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Introduction

Consider Random Matrix Ensembles (RME) leading to the following
distribution on the eigenvalues λ1, . . . , λn

Pn(λ1, . . . , λn) =
1

Zn,β

n∏
i=1

wβ(λi )
∏

1≤i<j≤n

|λi − λj |β

where

β = 1, 2, 4

wβ(x) =

{
w(x), β = 2, 4√

w(x), β = 1
w(x) = e−V (x) or e−nV (x)

Zn,β is a normalization constant



Introduction

One of the main interests in RMT:

Universality Conjecture
Limiting statistical behavior of the (appropriately scaled) eigenvalues de-
pends only on the symmetry of the system. So, independent of V .

Aim of this talk:

Give insight in the techniques that we use to prove the universality
conjecture for the cases β = 2 and β = 1, 4.

I Case β = 2: Riemann-Hilbert approach
Deift-Kriecherbauer-McLaughlin-Venakides-Zhou 1999, . . .

I Case β = 1, 4: Widom’s formalism
Widom 1998, Deift-Gioev 2004 & 2005, Deift-Gioev-Kriecherbauer-V 2006



Introduction
Case β = 2

The eigenvalue statistics can be expressed in terms of a scalar 2-point
kernel Kn see e.g. Mehta

Kn(x , y) =
n−1∑
k=0

φk(x)φk(y)

where

φk(x) = pk(x)
√

w(x)

pk(x) = γkx
k + . . .

∫
pk(x)pj(x)w(x)dx = δjk

For example:

Pn(λ1, . . . , λn) =
1

n!
det(Kn(λi , λj))1≤i,j≤n

Rn,k(λ1, . . . , λk) = det(Kn(λi , λj))1≤i,j≤k



Introduction
Case β = 2

So, to prove universality conjecture → need information on Kn

Main idea to get this:

I Christoffel-Darboux formula
→ Kn in terms of φn−1, φn and γn−1, γn

Kn(x , y) =
γn−1

γn

φn(x)φn−1(y)− φn−1(x)φn(y)

x − y

I Asymptotics of φn−1, φn and γn−1, γn (RH problem for OP)

We will come back to this later!



Introduction
Case β = 1, 4

Role of the scalar 2-point kernel Kn is now played by 2× 2 matrix kernels
Kn,1 and Kn,4 given by Tracy-Widom 1998

Kn,1(x , y) =

(
Sn,1(x , y) (Sn,1D)(x , y)

(εSn,1)(x , y)− ε(x , y) Sn,1(y , x)

)
(for n even)

Kn,4(x , y) =
1

2

(
Sn,4(x , y) (Sn,4D)(x , y)

(εSn,4)(x , y) Sn,4(y , x)

)
where

D is the differentiation operator

ε is the integral operator with kernel ε(x , y) = 1
2 sgn (x − y)

Sn,1 and Sn,4 are scalar kernels



Introduction
Case β = 1, 4

The scalar kernels Sn,1 and Sn,4 are given as follows:

Let ψj(x) = qj(x)
√

w(x) with qj any polynomial of exact degree j .
Then

I Sn,1(x , y) = −
(
ψ0(x), . . . , ψn−1(x)

)
M−1

n,1

 εψ0(y)
...

εψn−1(y)


Mn,1 = n × n matrix with entries 〈ψj , εψk〉

I Sn,4(x , y) =
(
ψ′0(x), . . . , ψ′2n−1(x)

)
M−1

n,4

 ψ0(y)
...

ψ2n−1(y)


Mn,4 = 2n × 2n matrix with entries 〈ψj , ψ

′
k〉



Introduction
Case β = 1, 4

Can choose the polynomials qj arbitrarely! Need to choose them such
that:

I Analogue of the C-D formula (in terms of ψn+j with |j | ≤ c)

I Should be able to get asymptotics of the ψn+j

I Control of M−1
n,1 and M−1

n,4

Choice 1: Skew orthogonal polynomials (SOP)
Are such that

Mn,β =

(
0 1
−1 0

0 1
−1 0

...

)
→ control of M−1

n,β

Problem: not much is known about asymptotics of general SOP



Introduction
Case β = 1, 4

Choice 2: Orthogonal polynomials (Choice that we take in this talk)

Widom’s formalism Widom 1999

For any weight w such that w ′/w is a rational function

Sn,β(x , y) = Kn(x , y) + finite sum of φn+j with |j | ≤ c

Some notes:
Analogue of C-D formula
Information on Kn due to the case β = 2
Finite sum contains inverse matrix which has to be controlled

Widom’s formalism has been used to prove the universality conjecture in
the bulk/soft edge of the spectrum for the case Deift-Gioev 2004 & 2005

w(x) = e−V (x), V (x) =
2m∑
k=0

qkx
k (q2m > 0,m ≥ 1).



