\epsilon} \circ
u)$$

一日

Consider the conformal transformation $m_{\varepsilon}:\mathbb{H}\rightarrow\mathbb{H}$

$$\mathsf{m}_{\epsilon}(z) = rac{\epsilon z}{z+1}$$

- Let ν be the law of an \mathbb{H} -Brownian excursion. Then,
 - m_ϵ ∘ ν is the law of an *h*-transform of Brownian motion from 0 to ϵ in ℍ

$$\mu^{\mathsf{bub}} = \lim_{\epsilon o 0} rac{1}{\epsilon^2} (\mathsf{m}_\epsilon \circ
u)$$

• Let $\tilde{\nu}$ be the law of an $SLE_{8/3}$ in $\mathbb H$ from 0 to ∞ . Then,

Consider the conformal transformation $m_{\varepsilon}:\mathbb{H}\rightarrow\mathbb{H}$

$$\mathsf{m}_{\epsilon}(z) = rac{\epsilon z}{z+1}$$

- Let ν be the law of an \mathbb{H} -Brownian excursion. Then,
 - m_ϵ ∘ ν is the law of an *h*-transform of Brownian motion from 0 to ϵ in ℍ

$$\mu^{\mathsf{bub}} = \lim_{\epsilon \to 0} \frac{1}{\epsilon^2} (\mathsf{m}_{\epsilon} \circ \nu)$$

Let ν̃ be the law of an SLE_{8/3} in ℍ from 0 to ∞. Then,
 m_ϵ(ν̃) is the law of an SLE from 0 to ϵ in ℍ

Consider the conformal transformation $m_{\varepsilon}:\mathbb{H}\rightarrow\mathbb{H}$

$$\mathsf{m}_{\epsilon}(z) = rac{\epsilon z}{z+1}$$

- Let ν be the law of an \mathbb{H} -Brownian excursion. Then,
 - m_ϵ ∘ ν is the law of an *h*-transform of Brownian motion from 0 to ϵ in ℍ

$$\mu^{\mathsf{bub}} = \lim_{\epsilon \to 0} \frac{1}{\epsilon^2} (\mathsf{m}_{\epsilon} \circ \nu)$$

- Let $\tilde{\nu}$ be the law of an $SLE_{8/3}$ in $\mathbb H$ from 0 to ∞ . Then,
 - m_ϵ(ν̃) is the law of an SLE from 0 to ϵ in ℍ
 - Define

$$\mu^{\mathsf{sle}} = \lim_{\epsilon o 0} rac{1}{\epsilon^2} \mathsf{m}_{\epsilon}(ilde{
u})$$

Relationship between the Brownian and the *SLE* measures.

• Recall: $\nu = \mathbb{H}$ -Brownian excursion; $\tilde{\nu} = SLE_{8/3}$.

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Relationship between the Brownian and the *SLE* measures.

- Recall: $\nu = \mathbb{H}$ -Brownian excursion; $\tilde{\nu} = SLE_{8/3}$.
- LSW showed that 5 independent ν equal 8 independent $\tilde{\nu}$.

< 🗇 🕨 < 🖻 🕨 < 🖻

Relationship between the Brownian and the *SLE* measures.

- Recall: $\nu = \mathbb{H}$ -Brownian excursion; $\tilde{\nu} = SLE_{8/3}$.
- LSW showed that 5 independent ν equal 8 independent ν
- Easy consequence: $\frac{5}{8}\mu^{\text{bub}} = \mu^{\text{sle}}$ as measures on filled-in bubbles.

Strategy for finding the expected area of the Brownian loop.

Use

$$\mu^{\mathsf{bub}} = \int_0^\infty \frac{1}{2 t^2} \mu_t dt$$

to relate our fixed-time quantity (Brownian loop of time duration 1) to a geometric-type quantity for μ^{bub} .

A (10) A (10) A (10)

Strategy for finding the expected area of the Brownian loop.

Use

$$\mu^{\mathsf{bub}} = \int_0^\infty \frac{1}{2\,t^2} \mu_t dt$$

to relate our fixed-time quantity (Brownian loop of time duration 1) to a geometric-type quantity for μ^{bub} .

• Since $(5/8)\mu^{bub} = \mu^{sle}$, we can use *SLE* techniques to compute the geometric quantity.

