Universality for Laguerre-type ensembles at the hard edge of the spectrum

Maarten Vanlessen

joint work with
P. Deift, D. Gioev, and T. Kriecherbauer

Eurandom, 24th March 2006

Introduction

Consider Random Matrix Ensembles (RME) leading to the following distribution on the eigenvalues $\lambda_{1}, \ldots, \lambda_{n}$

$$
P_{n}\left(\lambda_{1}, \ldots, \lambda_{n}\right)=\frac{1}{Z_{n, \beta}} \prod_{i=1}^{n} w_{\beta}\left(\lambda_{i}\right) \prod_{1 \leq i<j \leq n}\left|\lambda_{i}-\lambda_{j}\right|^{\beta}
$$

where

$$
\beta=1,2,4
$$

$w_{\beta}(x)=\left\{\begin{array}{ll}w(x), & \beta=2,4 \\ \sqrt{w(x)}, & \beta=1\end{array} \quad w(x)=e^{-V(x)}\right.$ or $e^{-n V(x)}$
$Z_{n, \beta}$ is a normalization constant

Introduction

One of the main interests in RMT:
Universality Conjecture
Limiting statistical behavior of the (appropriately scaled) eigenvalues depends only on the symmetry of the system. So, independent of V.

Aim of this talk:

Give INSIGHT in the techniques that we use to prove the universality conjecture for the cases $\beta=2$ and $\beta=1,4$.

- Case $\beta=2$: Riemann-Hilbert approach

Deift-Kriecherbauer-McLaughlin-Venakides-Zhou 1999, . . .

- Case $\beta=1,4$: Widom's formalism

Widom 1998, Deift-Gioev 2004 \& 2005, Deift-Gioev-Kriecherbauer-V 2006

Introduction

Case $\beta=2$

The eigenvalue statistics can be expressed in terms of a scalar 2-point kernel K_{n}

$$
K_{n}(x, y)=\sum_{k=0}^{n-1} \phi_{k}(x) \phi_{k}(y)
$$

where

$$
\begin{aligned}
& \phi_{k}(x)=p_{k}(x) \sqrt{w(x)} \\
& p_{k}(x)=\gamma_{k} x^{k}+\ldots \quad \int p_{k}(x) p_{j}(x) w(x) d x=\delta_{j k}
\end{aligned}
$$

For example:

$$
\begin{aligned}
& P_{n}\left(\lambda_{1}, \ldots, \lambda_{n}\right)=\frac{1}{n!} \operatorname{det}\left(K_{n}\left(\lambda_{i}, \lambda_{j}\right)\right)_{1 \leq i, j \leq n} \\
& \mathcal{R}_{n, k}\left(\lambda_{1}, \ldots, \lambda_{k}\right)=\operatorname{det}\left(K_{n}\left(\lambda_{i}, \lambda_{j}\right)\right)_{1 \leq i, j \leq k}
\end{aligned}
$$

Introduction

Case $\beta=2$

So, to prove universality conjecture \rightarrow need information on K_{n}
Main idea to get this:

- Christoffel-Darboux formula $\rightarrow K_{n}$ in terms of ϕ_{n-1}, ϕ_{n} and γ_{n-1}, γ_{n}

$$
K_{n}(x, y)=\frac{\gamma_{n-1}}{\gamma_{n}} \frac{\phi_{n}(x) \phi_{n-1}(y)-\phi_{n-1}(x) \phi_{n}(y)}{x-y}
$$

- Asymptotics of ϕ_{n-1}, ϕ_{n} and γ_{n-1}, γ_{n}
(RH problem for OP)

We will come back to this later!

Introduction

Case $\beta=1,4$

Role of the scalar 2-point kernel K_{n} is now played by 2×2 matrix kernels $K_{n, 1}$ and $K_{n, 4}$ given by

Tracy-Widom 1998

$$
\begin{aligned}
& \left.K_{n, 1}(x, y)=\left(\begin{array}{cc}
S_{n, 1}(x, y) & \left(S_{n, 1} D\right)(x, y) \\
\left(\varepsilon S_{n, 1}\right)(x, y)-\varepsilon(x, y) & S_{n, 1}(y, x)
\end{array}\right) \quad \text { (for } n \text { even) }\right) \\
& K_{n, 4}(x, y)=\frac{1}{2}\left(\begin{array}{cc}
S_{n, 4}(x, y) & \left(S_{n, 4} D\right)(x, y) \\
\left(\varepsilon S_{n, 4}\right)(x, y) & S_{n, 4}(y, x)
\end{array}\right)
\end{aligned}
$$

where
D is the differentiation operator
ε is the integral operator with kernel $\varepsilon(x, y)=\frac{1}{2} \operatorname{sgn}(x-y)$
$S_{n, 1}$ and $S_{n, 4}$ are scalar kernels