Our result

Proof of the universality conjecture (in the bulk, at the hard edge and at
the soft edge of the spectrum) for RME associated to Laguerre-type
weights

w(x) = xαe−V (x), for x ∈ [0,∞)

where

α > 0, V (x) =
m∑

k=0

qkx
k (qm > 0,m ≥ 1)



Our result
Some notes

In this talk:

I Restrict to hard edge of the spectrum
in bulk: result agrees with Deift-Gioev 2004
at soft edge: result agrees with Deift-Gioev 2005

I For β = 1, 4 consider only the (1, 1)-entry of Kn,β

other entries have similar formulae



Our result
Case β = 2

Introduce the notation (scaling) V 2005

λn =
βn

4cnn2
βn ∼ βmn1/m cn ∼

(
2m

2m − 1

)2

Then, for ξ, η ∈ (0,∞):

lim
n→∞

λnKn(λnξ, λnη) =
Jα(

√
ξ)
√
ηJ ′α(

√
η)− Jα(

√
η)
√
ξJ ′α(

√
ξ)

2(ξ − η)

≡ KJ(ξ, η)



Our result
Case β = 1, 4

For n even and ξ, η ∈ (0,∞): Deift-Gioev-Kriecherbauer-V 2006

lim
n→∞

λnSn,1(λnξ, λnη)

= KJ(ξ, η)−
1

4

Jα+1(
√
ξ)√

ξ

∫ ∞

√
η

(
Jα+1(s)−

2α

s
Jα(s)

)
ds

lim
n→∞

λnS n
2 ,4(λnξ, λnη)

= KJ(ξ, η) +
1

4

(
Jα+1(

√
ξ)√

ξ
− 2α

ξ
Jα(
√
ξ)

)∫ √
η

0

Jα+1(s)ds



Riemann-Hilbert approach
Scalar RH problem

RH problem = Seek a function f satisfying some conditions:

I f : C \ γ → C is analytic

I f+(s)− f−(s) = v(s) for s ∈ γ
I f (z) → 0 as z →∞ &%

'$� γ
− +

Solution: Sokhotskii-Plemelj formula

f (z) =
1

2πi

∮
γ

v(s)

s − z
ds ≡ C (v)(z), for z ∈ C \ γ



Riemann-Hilbert approach
RH problem for Y

Seek a 2× 2 matrix valued function Y analytic on C \ R having the
following jump and asymptotics

Y+(x) = Y−(x)

(
1 w(x)
0 1

)
, for x ∈ R,

Y (z) = [I +O(1/z)]

(
zn 0
0 z−n

)
, as z →∞.

The RH problem for Y has a unique solution Fokas-Its-Kitaev 1992

Y (z) =

(
γ−1

n pn(z) C(γ−1
n pnw)(z)

−2πiγn−1pn−1(z) C(−2πiγn−1pn−1w)(z)

)
, for z ∈ C \ R



Riemann-Hilbert approach
Connection Kn and Y

Recall that

Kn(x , y) =
√

w(x)
√

w(y)
γn−1

γn

pn(x)pn−1(y)− pn−1(x)pn(y)

x − y

Since

pn

γn
= Y11, γn−1pn−1 =

1

−2πi
Y21

we then obtain

Kn(x , y) =
√

w(x)
√

w(y)
1

2πi(x − y)

(
0 1

)
Y−1(y)Y (x)

(
1
0

)

→ Need to determine the asymptotics of Y



Riemann-Hilbert approach
Deift/Zhou steepest descent method

1. Do series of transformations Y 7→ · · · 7→ R to arrive at a RH
problem for R

I with jumps uniformly close to I , as n →∞
I normalized at infinity (i.e., R(z)→ I as z →∞)

2. Then

R(z) = I +O(1/n), as n →∞ uniformly for z

3. By unfolding the series of transformations Y 7→ · · · 7→ R we obtain
the asymptotics of Y .



Riemann-Hilbert approach
Deift/Zhou steepest descent method

Step 1: Normalization of the RH problem: Y 7→ T

It uses the log transform of the equilibrium measure µ of R+ in the
presence of the external field V , which is, e.g. for the case V (x) = 4x
known to be

dµ(x) =
2

π

√
1− x

x
χ(0,1](x)dx

The effect of this transformation is

I RH problem is normalized at infinity (i.e. T (z) → I as z →∞)

I new jump matrix vT looks like

vT (x) =


(

oscillatory xα

0 oscillatory

)
, for x ∈ (0, 1),

I + exp small, for x ∈ (1,∞).