The area of the Brownian loop

- Presentation of the problem
- Some background on SLE.
- Overview of the idea of the proof
- Sketch of proof

Expected areas for regions of arbitrary index

Let γ^* be the radius of the curve γ , i.e., $\gamma^* = \sup_{0 \le t \le t_{\gamma}} |\gamma(t)|$. Consider the "expected" area under the law μ^{bub} "restricted" to curves with $\gamma^* \in [1, 1 + \delta)$.

Let γ^* be the radius of the curve γ , i.e., $\gamma^* = \sup_{0 \le t \le t_{\gamma}} |\gamma(t)|$. Consider the "expected" area under the law μ^{bub} "restricted" to curves with $\gamma^* \in [1, 1 + \delta)$.

$$\mu^{\mathsf{bub}}(A;\gamma^*\in [1,1+\delta)) = \int A(\gamma) \mathbf{1}_{\{\gamma^*\in [1,1+\delta)\}} d\mu^{\mathsf{bub}}$$

Let γ^* be the radius of the curve γ , i.e., $\gamma^* = \sup_{0 \le t \le t_{\gamma}} |\gamma(t)|$. Consider the "expected" area under the law μ^{bub} "restricted" to curves with $\gamma^* \in [1, 1 + \delta)$.

$$\mu^{\text{bub}}(A;\gamma^* \in [1,1+\delta)) = \int A(\gamma) \mathbf{1}_{\{\gamma^* \in [1,1+\delta)\}} d\mu^{\text{bub}}$$
$$= \int_0^\infty \frac{1}{2t^2} \int A(\gamma) \mathbf{1}_{\{\gamma^* \in [1,1+\delta)\}} d\mu_t dt$$

Let γ^* be the radius of the curve γ , i.e., $\gamma^* = \sup_{0 \le t \le t_{\gamma}} |\gamma(t)|$. Consider the "expected" area under the law μ^{bub} "restricted" to curves with $\gamma^* \in [1, 1 + \delta)$.

$$\mu^{\text{bub}}(A;\gamma^* \in [1,1+\delta)) = \int A(\gamma) \mathbf{1}_{\{\gamma^* \in [1,1+\delta)\}} d\mu^{\text{bub}}$$
$$= \int_0^\infty \frac{1}{2t^2} \int A(\gamma) \mathbf{1}_{\{\gamma^* \in [1,1+\delta)\}} d\mu_t dt$$
$$= \int_0^\infty \frac{1}{2t^2} t \int A(\gamma) \mathbf{1}_{\{\gamma^* \in [\frac{1}{\sqrt{t}}, \frac{1+\delta}{\sqrt{t}})\}} d\mu_1 dt$$

Let γ^* be the radius of the curve γ , i.e., $\gamma^* = \sup_{0 \le t \le t_{\gamma}} |\gamma(t)|$. Consider the "expected" area under the law μ^{bub} "restricted" to curves with $\gamma^* \in [1, 1 + \delta)$.

$$\mu^{\text{bub}}(A;\gamma^* \in [1,1+\delta)) = \int A(\gamma) \mathbf{1}_{\{\gamma^* \in [1,1+\delta)\}} d\mu^{\text{bub}}$$

= $\int_0^\infty \frac{1}{2t^2} \int A(\gamma) \mathbf{1}_{\{\gamma^* \in [1,1+\delta)\}} d\mu_t dt$
= $\int_0^\infty \frac{1}{2t^2} t \int A(\gamma) \mathbf{1}_{\{\gamma^* \in [\frac{1}{\sqrt{t}}, \frac{1+\delta}{\sqrt{t}})\}} d\mu_1 dt$
= $\int A(\gamma) \int_0^\infty \frac{1}{2t} \mathbf{1}_{\{t \in [(\frac{1}{\gamma^*})^2, (\frac{1+\delta}{\gamma^*})^2)\}} dt d\mu_1$

José A. Trujillo Ferreras (FIM-ETH)

March 24th 2006 14 / 23

Let γ^* be the radius of the curve γ , i.e., $\gamma^* = \sup_{0 \le t \le t_{\gamma}} |\gamma(t)|$. Consider the "expected" area under the law μ^{bub} "restricted" to curves with $\gamma^* \in [1, 1 + \delta)$.

$$\mu^{\text{bub}}(A;\gamma^* \in [1,1+\delta)) = \int A(\gamma) \mathbf{1}_{\{\gamma^* \in [1,1+\delta)\}} d\mu^{\text{bub}}$$

