Universality for Laguerre-type ensembles at the hard edge of the spectrum

Maarten Vanlessen

joint work with P. Deift, D. Gioev, and T. Kriecherbauer

Eurandom, 24th March 2006

Introduction

Consider Random Matrix Ensembles (RME) leading to the following distribution on the eigenvalues $\lambda_1, \ldots, \lambda_n$

$$P_n(\lambda_1,\ldots,\lambda_n) = rac{1}{Z_{n,\beta}}\prod_{i=1}^n w_{\beta}(\lambda_i)\prod_{1\leq i< j\leq n} |\lambda_i - \lambda_j|^{\beta}$$

where

$$\beta = 1, 2, 4$$

$$w_{\beta}(x) = \begin{cases} w(x), & \beta = 2, 4\\ \sqrt{w(x)}, & \beta = 1 \end{cases} \quad w(x) = e^{-V(x)} \text{ or } e^{-nV(x)}$$

 $Z_{n,\beta}$ is a normalization constant

Introduction

One of the main interests in RMT:

Universality Conjecture

Limiting statistical behavior of the (appropriately scaled) eigenvalues depends only on the symmetry of the system. So, independent of V.

Aim of this talk:

Give INSIGHT in the techniques that we use to prove the universality conjecture for the cases $\beta = 2$ and $\beta = 1, 4$.

• Case $\beta = 2$: Riemann-Hilbert approach

Deift-Kriecherbauer-McLaughlin-Venakides-Zhou 1999, ...

• Case $\beta = 1, 4$: Widom's formalism

Widom 1998, Deift-Gioev 2004 & 2005, Deift-Gioev-Kriecherbauer-V 2006

The eigenvalue statistics can be expressed in terms of a scalar 2-point kernel K_n see e.g. Mehta

$$K_n(x,y) = \sum_{k=0}^{n-1} \phi_k(x) \phi_k(y)$$

where

$$\phi_k(x) = p_k(x)\sqrt{w(x)}$$

$$p_k(x) = \gamma_k x^k + \dots \qquad \int p_k(x)p_j(x)w(x)dx = \delta_{jk}$$

For example:

$$P_n(\lambda_1, \dots, \lambda_n) = \frac{1}{n!} \det(K_n(\lambda_i, \lambda_j))_{1 \le i,j \le n}$$
$$\mathcal{R}_{n,k}(\lambda_1, \dots, \lambda_k) = \det(K_n(\lambda_i, \lambda_j))_{1 \le i,j \le k}$$

So, to prove universality conjecture \rightarrow need information on K_n

Main idea to get this:

- Christoffel-Darboux formula
 - $\rightarrow K_n$ in terms of ϕ_{n-1}, ϕ_n and γ_{n-1}, γ_n

$$K_n(x,y) = \frac{\gamma_{n-1}}{\gamma_n} \frac{\phi_n(x)\phi_{n-1}(y) - \phi_{n-1}(x)\phi_n(y)}{x-y}$$

Asymptotics of ϕ_{n-1}, ϕ_n and γ_{n-1}, γ_n (RH problem for OP)

We will come back to this later!

Role of the scalar 2-point kernel K_n is now played by 2 × 2 matrix kernels $K_{n,1}$ and $K_{n,4}$ given by Tracy-Widom 1998

$$K_{n,1}(x,y) = \begin{pmatrix} S_{n,1}(x,y) & (S_{n,1}D)(x,y) \\ (\varepsilon S_{n,1})(x,y) - \varepsilon(x,y) & S_{n,1}(y,x) \end{pmatrix} \quad \text{(for } n \text{ even})$$
$$K_{n,4}(x,y) = \frac{1}{2} \begin{pmatrix} S_{n,4}(x,y) & (S_{n,4}D)(x,y) \\ (\varepsilon S_{n,4})(x,y) & S_{n,4}(y,x) \end{pmatrix}$$

where

D is the differentiation operator ε is the integral operator with kernel $\varepsilon(x, y) = \frac{1}{2} \operatorname{sgn} (x - y)$ $S_{n,1}$ and $S_{n,4}$ are scalar kernels