Riemann-Hilbert approach
Deift/Zhou steepest descent method

Step 2: Opening of the lens: T 7→ S

Transform the oscillatory diagonal entries of vT into exponentially
decaying off-diagonal entries by opening the lens.

The effect of this transformation is that S has now jumps on a lens
shaped region

q q
0 1

which look like

vS(x) =


(

0 xα

−x−α 0

)
, for x ∈ (0, 1),

I + exp small, for x elsewhere.



Riemann-Hilbert approach
Deift/Zhou steepest descent method

Step 3: Parametrix P(∞) for the outside region

Introduce a matrix valued function P(∞) with jump only on (0, 1) where
it satisfies the same jump relation as S does.

Suggestion for the final transformation: R = S(P(∞))−1

Then, R has only jumps on

q q
0 1

Problem: jumps are not uniformly close to I near 0 and 1
→ Need to do a local analysis near 0 and 1



Riemann-Hilbert approach
Deift/Zhou steepest descent method

Step 4: Parametrix P near 0 and 1

Surround 0 and 1 with small circles

q q
0 1&%

'$
&%
'$

and seek P such that

I P has the same jumps as S inside the circles

I P matches with P(∞) on the circles, i.e.

P(P(∞))−1 = I +O(1/n) as n →∞

The construction of P is very technical and uses Airy functions near 1
(DKMVZ 1999) and Bessel functions near 0 (Kuijlaars-McLaughlin-Van Assche-V 2004)



Riemann-Hilbert approach
Deift/Zhou steepest descent method

Step 5: Final transformation: S 7→ R

Let R =

{
S(P(∞))−1, outside the circles

SP−1, inside the circles

Then, by construction

I R(z) → I as z →∞
I R has jumps on the following system of contours

&%
'$

&%
'$I +O(n−1) I +O(n−1)

I +O(e−cn)

I +O(e−cn) I +O(e−cn)

This yields: R(z) = I +O(n−1) as n →∞



Widom’s formalism

Can be applied to all weights w such that w ′

w is a rational function

I Introduce

H = span(φ0, . . . , φn−1)

g = span
(
{x jφn(x), x jφn−1(x) | j = −1, 0, . . . ,m − 2}

)
= span

(
{φn−m+1, . . . , φn+m−2} ∪

{
φn(x)

x
,
φn−1(x)

x

})

Φ1 = (φn−1, φn−2, . . . , φn−m+1, ψ1) basis of g ∩H

Φ2 = (φn, φn+1, . . . , φn+m−2, ψ2) basis of g ∩H⊥

Φ = (Φ1,Φ2)



Widom’s formalism

I There exists 2m × 2m matrix A such that [D,K ]f = ΦA〈f ,Φt〉

A =
(

0 A12

A21 0

)
symmetric

I B = 〈εΦt ,Φ〉 ≡
(

B11 B12

B21 B22

)
skew symmetric

I C =
(

I+(BA)11 (BA)12

(BA)21 (BA)22

)
≡
(

C11 C12

C21 C22

)
Then Widom 1998

S n
2 ,4(x , y) = Kn(x , y)− Φ2(x)A21εΦ1(y)t − Φ2(x)A21C

−1
11 C12εΦ2(y)t

Sn,1(x , y) = Kn(x , y)− (Φ1(x), 0) · (AC (I − BAC )−1)t ·
(
εΦ1(y)t

εΦ2(y)t

)



Widom’s formalism

The following important relation holds: Deift-Gioev-Kriecherbauer-V 2006

BAC =

(
0 0

C21 C22

)
With this

S n
2 ,4(x , y) = Kn(x , y)− Φ2(x)A21εΦ1(y)t − Φ2(x)G11εΦ2(y)t

Sn,1(x , y) = Kn(x , y)− Φ1(x)A12εΦ2(y)t − Φ1(x)Ĝ11εΦ1(y)t

where

G11 = A21(I + B12A21)
−1C12

Ĝ t
11 = A12(I − B21A12)

−1C21



Widom’s formalism

Problems to attack are:

I Asymptotics of φn and ψj → RHP for OP

I Asymptotics of A21 (use the asymptotics of the recurrence coef.)

A21 ∼ − n

βn

(
Q 0

0 1/2

)
≡ − n

βn
Y

I Asymptotics of B12

〈εφp, φq〉 (main problem: double integral of φp with φq)
〈εφp, ψj〉 φp ψj

〈εψ1, ψ2〉 ψ1 ψ2

B12 ∼
βn

n

(
R v t

v 1− 1√
2m−1

)
≡ βn

n
X

I Control (I + B12A21)
−1 and (I − B21A12)

−1 = (I + A21B12)
−t

→ prove invertibility of I − XY



Questions?