Introduction

Case $\beta=1,4$

The scalar kernels $S_{n, 1}$ and $S_{n, 4}$ are given as follows:
Let $\psi_{j}(x)=q_{j}(x) \sqrt{w(x)}$ with q_{j} any polynomial of exact degree j. Then

- $S_{n, 1}(x, y)=-\left(\psi_{0}(x), \ldots, \psi_{n-1}(x)\right) M_{n, 1}^{-1}\left(\begin{array}{c}\varepsilon \psi_{0}(y) \\ \vdots \\ \varepsilon \psi_{n-1}(y)\end{array}\right)$
$M_{n, 1}=n \times n$ matrix with entries $\left\langle\psi_{j}, \varepsilon \psi_{k}\right\rangle$
- $S_{n, 4}(x, y)=\left(\psi_{0}^{\prime}(x), \ldots, \psi_{2 n-1}^{\prime}(x)\right) M_{n, 4}^{-1}\left(\begin{array}{c}\psi_{0}(y) \\ \vdots \\ \psi_{2 n-1}(y)\end{array}\right)$
$M_{n, 4}=2 n \times 2 n$ matrix with entries $\left\langle\psi_{j}, \psi_{k}^{\prime}\right\rangle$

Introduction

Case $\beta=1,4$

Can choose the polynomials q_{j} arbitrarely! Need to choose them such that:

- Analogue of the C-D formula (in terms of ψ_{n+j} with $|j| \leq c$)
- Should be able to get asymptotics of the ψ_{n+j}
- Control of $M_{n, 1}^{-1}$ and $M_{n, 4}^{-1}$

Choice 1: Skew orthogonal polynomials (SOP) Are such that

$$
M_{n, \beta}=\left(\begin{array}{cccc}
0 & 1 & & \\
-1 & 0 & & \\
& 0 & 1 \\
& -1 & 0 & \\
& & \ldots
\end{array}\right) \quad \rightarrow \quad \text { control of } M_{n, \beta}^{-1}
$$

Problem: not much is known about asymptotics of general SOP

Introduction

Case $\beta=1,4$

Choice 2: Orthogonal polynomials (Choice that we take in this talk)
Widom's formalism
For any weight w such that w^{\prime} / w is a rational function

$$
S_{n, \beta}(x, y)=K_{n}(x, y)+\text { finite sum of } \phi_{n+j} \text { with }|j| \leq c
$$

Some notes:
Analogue of C-D formula
Information on K_{n} due to the case $\beta=2$
Finite sum contains inverse matrix which has to be controlled

Widom's formalism has been used to prove the universality conjecture in the bulk/soft edge of the spectrum for the case

$$
w(x)=e^{-V(x)}, \quad V(x)=\sum_{k=0}^{2 m} q_{k} x^{k} \quad\left(q_{2 m}>0, m \geq 1\right)
$$

Our result

Proof of the universality conjecture (in the bulk, at the hard edge and at the soft edge of the spectrum) for RME associated to Laguerre-type weights

$$
w(x)=x^{\alpha} e^{-V(x)}, \quad \text { for } x \in[0, \infty)
$$

where

$$
\alpha>0, \quad V(x)=\sum_{k=0}^{m} q_{k} x^{k} \quad\left(q_{m}>0, m \geq 1\right)
$$

Our result

In this talk:

- Restrict to hard edge of the spectrum in bulk: result agrees with Deift-Gioev 2004 at soft edge: result agrees with Deift-Gioev 2005
- For $\beta=1,4$ consider only the (1,1)-entry of $K_{n, \beta}$ other entries have similar formulae

Our result

Introduce the notation (scaling)

$$
\lambda_{n}=\frac{\beta_{n}}{4 c_{n} n^{2}} \quad \beta_{n} \sim \beta_{m} n^{1 / m} \quad c_{n} \sim\left(\frac{2 m}{2 m-1}\right)^{2}
$$

Then, for $\xi, \eta \in(0, \infty)$:

$$
\begin{aligned}
\lim _{n \rightarrow \infty} \lambda_{n} K_{n}\left(\lambda_{n} \xi, \lambda_{n} \eta\right) & =\frac{J_{\alpha}(\sqrt{\xi}) \sqrt{\eta} J_{\alpha}^{\prime}(\sqrt{\eta})-J_{\alpha}(\sqrt{\eta}) \sqrt{\xi} J_{\alpha}^{\prime}(\sqrt{\xi})}{2(\xi-\eta)} \\
& \equiv K_{J}(\xi, \eta)
\end{aligned}
$$