The scalar kernels $S_{n,1}$ and $S_{n,4}$ are given as follows:

Let $\psi_j(x) = q_j(x)\sqrt{w(x)}$ with q_j any polynomial of exact degree j. Then

$$\blacktriangleright S_{n,1}(x,y) = -\left(\psi_0(x),\ldots,\psi_{n-1}(x)\right)M_{n,1}^{-1}\begin{pmatrix}\varepsilon\psi_0(y)\\\vdots\\\varepsilon\psi_{n-1}(y)\end{pmatrix}$$

 $M_{n,1}=n imes n$ matrix with entries $\langle\psi_j,arepsilon\psi_k
angle$

•
$$S_{n,4}(x,y) = (\psi'_0(x), \dots, \psi'_{2n-1}(x)) M_{n,4}^{-1} \begin{pmatrix} \psi_0(y) \\ \vdots \\ \psi_{2n-1}(y) \end{pmatrix}$$

 $M_{n,4}=2n imes 2n$ matrix with entries $\langle\psi_j,\psi_k'
angle$

Can choose the polynomials q_j arbitrarely! Need to choose them such that:

- ▶ Analogue of the C-D formula (in terms of ψ_{n+j} with $|j| \leq c$)
- Should be able to get asymptotics of the ψ_{n+j}
- Control of $M_{n,1}^{-1}$ and $M_{n,4}^{-1}$

Choice 1: Skew orthogonal polynomials (SOP) Are such that

$$M_{n,eta} = egin{pmatrix} 0 & 1 \ -1 & 0 \ & -1 & 0 \ & -1 & 0 \ & \dots \end{pmatrix} \longrightarrow \operatorname{control} \operatorname{of} M_{n,eta}^{-1}$$

Problem: not much is known about asymptotics of general SOP

Choice 2: Orthogonal polynomials (Choice that we take in this talk)

Widom's formalismWidom 1999For any weight w such that w'/w is a rational function

 $S_{n,\beta}(x,y) = K_n(x,y) + \text{finite sum of } \phi_{n+j} \text{ with } |j| \leq c$

Some notes:

Analogue of C-D formula Information on K_n due to the case $\beta = 2$ Finite sum contains inverse matrix which has to be controlled

Widom's formalism has been used to prove the universality conjecture in the bulk/soft edge of the spectrum for the case Deift-Gioev 2004 & 2005

$$w(x) = e^{-V(x)}, \qquad V(x) = \sum_{k=0}^{2m} q_k x^k \qquad (q_{2m} > 0, m \ge 1).$$

Our result

Proof of the universality conjecture (in the bulk, at the hard edge and at the soft edge of the spectrum) for RME associated to Laguerre-type weights

$$w(x) = x^{\alpha} e^{-V(x)}, \quad \text{for } x \in [0, \infty)$$

where

$$lpha>0, \qquad V(x)=\sum_{k=0}^m q_k x^k \quad (q_m>0,m\geq 1)$$

Our result

In this talk:

 Restrict to hard edge of the spectrum in bulk: result agrees with Deift-Gioev 2004 at soft edge: result agrees with Deift-Gioev 2005

 For β = 1, 4 consider only the (1, 1)-entry of K_{n,β} other entries have similar formulae

Our result Case $\beta = 2$

Introduce the notation (scaling)

$$\lambda_n = \frac{\beta_n}{4c_n n^2} \qquad \beta_n \sim \beta_m n^{1/m} \qquad c_n \sim \left(\frac{2m}{2m-1}\right)^2$$

Then, for $\xi, \eta \in (0, \infty)$:

$$\lim_{n \to \infty} \lambda_n K_n(\lambda_n \xi, \lambda_n \eta) = \frac{J_\alpha(\sqrt{\xi})\sqrt{\eta} J'_\alpha(\sqrt{\eta}) - J_\alpha(\sqrt{\eta})\sqrt{\xi} J'_\alpha(\sqrt{\xi})}{2(\xi - \eta)}$$
$$\equiv K_J(\xi, \eta)$$