= $\int_0^\infty \frac{1}{2t^2} \int A(\gamma) \mathbf{1}_{\{\gamma^* \in [1,1+\delta)\}} d\mu_t dt$
= $\int_0^\infty \frac{1}{2t^2} t \int A(\gamma) \mathbf{1}_{\{\gamma^* \in [\frac{1}{\sqrt{t}}, \frac{1+\delta}{\sqrt{t}}\}\}} d\mu_1 dt$
= $\int A(\gamma) \int_0^\infty \frac{1}{2t} \mathbf{1}_{\{t \in [(\frac{1}{\gamma^*})^2, (\frac{1+\delta}{\gamma^*})^2)\}} dt d\mu_1$
= $\log(1+\delta)\mu_1(A) = \log(1+\delta)\mathbb{E}(A)$

Since $\frac{5}{8}\mu^{\text{bub}} = \mu^{\text{sle}}$, we have

$$\frac{8}{5}\lim_{\delta\to 0}\frac{\mu^{\mathsf{sle}}(\mathsf{A};\gamma^*\in [1,1+\delta))}{\mathsf{log}(1+\delta)}=\mathbb{E}(\mathsf{A}).$$

<ロ> <四> <四> <四> <四> <四</p>

Since $\frac{5}{8}\mu^{\text{bub}} = \mu^{\text{sle}}$, we have $\frac{8}{5} \lim_{\delta \to 0} \frac{\mu^{\text{sle}}(A; \gamma^* \in [1, 1 + \delta))}{\log(1 + \delta)} = \mathbb{E}(A).$

• Let \mathbb{P}_{ϵ} be the law of an $SLE_{8/3}$ from 0 to ϵ in \mathbb{H} .

Since $\frac{5}{8}\mu^{\text{bub}} = \mu^{\text{sle}}$, we have $\frac{8}{5} \lim_{\delta \to 0} \frac{\mu^{\text{sle}}(A; \gamma^* \in [1, 1 + \delta))}{\log(1 + \delta)} = \mathbb{E}(A).$

- Let \mathbb{P}_{ϵ} be the law of an $SLE_{8/3}$ from 0 to ϵ in \mathbb{H} .
- Recalling $\mu^{sle} = \lim_{\epsilon \to 0} (1/\epsilon^2) \mathbb{P}_{\epsilon}$,

$$\frac{8}{5}\lim_{\delta\to 0}\lim_{\epsilon\to 0}\frac{\mathbb{P}_{\epsilon}(A;\gamma^{*}\in[1,1+\delta))}{\epsilon^{2}\log(1+\delta)}=\mathbb{E}(A).$$

José A. Trujillo Ferreras (FIM-ETH)

くゆ くらく くらく しょ

Since $\frac{5}{8}\mu^{\text{bub}} = \mu^{\text{sle}}$, we have $\frac{8}{5} \lim_{\delta \to 0} \frac{\mu^{\text{sle}}(A; \gamma^* \in [1, 1 + \delta))}{\log(1 + \delta)} = \mathbb{E}(A).$

• Let \mathbb{P}_{ϵ} be the law of an $SLE_{8/3}$ from 0 to ϵ in \mathbb{H} .

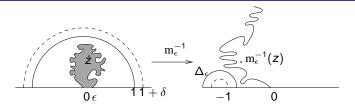
• Recalling
$$\mu^{\text{sle}} = \lim_{\epsilon \to 0} (1/\epsilon^2) \mathbb{P}_{\epsilon}$$
,

$$\frac{8}{5} \lim_{\delta \to 0} \lim_{\epsilon \to 0} \frac{\mathbb{P}_{\epsilon}(A; \gamma^* \in [1, 1 + \delta))}{\epsilon^2 \log(1 + \delta)} = \mathbb{E}(A).$$

By Fubini,

$$\frac{8}{5} \int_{\mathbb{D}^+} \lim_{\delta \to 0} \lim_{\epsilon \to 0} \frac{\mathbb{P}_{\epsilon} \{ z \text{ inside } \gamma, \gamma^* \in [1, 1 + \delta) \}}{\epsilon^2 \log(1 + \delta)} d\mathcal{A}(z) = \mathbb{E}(\mathcal{A}).$$

