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Statement of the problem

Statement of the problem

Let Xn be an× n matrix with random entries such that

- the matrixXn = (Xij) is symmetric

- the entriesXij (i ≤ j) are i.i.d.µ-distributed whereµ has a compact support.

Question(suggested by Amir Dembo)

Prove a Large Deviation Principle for

Tn =
1
nk

Trace(Xk
n)

wherek is a fixed integer.
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Statement of the problem

A preliminary analysis

Trace(Xk
n) =

∑
1≤i1,··· ,ik≤n

Xi1i2Xi2i3 · · ·Xik−1ik
Xiki1︸ ︷︷ ︸

Y (i1,··· ,ik)

Exponential integrability

The variablesY (i1, · · · , ik) are bounded due to the assumption onµ. In particular,

Eeλ|Y (i1,··· ,ik)| < ∞ ∀λ ∈ R+

. No exponential integrability issues
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Statement of the problem

Trivial cases

The casesk = 1 andk = 2 immediatly follow from Craḿer’s theorem:

1
n

Trace(Xn) =
1
n

n∑
i=1

Xii

1
n2

Trace(X2
n) =

1
n2

∑
1≤i,j≤n

XijXji =
1
n2

∑
i,j

X2
ij
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Statement of the problem

The Gaussian case

If the random variablesXij (i ≤ j) are gaussian then the joint law of the eigenvalues

(λ1, · · · , λn) associated toXn√
n

has a well-known density:

p(λ1, · · ·λn) =
1

Zn

∏
1≤i<j≤n

|λi − λj | exp

{
−n

4

n∑
i=1

λ2
i

}

(Zn normalizing constant). In this case

1
nk

Trace(Xk
n) =

1

n
k
2
Trace

(
Xn√

n

)k

=
1

n
k
2

n∑
i=1

λk
i

The LDP for the empirical measure1n
∑n

i=1 δλi
has been established (Ben Arous -

Guionnet ’97) but the functionf : x 7→ xk is not bounded in this case and one cannot

use the contraction principle.
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Statement of the problem

The non-trivial casek = 3

The casek = 3 is the first non-trivial case

Tn =
1
n3

Trace(X3
n) =

1
n3

∑
1≤i1,i2,i3≤n

Xi1i2Xi2i3Xi3i4 .

. It is an empirical mean.

. Specific dependence structure among the terms.

. One cannot apply Craḿer’s theorem.
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Empirical measures

The formulation of the problem using empirical measures

Denote by

Ln =
1
n3

∑
1≤i1,i2,i3≤n

δ(Xi1i2 ,Xi2i3 ,Xi3i1 ).

Since the support ofµ (sayS) is bounded

f : S3 → R

(x, y, z) 7→ xyz

is bounded continuous and

LDP for Ln =⇒ LDP for 〈Ln, f〉 =
1
n3

Trace(X3
n).

by the contraction principle.

It is therefore sufficient to prove the LDP forLn with respect to the weak topology.
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Empirical measures

For the sake of comparison with other LDPs for empirical measures, we shall study

L̃n =
1

n(n− 1)(n− 2)

∑
1 ≤ i1, i2, i3 ≤ n

pairwise differents

δ(Xi1i2 ,Xi2i3 ,Xi3i1 ).

For simplicity, we call it the Tracial empirical measure.

BothLn andL̃n are exponentially equivalent.

8 / 27



Brief summary and remaining plan

To sum up the problem (in the casek = 3):

. either establish directly the LDP for

Tn =
1
n3

Trace(X3
n)

. or establish the LDP for

L̃n =
1

n(n− 1)(n− 2)

∑
1 ≤ i1, i2, i3 ≤ n

pairwise differents

δ(Xi1i2 ,Xi2i3 ,Xi3i1 ).

. what about the rate function? Is it convex?

Any ideas?
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Brief summary and remaining plan

Remaining plan

1. A few words on exchangeability

2. Two related LDPs for empirical measures

3. A graph interpretation of the model

4. A conjecture for the rate function
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1. Exchangeability

A few words on exchangeability

N -exchangeability

A finite sequence(Z1, · · · , ZN ) of random variables isN -exchangeable if

(Z1, · · · , ZN ) D= (Zσ(1), · · · , Zσ(N)) ∀σ ∈ SN .