Our result Case $\beta = 1, 4$

For *n* even and $\xi, \eta \in (0, \infty)$:

Deift-Gioev-Kriecherbauer-V 2006

$$\begin{split} \lim_{n\to\infty} \lambda_n S_{n,1}(\lambda_n\xi,\lambda_n\eta) \\ &= \mathcal{K}_J(\xi,\eta) - \frac{1}{4} \frac{J_{\alpha+1}(\sqrt{\xi})}{\sqrt{\xi}} \int_{\sqrt{\eta}}^{\infty} \left(J_{\alpha+1}(s) - \frac{2\alpha}{s} J_{\alpha}(s) \right) ds \end{split}$$

$$egin{aligned} &\lim_{n o\infty}\lambda_nS_{rac{n}{2},4}(\lambda_n\xi,\lambda_n\eta)\ &= \mathcal{K}_J(\xi,\eta) + rac{1}{4}\left(rac{J_{lpha+1}(\sqrt{\xi})}{\sqrt{\xi}} - rac{2lpha}{\xi}J_{lpha}(\sqrt{\xi})
ight)\int_0^{\sqrt{\eta}}J_{lpha+1}(s)ds \end{aligned}$$

Riemann-Hilbert approach Scalar RH problem

RH problem = Seek a function f satisfying some conditions:

▶
$$f : \mathbb{C} \setminus \gamma \to \mathbb{C}$$
 is analytic
▶ $f_+(s) - f_-(s) = v(s)$ for $s \in Y$
▶ $f(z) \to 0$ as $z \to \infty$

Solution: Sokhotskii-Plemelj formula

$$f(z) = rac{1}{2\pi i} \oint_{\gamma} rac{v(s)}{s-z} ds \equiv C(v)(z), \qquad ext{for } z \in \mathbb{C} \setminus \gamma$$

Riemann-Hilbert approach

Seek a 2 \times 2 matrix valued function Y analytic on $\mathbb{C}\setminus\mathbb{R}$ having the following jump and asymptotics

$$egin{aligned} Y_+(x) &= Y_-(x) egin{pmatrix} 1 & w(x) \ 0 & 1 \end{pmatrix}, & ext{ for } x \in \mathbb{R}, \ Y(z) &= [I + \mathcal{O}(1/z)] egin{pmatrix} z^n & 0 \ 0 & z^{-n} \end{pmatrix}, & ext{ as } z o \infty \end{aligned}$$

The RH problem for Y has a unique solution Fokas-Its-Kitaev 1992

$$\mathcal{L}(z) = egin{pmatrix} \gamma_n^{-1} p_n(z) & C(\gamma_n^{-1} p_n w)(z) \ -2\pi i \gamma_{n-1} p_{n-1}(z) & C(-2\pi i \gamma_{n-1} p_{n-1} w)(z) \end{pmatrix}, \quad ext{for } z \in \mathbb{C} \setminus \mathbb{R}$$

Riemann-Hilbert approach Connection K_n and Y

Recall that

$$\mathcal{K}_n(x,y) = \sqrt{w(x)}\sqrt{w(y)}\frac{\gamma_{n-1}}{\gamma_n}\frac{p_n(x)p_{n-1}(y) - p_{n-1}(x)p_n(y)}{x - y}$$

Since

$$\frac{p_n}{\gamma_n} = Y_{11}, \qquad \gamma_{n-1}p_{n-1} = \frac{1}{-2\pi i}Y_{21}$$

we then obtain

$$K_n(x,y) = \sqrt{w(x)}\sqrt{w(y)}\frac{1}{2\pi i(x-y)} \begin{pmatrix} 0 & 1 \end{pmatrix} Y^{-1}(y)Y(x) \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

 \rightarrow Need to determine the asymptotics of Y

Riemann-Hilbert approach

Deift/Zhou steepest descent method

- 1. Do series of transformations $Y \mapsto \cdots \mapsto R$ to arrive at a RH problem for R
 - with jumps uniformly close to I, as $n \to \infty$
 - normalized at infinity (i.e., $R(z) \rightarrow I$ as $z \rightarrow \infty$)
- 2. Then