・ 同 ト ・ ヨ ト ・ ヨ ト ・ ヨ

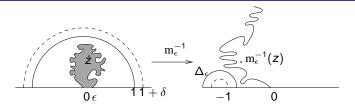


$$\mathbb{P}_{\epsilon}\{z \text{ inside } \gamma, \gamma^* \in [1, 1 + \delta)\} = \\ \mathbb{P}_{\epsilon}\{z \text{ inside } \gamma, \gamma^* < 1 + \delta\} - \mathbb{P}_{\epsilon}\{z \text{ inside } \gamma, \gamma^* < 1\}$$

José A. Trujillo Ferreras (FIM-ETH)

Expected area of the Brownian loop

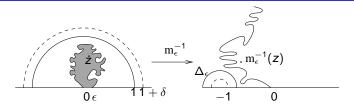
March 24th 2006 16 / 23



$$\mathbb{P}_{\epsilon}\{z \text{ inside } \gamma, \gamma^* \in [1, 1 + \delta)\} = \\ \mathbb{P}_{\epsilon}\{z \text{ inside } \gamma, \gamma^* < 1 + \delta\} - \mathbb{P}_{\epsilon}\{z \text{ inside } \gamma, \gamma^* < 1\}$$

Let \mathbb{P} denote the law of *SLE* from 0 to ∞ , then

A .

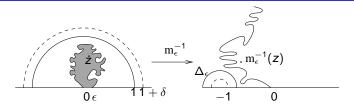


$$\mathbb{P}_{\epsilon}\{z \text{ inside } \gamma, \gamma^* \in [1, 1 + \delta)\} = \\ \mathbb{P}_{\epsilon}\{z \text{ inside } \gamma, \gamma^* < 1 + \delta\} - \mathbb{P}_{\epsilon}\{z \text{ inside } \gamma, \gamma^* < 1\}$$

Let $\mathbb P$ denote the law of SLE from 0 to $\infty,$ then

$$\begin{split} \mathbb{P}_{\epsilon} \{ z \text{ inside } \gamma, \gamma^* < 1 \} &= \mathbb{P} \{ \mathsf{m}_{\epsilon}^{-1}(z) \text{ right of } \gamma, \gamma \text{ avoids } \Delta_{\epsilon} \} \\ &= \mathbb{P} \{ \mathsf{m}_{\epsilon}^{-1}(z) \text{ right of } \gamma | \gamma \text{ avoids } \Delta_{\epsilon} \} \mathbb{P} \{ \gamma \text{ avoids } \Delta_{\epsilon} \} \end{split}$$

A >

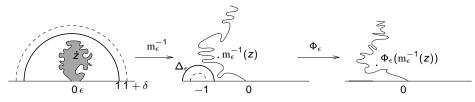


$$\mathbb{P}_{\epsilon}\{z \text{ inside } \gamma, \gamma^* \in [1, 1 + \delta)\} = \\ \mathbb{P}_{\epsilon}\{z \text{ inside } \gamma, \gamma^* < 1 + \delta\} - \mathbb{P}_{\epsilon}\{z \text{ inside } \gamma, \gamma^* < 1\}$$

Let $\mathbb P$ denote the law of SLE from 0 to $\infty,$ then

$$\begin{split} \mathbb{P}_{\epsilon} \{ z \text{ inside } \gamma, \gamma^* < 1 \} &= \mathbb{P} \{ \mathsf{m}_{\epsilon}^{-1}(z) \text{ right of } \gamma, \gamma \text{ avoids } \Delta_{\epsilon} \} \\ &= \mathbb{P} \{ \mathsf{m}_{\epsilon}^{-1}(z) \text{ right of } \gamma | \gamma \text{ avoids } \Delta_{\epsilon} \} \mathbb{P} \{ \gamma \text{ avoids } \Delta_{\epsilon} \} \end{split}$$

Slide does not use $\kappa = 8/3$.