Exchangeability

An infinite sequence(Z1, · · · ) of random variables is exchangeable if

(Z1, Z2, · · · )
D= (Zσ(1), Zσ(2), · · · )

for every permutationσ such that#{i, σ(i) 6= i} < ∞.
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1. Exchangeability

Extendibility

A finite N -exchangeable sequence(Z1, · · · , ZN ) is extendible if there exists an

infinite exchangeable sequence(Z̃1, · · · ) such that

(Z1, · · · , ZN ) D= (Z̃1, · · · Z̃N )

In general aN -exchangeable sequence IS NOT extendible.
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1. Exchangeability

De Finetti’s Theorem

“every infinite sequence of exchangeable random variables(Z1, Z2, · · · ) is a mixture

of i.i.d. random variables “. Otherwise stated:

P{(Z1, Z2, · · · ) ∈ A} =
∫

π⊗∞(A)Θ(dπ)

where

- π is a probability measure overR

- Θ is a probability measure over the set of probability measures.

The sequence(Z1, Z2, · · · ) can be described by the following two-stages procedure:

1. pick π at random from distributionΘ

2. then let(Zi) be i.i.d. with distributionπ.
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1. Exchangeability

The law of an extendible sequence(Z1, Z2, Z3)

Let ν be defined overS3 by

ν(A×B × C) =
∫

π(A)π(B)π(C)Θ(dπ)

thenν is the law of an extendible sequence(Z1, Z2, Z3).
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2. Two related LDPs for empirical measures

Generalities

The relative entropy

Let µ be a probability measure over some spaceX (µ ∈ P(X )). The relative entropy

with respect toµ is defined by:

H(ν | µ) =


∫ (

dν
dµ

)
log
(

dν
dµ

)
dµ if ν << µ,

∞ otherwise.

The relative entropy has a key-role in describing the rate functions assiciated to LDPs

of various empirical measures, as we shall see.

Symmetrization

When studying̃Ln, one can check that ifδX,Y,Z is one of the terms, all the terms

based on permutations of(X, Y, Z) are also present. We will keep this feature in the

forthcoming examples.
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2. Two related LDPs for empirical measures

A Sanov-Like theorem

Consider the following empirical probability measure:

Sn =
3!

n(n− 1)(n− 2)

n(n−1)(n−2)
3!∑

i=1

1
3!

∑
σ∈S3

δ(Xiσ(1),Xiσ(2),Xiσ(3)).

The measureSn has the following properties:

. Sn is based onn(n− 1)(n− 2) terms,

. there aren(n−1)(n−2)
2 independent random variables

. the “range” ofXij is 6

. the “symmetrization” feature holds
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2. Two related LDPs for empirical measures

Denote byP3 = P(S3) and byC3 = C(S3).

Theorem

The empirical measureSn satisfies the LDP in(P3, σ(P3, C3)) with good rate

functionI i.e:

lim sup
n→∞

1
n(n− 1)(n− 2)

ln P(Sn ∈ C) ≤ −I(C)

lim inf
n→∞

1
n(n− 1)(n− 2)

ln P(Sn ∈ O) ≥ −I(O)

where

I(ν) =

 1
3!H(ν | µ⊗3) if ν is 3-exchangeable

∞ otherwise.

Note thatI is convex.
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2. Two related LDPs for empirical measures

Large Deviations for the U-statistics

We follow Eischelsbacher and Schmock (2002) and look at:

U3
n =

1
n(n− 1)(n− 2)

∑
1 ≤ i1, i2, i3 ≤ n

pairwise differents

δ(Xi1 ,Xi2 ,Xi3 )

The main features of this problem are the following:

. Un is based onn(n− 1)(n− 2) terms.

. there aren independent random variables

. the range of the random variableXi is 6(n− 1)(n− 2).