Our result

For n even and $\xi, \eta \in(0, \infty)$:

$$
\begin{aligned}
& \lim _{n \rightarrow \infty} \lambda_{n} S_{n, 1}\left(\lambda_{n} \xi, \lambda_{n} \eta\right) \\
& \quad=K_{J}(\xi, \eta)-\frac{1}{4} \frac{J_{\alpha+1}(\sqrt{\xi})}{\sqrt{\xi}} \int_{\sqrt{\eta}}^{\infty}\left(J_{\alpha+1}(s)-\frac{2 \alpha}{s} J_{\alpha}(s)\right) d s
\end{aligned}
$$

$$
\begin{aligned}
\lim _{n \rightarrow \infty} & \lambda_{n} S_{\frac{n}{2}, 4}\left(\lambda_{n} \xi, \lambda_{n} \eta\right) \\
& =K_{J}(\xi, \eta)+\frac{1}{4}\left(\frac{J_{\alpha+1}(\sqrt{\xi})}{\sqrt{\xi}}-\frac{2 \alpha}{\xi} J_{\alpha}(\sqrt{\xi})\right) \int_{0}^{\sqrt{\eta}} J_{\alpha+1}(s) d s
\end{aligned}
$$

Riemann-Hilbert approach

RH problem $=$ Seek a function f satisfying some conditions:

- $f: \mathbb{C} \backslash \gamma \rightarrow \mathbb{C}$ is analytic
- $f_{+}(s)-f_{-}(s)=v(s)$ for $s \in \gamma$
- $f(z) \rightarrow 0$ as $z \rightarrow \infty$

Solution: Sokhotskii-Plemelj formula

$$
f(z)=\frac{1}{2 \pi i} \oint_{\gamma} \frac{v(s)}{s-z} d s \equiv C(v)(z), \quad \text { for } z \in \mathbb{C} \backslash \gamma
$$

Riemann-Hilbert approach

Seek a 2×2 matrix valued function Y analytic on $\mathbb{C} \backslash \mathbb{R}$ having the following jump and asymptotics

$$
\begin{aligned}
& Y_{+}(x)=Y_{-}(x)\left(\begin{array}{cc}
1 & w(x) \\
0 & 1
\end{array}\right), \quad \text { for } x \in \mathbb{R}, \\
& Y(z)=[I+\mathcal{O}(1 / z)]\left(\begin{array}{cc}
z^{n} & 0 \\
0 & z^{-n}
\end{array}\right), \quad \text { as } z \rightarrow \infty .
\end{aligned}
$$

The RH problem for Y has a unique solution

$$
Y(z)=\left(\begin{array}{cc}
\gamma_{n}^{-1} p_{n}(z) & C\left(\gamma_{n}^{-1} p_{n} w\right)(z) \\
-2 \pi i \gamma_{n-1} p_{n-1}(z) & C\left(-2 \pi i \gamma_{n-1} p_{n-1} w\right)(z)
\end{array}\right), \quad \text { for } z \in \mathbb{C} \backslash \mathbb{R}
$$

Riemann-Hilbert approach

Recall that

$$
K_{n}(x, y)=\sqrt{w(x)} \sqrt{w(y)} \frac{\gamma_{n-1}}{\gamma_{n}} \frac{p_{n}(x) p_{n-1}(y)-p_{n-1}(x) p_{n}(y)}{x-y}
$$

Since

$$
\frac{p_{n}}{\gamma_{n}}=Y_{11}, \quad \gamma_{n-1} p_{n-1}=\frac{1}{-2 \pi i} Y_{21}
$$

we then obtain

$$
K_{n}(x, y)=\sqrt{w(x)} \sqrt{w(y)} \frac{1}{2 \pi i(x-y)}\left(\begin{array}{ll}
0 & 1
\end{array}\right) Y^{-1}(y) Y(x)\binom{1}{0}
$$

\rightarrow Need to determine the asymptotics of Y

Riemann-Hilbert approach

Deift/Zhou steepest descent method

1. Do series of transformations $Y \mapsto \cdots \mapsto R$ to arrive at a RH problem for R

- with jumps uniformly close to I, as $n \rightarrow \infty$
- normalized at infinity (i.e., $R(z) \rightarrow I$ as $z \rightarrow \infty$)