 $R(z) = I + \mathcal{O}(1/n),$ as $n \to \infty$ uniformly for z

3. By unfolding the series of transformations $Y \mapsto \cdots \mapsto R$ we obtain the asymptotics of Y.

Step 1: Normalization of the RH problem: $Y \mapsto T$

It uses the log transform of the equilibrium measure μ of \mathbb{R}_+ in the presence of the external field V, which is, e.g. for the case V(x) = 4x known to be

$$d\mu(x) = \frac{2}{\pi} \sqrt{\frac{1-x}{x}} \chi_{(0,1]}(x) dx$$

The effect of this transformation is

- ▶ RH problem is normalized at infinity (i.e. $T(z) \rightarrow I$ as $z \rightarrow \infty$)
- new jump matrix v_T looks like

$$v_T(x) = egin{cases} \left(egin{array}{c} \operatorname{oscillatory} & x^lpha \ 0 & \operatorname{oscillatory} \end{array}
ight), & ext{for } x \in (0,1), \ I + \operatorname{exp \ small}, & ext{for } x \in (1,\infty). \end{cases}$$

Step 2: Opening of the lens: $T \mapsto S$

Transform the oscillatory diagonal entries of v_T into exponentially decaying off-diagonal entries by opening the lens.

The effect of this transformation is that S has now jumps on a lens shaped region

which look like

$$v_{\mathcal{S}}(x) = \begin{cases} \begin{pmatrix} 0 & x^{\alpha} \\ -x^{-\alpha} & 0 \end{pmatrix}, & \text{for } x \in (0, 1), \\ I + \exp \text{ small}, & \text{ for } x \text{ elsewhere} \end{cases}$$

Step 3: Parametrix $P^{(\infty)}$ for the outside region

Introduce a matrix valued function $P^{(\infty)}$ with jump only on (0, 1) where it satisfies the same jump relation as S does.

Suggestion for the final transformation: $R = S(P^{(\infty)})^{-1}$ Then, R has only jumps on

Problem: jumps are not uniformly close to I near 0 and 1 \rightarrow Need to do a local analysis near 0 and 1

Step 4: Parametrix P near 0 and 1

Surround 0 and 1 with small circles

and seek P such that

- P has the same jumps as S inside the circles
- *P* matches with $P^{(\infty)}$ on the circles, i.e.

$$P(P^{(\infty)})^{-1} = I + \mathcal{O}(1/n)$$
 as $n \to \infty$

The construction of P is very technical and uses Airy functions near 1 (DKMVZ 1999) and Bessel functions near 0 (Kuijlaars-McLaughlin-Van Assche-V 2004)

Step 5: Final transformation: $S \mapsto R$

Let
$$R = \begin{cases} S(P^{(\infty)})^{-1}, & ext{outside the circles} \\ SP^{-1}, & ext{inside the circles} \end{cases}$$

Then, by construction

• $R(z) \rightarrow I$ as $z \rightarrow \infty$

R has jumps on the following system of contours

This yields: $R(z) = I + O(n^{-1})$ as $n \to \infty$

Can be applied to all weights w such that $\frac{w'}{w}$ is a rational function

Introduce

 $\mathcal{H} = \operatorname{span}(\phi_0, \ldots, \phi_{n-1})$

$$\mathfrak{g} = \operatorname{span}\left(\{x^{j}\phi_{n}(x), x^{j}\phi_{n-1}(x) \mid j = -1, 0, \dots, m-2\}\right)$$
$$= \operatorname{span}\left(\{\phi_{n-m+1}, \dots, \phi_{n+m-2}\} \cup \left\{\frac{\phi_{n}(x)}{x}, \frac{\phi_{n-1}(x)}{x}\right\}\right)$$

$$\begin{split} \Phi_1 &= (\phi_{n-1}, \phi_{n-2}, \dots, \phi_{n-m+1}, \psi_1) & \text{basis of } \mathfrak{g} \cap \mathcal{H} \\ \Phi_2 &= (\phi_n, \phi_{n+1}, \dots, \phi_{n+m-2}, \psi_2) & \text{basis of } \mathfrak{g} \cap \mathcal{H}^\perp \\ \Phi &= (\Phi_1, \Phi_2) \end{split}$$