. the “symmetrization” feature holds

Compared to the previously mentioned Sanov theorem, the dependence between the

terms is much more important since there are less random variables.
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2. Two related LDPs for empirical measures

Theorem

The empirical measureUn satisfies the LDP in(P3, σ(P3, C3)) with good rate

functionJ i.e:

lim sup
n→∞

1
n(n− 1)(n− 2)

ln P(Un ∈ C) ≤ −J(C)

lim inf
n→∞

1
n(n− 1)(n− 2)

ln P(Un ∈ O) ≥ −J(O)

where

J(ν) =

 1
3H(ν | µ⊗3) if ν = ν⊗3

1

∞ otherwise.

In this caseJ is no longer convex.
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2. Two related LDPs for empirical measures

Comparison with the tracial empirical measure

model Sanov-like Tracial measure U-statistics

measure Sn Ln Un

# independent r.v. n(n−1)(n−2)
2

n(n−1)
2 n

range of each r.v. 6 2(n− 2) 6(n− 1)(n− 2)

rate function 1
3!H(ν | µ) ?? 1

3H(ν | µ)

if ν exchangeable ?? if ν = ν⊗3
1

convex ?? non-convex
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3. A graph interpretation of the model

The measureL̃n as a measure on triangles

Let

- Gn be a complete graph

- En, the set of its edges,card(En) =
(
n
2

)
;

- Tn, the set of its triangles,card(Tn) =
(
n
3

)
Assume that the random variableXij = Xji is associated to the edge(i, j), thenL̃n

can be viewed as a measure on the triangles of the graph:

L̃n =
1

n(n− 1)(n− 2)

∑
1 ≤ i1, i2, i3 ≤ n

pairwise differents

δ(Xi1i2 ,Xi2i3 ,Xi3i1 )

=
1(
n
3

) ∑
(i1,i2,i3)∈Tn

1
3!

∑
σ∈S3

δ(Xiσ(1)iσ(2) ,Xiσ(2)iσ(3) ,Xiσ(3)iσ(1) )
.
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3. A graph interpretation of the model

If one defines by
1
3!

∑
σ∈S3

δ(Xiσ(1)iσ(2) ,Xiσ(2)iσ(3) ,Xiσ(3)iσ(1) )

the empirical measure related to the triangle(i1, i2, i3), its action over a bounded

continuous function is well-defined.
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3. A graph interpretation of the model

The Gibbs Conditioning Principle

Denote byπn = 1
n

∑n
i=1 δXi

and recall the Gibbs Conditioning Principle:

L

(
X1

∣∣∣∣ 1
n

n∑
i=1

δXi
≈ ν

)
→ ν

In loose terms: in order for the empirical measure to behave close toν, every

“particle” Xi should behave asν.

Question

What can we infer by mimicking this reasoning onL̃n?
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3. A graph interpretation of the model

What if a GCP holds for L̃n?

A Gibbs conditioning principle should hold and yield:

L
(

Triangle(X12, X23, X31)
∣∣∣∣ L̃n ≈ ν

)
→ ν

In this case,

- every triangle should behave asν to insure a deviation behaviour for the empirical

measurẽLn

- a “compatibility” condition between adjacent triangles must hold
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3. A graph interpretation of the model

Constraints on the rate function

Both constraints can be fulfilled if

- ν is a product measure, i.e.ν = ν⊗3
1 :

. it suffices to let each random variable associated to a given edge be distributed

asν1, independently.

- ν is extendible, i.e.ν =
∫

π⊗3Θ(dπ):
. it suffices to first pick at random a distributionπ following Θ then to let the

(
n
2

)
edges be i.i.d with distributionπ.
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4. A conjecture for the rate function

In view of the previous (fully qualitative) analysis, we make the following guess

Conjecture

the empirical measureLn satisfies a LDP in(P3, σ(P3, C3)) with good rate functionΓ
i.e:

lim sup
n→∞

1
n(n− 1)(n− 2)

ln P(Ln ∈ C) ≤ −Γ(C)

lim inf
n→∞

1
n(n− 1)(n− 2)

ln P(Ln ∈ O) ≥ −Γ(O)

whereΓ is given by:
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4. A conjecture for the rate function

Γ(ν) =


κ3H(ν | µ⊗3) if ν is 3-exchangeable and extendible

i.e.ν =
∫

π⊗3Θ(dπ)

∞ otherwise.

In the previous formula, the exact value ofκ3 has to be found. We also believe that the

previous formula extends to the case wherek > 3.
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