2. Then

$$
R(z)=I+\mathcal{O}(1 / n), \quad \text { as } n \rightarrow \infty \text { uniformly for } z
$$

3. By unfolding the series of transformations $Y \mapsto \cdots \mapsto R$ we obtain the asymptotics of Y.

Riemann-Hilbert approach

Step 1: Normalization of the RH problem: $Y \mapsto T$
It uses the \log transform of the equilibrium measure μ of \mathbb{R}_{+}in the presence of the external field V, which is, e.g. for the case $V(x)=4 x$ known to be

$$
d \mu(x)=\frac{2}{\pi} \sqrt{\frac{1-x}{x}} \chi_{(0,1]}(x) d x
$$

The effect of this transformation is

- RH problem is normalized at infinity (i.e. $T(z) \rightarrow I$ as $z \rightarrow \infty$)
- new jump matrix v_{T} looks like

$$
v_{T}(x)=\left\{\begin{array}{cc}
\left(\begin{array}{cc}
\text { oscillatory } & x^{\alpha} \\
0 & \text { oscillatory }
\end{array}\right), & \text { for } x \in(0,1) \\
I+\exp \text { small, } & \text { for } x \in(1, \infty)
\end{array}\right.
$$

Riemann-Hilbert approach

Deift/Zhou steepest descent method

Step 2: Opening of the lens: $T \mapsto S$
Transform the oscillatory diagonal entries of v_{T} into exponentially decaying off-diagonal entries by opening the lens.

The effect of this transformation is that S has now jumps on a lens shaped region

which look like

$$
v_{S}(x)=\left\{\begin{array}{cc}
\left(\begin{array}{cc}
0 & x^{\alpha} \\
-x^{-\alpha} & 0
\end{array}\right), & \text { for } x \in(0,1) \\
I+\exp \text { small, } & \text { for } x \text { elsewhere. }
\end{array}\right.
$$

Riemann-Hilbert approach

Deift/Zhou steepest descent method

Step 3: Parametrix $P^{(\infty)}$ for the outside region
Introduce a matrix valued function $P^{(\infty)}$ with jump only on $(0,1)$ where it satisfies the same jump relation as S does.

Suggestion for the final transformation: $R=S\left(P^{(\infty)}\right)^{-1}$
Then, R has only jumps on

Problem: jumps are not uniformly close to $/$ near 0 and 1
\rightarrow Need to do a local analysis near 0 and 1

Riemann-Hilbert approach

Deift/Zhou steepest descent method

Step 4: Parametrix P near 0 and 1
Surround 0 and 1 with small circles

and seek P such that

- P has the same jumps as S inside the circles
- P matches with $P^{(\infty)}$ on the circles, i.e.

$$
P\left(P^{(\infty)}\right)^{-1}=I+\mathcal{O}(1 / n) \quad \text { as } n \rightarrow \infty
$$

The construction of P is very technical and uses Airy functions near 1 (DKMVZ 1999) and Bessel functions near 0 (Kuijlaars-McLaughlin-Van Assche-V 2004)

Riemann-Hilbert approach

Deift/Zhou steepest descent method

Step 5: Final transformation: $S \mapsto R$
Let $R= \begin{cases}S\left(P^{(\infty)}\right)^{-1}, & \text { outside the circles } \\ S P^{-1}, & \text { inside the circles }\end{cases}$
Then, by construction

- $R(z) \rightarrow I$ as $z \rightarrow \infty$
- R has jumps on the following system of contours

This yields: $R(z)=I+\mathcal{O}\left(n^{-1}\right)$ as $n \rightarrow \infty$

Widom's formalism

Can be applied to all weights w such that $\frac{w^{\prime}}{w}$ is a rational function

- Introduce

$$
\left.\begin{array}{rl}
\mathcal{H} & =\operatorname{span}\left(\phi_{0}, \ldots, \phi_{n-1}\right) \\
\mathfrak{g} & =\operatorname{span}\left(\left\{x^{j} \phi_{n}(x), x^{j} \phi_{n-1}(x) \mid j=-1,0, \ldots, m-2\right\}\right) \\
& =\operatorname{span}\left(\left\{\phi_{n-m+1}, \ldots, \phi_{n+m-2}\right\} \cup\left\{\frac{\phi_{n}(x)}{x}, \frac{\phi_{n-1}(x)}{x}\right\}\right) \\
\Phi_{1} & =\left(\phi_{n-1}, \phi_{n-2}, \ldots, \phi_{n-m+1}, \psi_{1}\right) \\
\Phi_{2} & =\left(\phi_{n}, \phi_{n+1}, \ldots, \phi_{n+m-2}, \psi_{2}\right) \\
\Phi & =\left(\Phi_{1}, \Phi_{2}\right)
\end{array} \quad \text { basis of } \mathfrak{g} \cap \mathcal{H}\right\}
$$