• There exists $2m \times 2m$ matrix A such that $[D, K]f = \Phi A \langle f, \Phi^t \rangle$

$$A = \begin{pmatrix} 0 & A_{12} \\ A_{21} & 0 \end{pmatrix} \qquad \text{symmetric}$$

$$\blacktriangleright B = \langle \varepsilon \Phi^t, \Phi \rangle \equiv \begin{pmatrix} B_{11} & B_{12} \\ B_{21} & B_{22} \end{pmatrix} \qquad \text{skew symmetric}$$

$$\bullet C = \begin{pmatrix} I + (BA)_{11} & (BA)_{12} \\ (BA)_{21} & (BA)_{22} \end{pmatrix} \equiv \begin{pmatrix} C_{11} & C_{12} \\ C_{21} & C_{22} \end{pmatrix}$$

Then

Widom 1998

$$S_{\frac{n}{2},4}(x,y) = K_n(x,y) - \Phi_2(x)A_{21}\varepsilon\Phi_1(y)^t - \Phi_2(x)A_{21}C_{11}^{-1}C_{12}\varepsilon\Phi_2(y)^t$$
$$S_{n,1}(x,y) = K_n(x,y) - (\Phi_1(x),0) \cdot (AC(I - BAC)^{-1})^t \cdot \begin{pmatrix} \varepsilon\Phi_1(y)^t\\ \varepsilon\Phi_2(y)^t \end{pmatrix}$$

The following important relation holds:

Deift-Gioev-Kriecherbauer-V 2006

$$BAC = \begin{pmatrix} 0 & 0 \\ C_{21} & C_{22} \end{pmatrix}$$

With this

$$\begin{aligned} S_{\frac{n}{2},4}(x,y) &= K_n(x,y) - \Phi_2(x)A_{21}\varepsilon\Phi_1(y)^t - \Phi_2(x)G_{11}\varepsilon\Phi_2(y)^t \\ S_{n,1}(x,y) &= K_n(x,y) - \Phi_1(x)A_{12}\varepsilon\Phi_2(y)^t - \Phi_1(x)\widehat{G}_{11}\varepsilon\Phi_1(y)^t \end{aligned}$$

where

$$G_{11} = A_{21}(I + B_{12}A_{21})^{-1}C_{12}$$
$$\widehat{G}_{11}^t = A_{12}(I - B_{21}A_{12})^{-1}C_{21}$$

Problems to attack are:

- Asymptotics of ϕ_n and $\psi_j \rightarrow \mathsf{RHP}$ for OP
- ▶ Asymptotics of A₂₁ (use the asymptotics of the recurrence coef.)

$$A_{21} \sim -\frac{n}{\beta_n} \begin{pmatrix} Q & \mathbf{0} \\ \mathbf{0} & 1/2 \end{pmatrix} \equiv -\frac{n}{\beta_n} Y$$

► Asymptotics of B_{12} $\langle \varepsilon \phi_p, \phi_q \rangle$ (main problem: double integral of ϕ_p with ϕ_q) $\langle \varepsilon \phi_p, \psi_j \rangle$ $\langle \varepsilon \psi_1, \psi_2 \rangle$ ψ_1 ψ_2

$$B_{12} \sim \frac{\beta_n}{n} \begin{pmatrix} R & v^t \\ v & 1 - \frac{1}{\sqrt{2m-1}} \end{pmatrix} \equiv \frac{\beta_n}{n} X$$

• Control $(I + B_{12}A_{21})^{-1}$ and $(I - B_{21}A_{12})^{-1} = (I + A_{21}B_{12})^{-t}$

 \rightarrow prove invertibility of I - XY

Questions?