 $\Phi_{\epsilon}:\mathbb{H}\setminus\Delta_{\epsilon}\to\mathbb{H},\quad \Phi_{\epsilon}(0)=0, \Phi_{\epsilon}(\infty)=\infty, \Phi_{\epsilon}'(\infty)=1.$

 $\mathbb{P}\{\mathsf{m}_{\epsilon}^{-1}(z) \text{ right of } \gamma | \gamma \text{ avoids } \Delta_{\epsilon}\} \mathbb{P}\{\gamma \text{ avoids } \Delta_{\epsilon}\} = \\ \mathbb{P}\{\Phi_{\epsilon}(\mathsf{m}_{\epsilon}^{-1}(z)) \text{ right of } \gamma\} \Phi_{\epsilon}'(0)^{5/8}$

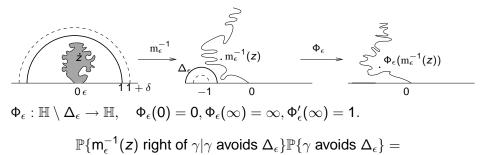
José A. Trujillo Ferreras (FIM-ETH)

Expected area of the Brownian loop

March 24th 2006 17 / 23

∃ ► 4 Ξ

A .



 $\mathbb{P}\{\Phi_{\epsilon}(\mathsf{m}_{\epsilon}^{-1}(z)) \text{ right of } \gamma\}\Phi_{\epsilon}'(0)^{5/8}$

Slide uses $\kappa = 8/3$. I.e., the conformal restriction property.

.

A b

• By scale invariance. $f(\theta) = \mathbb{P}\{z = re^{i\theta} \text{ is to the right of } \gamma\}.$

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

• By scale invariance. $f(\theta) = \mathbb{P}\{z = re^{i\theta} \text{ is to the right of } \gamma\}.$

• $X_t : \mathbb{H} \setminus \gamma(0, t] \to \mathbb{H}$ $X_t(\infty) = \infty, X'_t(\infty) = 1, X_t(\gamma(t)) = 0.$

• By scale invariance. $f(\theta) = \mathbb{P}\{z = re^{i\theta} \text{ is to the right of } \gamma\}.$

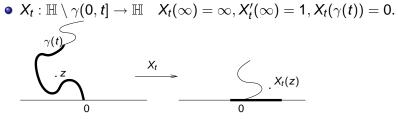
• $X_t : \mathbb{H} \setminus \gamma(0, t] \to \mathbb{H}$ $X_t(\infty) = \infty, X'_t(\infty) = 1, X_t(\gamma(t)) = 0.$

۰

 $\mathbb{P}(z \text{ is on the right } | \mathcal{F}_t) = \mathbb{P}(X_t(z) \text{ is on the right}) = f(\arg(X_t)).$ I.e., $f(\arg(X_t))$ is a martingale.

< 回 > < 三 > < 三 >

• By scale invariance. $f(\theta) = \mathbb{P}\{z = re^{i\theta} \text{ is to the right of } \gamma\}.$



۰

 $\mathbb{P}(z \text{ is on the right } | \mathcal{F}_t) = \mathbb{P}(X_t(z) \text{ is on the right}) = f(\arg(X_t)).$

I.e., $f(\arg(X_t))$ is a martingale.

• Note: $X_t(z) = g_t(z) - \sqrt{\kappa}B_t$. Then, use the differential equation for $g_t(z)$ and Ito's formula to get an SDE for $f(\arg(X_t))$.

• *dt*-term must be zero. Implies second order ODE for *f*.

- dt-term must be zero. Implies second order ODE for f.
- Using the boundary conditions f(0) = 1, $f(\pi) = 0$. We get

$$f(\theta) = \frac{1}{\int_0^{\pi} (\sin u)^{\frac{2(4-\kappa)}{\kappa}} du} \int_{\theta}^{\pi} (\sin u)^{\frac{2(4-\kappa)}{\kappa}} du.$$

4 **A** N A **B** N A **B** N

- *dt*-term must be zero. Implies second order ODE for *f*.
- Using the boundary conditions f(0) = 1, $f(\pi) = 0$. We get

$$f(\theta) = \frac{1}{\int_0^{\pi} (\sin u)^{\frac{2(4-\kappa)}{\kappa}} du} \int_{\theta}^{\pi} (\sin u)^{\frac{2(4-\kappa)}{\kappa}} du.$$

• In particular, for $\kappa = \frac{8}{3}$:

 \mathbb{P} {*z* is to the right of γ [0, ∞)} = 1/2 + 1/2 cos(θ).