Widom's formalism

- There exists $2 m \times 2 m$ matrix A such that $[D, K] f=\Phi A\left\langle f, \Phi^{t}\right\rangle$

$$
A=\left(\begin{array}{cc}
0 & A_{12} \\
A_{21} & 0
\end{array}\right) \quad \text { symmetric }
$$

- $B=\left\langle\varepsilon \Phi^{t}, \Phi\right\rangle \equiv\left(\begin{array}{ll}B_{11} & B_{12} \\ B_{21} & B_{22}\end{array}\right) \quad$ skew symmetric
$-C=\left(\begin{array}{cc}I+(B A)_{11} & (B A)_{12} \\ (B A)_{21} & (B A)_{22}\end{array}\right) \equiv\left(\begin{array}{ll}C_{11} & C_{12} \\ C_{21} & C_{22}\end{array}\right)$
Then

$$
\begin{aligned}
& S_{\frac{n}{2}, 4}(x, y)=K_{n}(x, y)-\Phi_{2}(x) A_{21} \varepsilon \Phi_{1}(y)^{t}-\Phi_{2}(x) A_{21} C_{11}^{-1} C_{12} \varepsilon \Phi_{2}(y)^{t} \\
& S_{n, 1}(x, y)=K_{n}(x, y)-\left(\Phi_{1}(x), 0\right) \cdot\left(A C(I-B A C)^{-1}\right)^{t} \cdot\binom{\varepsilon \Phi_{1}(y)^{t}}{\varepsilon \Phi_{2}(y)^{t}}
\end{aligned}
$$

Widom's formalism

The following important relation holds:

$$
B A C=\left(\begin{array}{cc}
0 & 0 \\
C_{21} & C_{22}
\end{array}\right)
$$

With this

$$
\begin{aligned}
& S_{\frac{n}{2}, 4}(x, y)=K_{n}(x, y)-\Phi_{2}(x) A_{21} \varepsilon \Phi_{1}(y)^{t}-\Phi_{2}(x) G_{11} \varepsilon \Phi_{2}(y)^{t} \\
& S_{n, 1}(x, y)=K_{n}(x, y)-\Phi_{1}(x) A_{12} \varepsilon \Phi_{2}(y)^{t}-\Phi_{1}(x) \widehat{G}_{11} \varepsilon \Phi_{1}(y)^{t}
\end{aligned}
$$

where

$$
\begin{aligned}
& G_{11}=A_{21}\left(I+B_{12} A_{21}\right)^{-1} C_{12} \\
& \widehat{G}_{11}^{t}=A_{12}\left(I-B_{21} A_{12}\right)^{-1} C_{21}
\end{aligned}
$$

Widom's formalism

Problems to attack are:

- Asymptotics of ϕ_{n} and $\psi_{j} \rightarrow$ RHP for OP
- Asymptotics of A_{21} (use the asymptotics of the recurrence coef.)

$$
A_{21} \sim-\frac{n}{\beta_{n}}\left(\begin{array}{cc}
Q & 0 \\
0 & 1 / 2
\end{array}\right) \equiv-\frac{n}{\beta_{n}} Y
$$

- Asymptotics of B_{12}

$$
\begin{aligned}
& \left.\left\langle\varepsilon \phi_{p}, \phi_{q}\right\rangle \text { (main problem: double integral of } \phi_{p} \text { with } \phi_{q}\right) \\
& \left\langle\varepsilon \phi_{p}, \psi_{j}\right\rangle \\
& \left\langle\varepsilon \psi_{1}, \psi_{2}\right\rangle \\
& \left\langle\begin{array}{l}
\psi_{1}
\end{array}\right. \\
& B_{12} \sim \frac{\beta_{n}}{n}\left(\begin{array}{ll}
R & \psi_{2} \\
v & v^{t}-\frac{1}{\sqrt{2 m-1}}
\end{array}\right) \equiv \frac{\beta_{n}}{n} X
\end{aligned}
$$

- Control $\left(I+B_{12} A_{21}\right)^{-1}$ and $\left(I-B_{21} A_{12}\right)^{-1}=\left(I+A_{21} B_{12}\right)^{-t}$
\rightarrow prove invertibility of $I-X Y$

Questions?