- *dt*-term must be zero. Implies second order ODE for *f*.
- Using the boundary conditions f(0) = 1, $f(\pi) = 0$. We get

$$f(\theta) = \frac{1}{\int_0^{\pi} (\sin u)^{\frac{2(4-\kappa)}{\kappa}} du} \int_{\theta}^{\pi} (\sin u)^{\frac{2(4-\kappa)}{\kappa}} du.$$

• In particular, for $\kappa = \frac{8}{3}$:

 \mathbb{P} {*z* is to the right of γ [0, ∞)} = 1/2 + 1/2 cos(θ).

• Note we assumed that f was C^2 to apply Ito's.

- *dt*-term must be zero. Implies second order ODE for *f*.
- Using the boundary conditions f(0) = 1, $f(\pi) = 0$. We get

$$f(\theta) = \frac{1}{\int_0^{\pi} (\sin u)^{\frac{2(4-\kappa)}{\kappa}} du} \int_{\theta}^{\pi} (\sin u)^{\frac{2(4-\kappa)}{\kappa}} du.$$

• In particular, for $\kappa = \frac{8}{3}$:

 \mathbb{P} {*z* is to the right of γ [0, ∞)} = 1/2 + 1/2 cos(θ).

- Note we assumed that f was C^2 to apply Ito's.
- But, repeat same (rigorous) Ito calculation with *f* above, then *f*(arg(*X_t*)) is a martingale.

- dt-term must be zero. Implies second order ODE for f.
- Using the boundary conditions f(0) = 1, $f(\pi) = 0$. We get

$$f(\theta) = \frac{1}{\int_0^{\pi} (\sin u)^{\frac{2(4-\kappa)}{\kappa}} du} \int_{\theta}^{\pi} (\sin u)^{\frac{2(4-\kappa)}{\kappa}} du.$$

• In particular, for $\kappa = \frac{8}{3}$:

 \mathbb{P} {*z* is to the right of γ [0, ∞)} = 1/2 + 1/2 cos(θ).

- Note we assumed that f was C^2 to apply Ito's.
- But, repeat same (rigorous) Ito calculation with *f* above, then *f*(arg(*X_t*)) is a martingale.
- $f(z) = f(\operatorname{arg}(X_0)) = \mathbb{E}[f(\operatorname{arg}(X_\infty))] = \mathbb{P}\{z \text{ right of } \gamma\}.$

Expected areas for regions of arbitrary index.

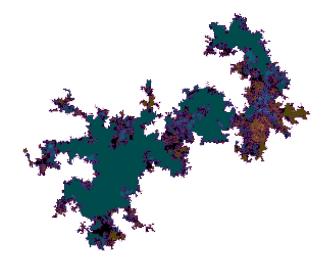


Figure: Different indices in a random walk of 50000 steps, black areas correspond to index 0.

José A. Trujillo Ferreras (FIM-ETH)

Expected area of the Brownian loop

March 24th 2006 20 / 23

 $(B_t)_{0 \le t \le 1}$ a Brownian loop in \mathbb{C} starting at 0. n_z the index of z.

 $(B_t)_{0 \le t \le 1}$ a Brownian loop in \mathbb{C} starting at 0. n_z the index of z.

• For $n \neq 0$, let W_n denote the area of the set of points of index $n_z = n$.

$$\mathcal{W}_n = \int_{\mathbb{C}} \mathbf{1}_{\{n_z=n\}} dz \,,$$

周レイモレイモ

 $(B_t)_{0 \le t \le 1}$ a Brownian loop in \mathbb{C} starting at 0. n_z the index of z.

• For $n \neq 0$, let W_n denote the area of the set of points of index $n_z = n$.

$$\mathcal{W}_n = \int_{\mathbb{C}} \mathbf{1}_{\{n_z=n\}} dz, \qquad \therefore \ \mathbb{E}(\mathcal{W}_n) = \int_{\mathbb{C}} \mathbb{P}\{n_z=n\} dz.$$

周レイモレイモ

 $(B_t)_{0 \le t \le 1}$ a Brownian loop in \mathbb{C} starting at 0. n_z the index of z.

• For $n \neq 0$, let W_n denote the area of the set of points of index $n_z = n$.

$$\mathcal{W}_n = \int_{\mathbb{C}} \mathbf{1}_{\{n_z=n\}} dz, \qquad \therefore \mathbb{E}(\mathcal{W}_n) = \int_{\mathbb{C}} \mathbb{P}\{n_z=n\} dz.$$

• Let \mathcal{W}_0 be the area of the set of points inside the loop with index zero:

$$\mathcal{W}_0 = \int_{\mathbb{C}} \mathbf{1}_{\{n_z=0\} \cap \{z \text{ is inside}\}} dz$$
 .

 $(B_t)_{0 \le t \le 1}$ a Brownian loop in \mathbb{C} starting at 0. n_z the index of z.

• For $n \neq 0$, let W_n denote the area of the set of points of index $n_z = n$.

$$\mathcal{W}_n = \int_{\mathbb{C}} \mathbf{1}_{\{n_z=n\}} dz, \qquad \therefore \mathbb{E}(\mathcal{W}_n) = \int_{\mathbb{C}} \mathbb{P}\{n_z=n\} dz.$$

• Let \mathcal{W}_0 be the area of the set of points inside the loop with index zero:

$$\mathcal{W}_0 = \int_{\mathbb{C}} \mathbf{1}_{\{n_z=0\} \cap \{z \text{ is inside}\}} dz$$
.

• Total area inside the loop, A, satisfies

$$\mathcal{A} = \sum_{n \in \mathbb{Z}} \mathcal{W}_n,$$

 $(B_t)_{0 \le t \le 1}$ a Brownian loop in \mathbb{C} starting at 0. n_z the index of z.

• For $n \neq 0$, let W_n denote the area of the set of points of index $n_z = n$.

$$\mathcal{W}_n = \int_{\mathbb{C}} \mathbf{1}_{\{n_z=n\}} dz, \qquad \therefore \mathbb{E}(\mathcal{W}_n) = \int_{\mathbb{C}} \mathbb{P}\{n_z=n\} dz.$$

• Let \mathcal{W}_0 be the area of the set of points inside the loop with index zero:

$$\mathcal{W}_0 = \int_{\mathbb{C}} \mathbf{1}_{\{n_z=0\} \cap \{z \text{ is inside}\}} dz$$
.

• Total area inside the loop, A, satisfies

$$\mathcal{A} = \sum_{n \in \mathbb{Z}} \mathcal{W}_n, \qquad \therefore \mathbb{E}(\mathcal{A}) = \frac{\pi}{5} = \sum_{n \in \mathbb{Z}} \mathbb{E}(\mathcal{W}_n).$$

Theorem (M. Yor)

Write $z = re^{i\theta}$, with $r \neq 0$. Then,

$$\begin{split} \mathbb{P}(n_{z} = n) &= e^{-r^{2}} [\Psi_{r}((2n-1)\pi) - \Psi_{r}((2n+1)\pi)] \text{ if } n \in \mathbb{Z} \setminus 0 \,, \\ \mathbb{P}(n_{z} = 0) &= 1 + e^{-r^{2}} [\Psi_{r}(-\pi) - \Psi_{r}(\pi)] \,, \end{split}$$

where $\forall x \neq 0$,

$$\Psi_r(\mathbf{x}) = \frac{\mathbf{x}}{\pi} \int_0^\infty \mathbf{e}^{-r^2 \cosh(t)} \frac{dt}{t^2 + \mathbf{x}^2} \, .$$

3

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Values of expected areas of any index.

• Yor \Rightarrow

$$\mathbb{E}(\mathcal{W}_n)=\frac{1}{2\pi n^2},\qquad \forall n\neq 0.$$

2

Values of expected areas of any index.

• Yor \Rightarrow $\mathbb{E}(\mathcal{W}_n) = \frac{1}{2\pi n^2}, \qquad \forall n \neq 0.$ • $\sum_{n \in \mathbb{Z} \setminus \{0\}} \frac{1}{2\pi n^2} = 2\frac{1}{2\pi} \frac{\pi^2}{6}.$

3

A (10) A (10)

Values of expected areas of any index.

• Yor \Rightarrow $\mathbb{E}(\mathcal{W}_n) = \frac{1}{2\pi n^2}, \quad \forall n \neq 0.$ • $\sum_{n \in \mathbb{Z} \setminus \{0\}} \frac{1}{2\pi n^2} = 2\frac{1}{2\pi} \frac{\pi^2}{6}.$ • $\mathbb{E}(\mathcal{W}_0) = \frac{\pi}{5} - \frac{\pi}{6} = \frac{\pi}{30}.$

José A. Trujillo Ferreras (FIM-ETH)

Expected area of the Brownian loop

March 24th 2006 23 / 23

3

A (10) A (10)