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Statement of the problem

Statement of the problem

Let X,, be an x n matrix with random entries such that
- the matrixX,, = (X;,;) is symmetric

- the entriesX;; (i < j) are i.i.d. u-distributed where: has a compact support.

Question(suggested by Amir Dembo)
Prove a Large Deviation Principle for

1 k
T, = ﬁTrace(Xn)

wherek is a fixed integer.
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Statement of the problem

A preliminary analysis

Trace(X)) = > Xiji, Xigis - Xip i Xigis
1<iq e i <n Y g
Y(Zh... ,’Lk)
Exponential integrability
The variables (i1, - - , ;) are bounded due to the assumptiorn.onn particular,

EeAMY Gie)l - 55 YA e RT

> No exponential integrability issues
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Statement of the problem

Trivial cases

The caseg = 1 andk = 2 immediatly follow from Crangr’s theorem:

1
—T Xn - Xii
- race(X,,) E
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Statement of the problem

The Gaussian case

If the random variableX;; (i < j) are gaussian then the joint law of the eigenvalues

(A1, , A\ ) associated t% has a well-known density:
1 N o= |5
p(/\17“'>\n)=Z—n H [Ai — Ajlexp _ZZ)\Z'
1<i<y<n =1

(Z,, normalizing constant). In this case

k n
1 1 X 1
T k)= - T on) - E Py
nk race( n) n% race <\/ﬁ> n% i—1 ¢

The LDP for the empirical measurfed """ , §,, has been established (Ben Arous -

Guionnet '97) but the functiorf : = — z* is not bounded in this case and one cannot
use the contraction principle.
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Statement of the problem

The non-trivial casek = 3

The casé: = 3 Is the first non-trivial case

1 1

_ 3\ _ . . .
T, = 3 Trace(Xn) =3 E XiiioXinigXigiy-
1§i17i27i3§n

> Itis an empirical mean.
> Specific dependence structure among the terms.

> One cannot apply Craen’s theorem.
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Empirical measures

The formulation of the problem using empirical measures

Denote by

1
Ln — ﬁ E : 5(Xi1i2>Xi2i37Xi32'1>.

1§i1,7j2,i3§n

Since the support gf (say.S) is bounded
f:8 — R
(z,y,2) — wyz

IS bounded continuous and

1
LDP for L, = LDPfor (Ly,f)= —Trace(X,).
n

by the contraction principle.

It is therefore sufficient to prove the LDP fd, with respect to the weak topology.
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Empirical measures

For the sake of comparison with other LDPs for empirical measures, we shall study

. 1
L, = Scx x o x .
n(n—1)(n —2) 2. (Xiyig Xigig Xigiy)

1 <i1,i9,i3 < n

pairwise differents

For simplicity, we call it the Tracial empirical measure.

Both L,, and L,, are exponentially equivalent.
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Brief summary and remaining plan

To sum up the problem (in the casée: = 3):

> either establish directly the LDP for

1 3
T, = ﬁTrace(Xn)

> or establish the LDP for

~ 1
Ly, = (Xe o Xos Xows -
oY SD DRC R SRE

1 <i1,i9,i3 < n

pairwise differents

> what about the rate function? Is it convex?

Any ideas?
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Brief summary and remaining plan

Remaining plan
1. A few words on exchangeability
2. Two related LDPs for empirical measures
3. A graph interpretation of the model

4. A conjecture for the rate function
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1. Exchangeability

A few words on exchangeabillity
N-exchangeability

A finite sequencéz,, - -- , Zy) of random variables i®'-exchangeable if

(Zla'”?ZN)g(Za(l)a'”JZU(N)) Vo € Sn.

Exchangeability

An infinite sequencéZ,, - - - ) of random variables is exchangeable if

D
(Z1,2Z2,+) = (Zo(1)s L2y, )

for every permutatiomr such that#{i, (i) # i} < co.
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1. Exchangeability

Extendibility

A finite N-exchangeable sequenCé,, - -- , Zy ) is extendible if there exists an
infinite exchangeable sequencé,, - - - ) such that

’D ~ ~
(Z1,-++ . ZN) = (21, ZN)

In general aV-exchangeable sequence IS NOT extendible.
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1. Exchangeability

De Finetti’'s Theorem

“every infinite sequence of exchangeable random variglides”s, - - - ) is a mixture
of I.i.d. random variables “. Otherwise stated:

P{(Zy, Z,--) € A} = /7r®°°(A)@(d7r)

where

- m IS a probability measure ové
- © is a probability measure over the set of probability measures.
The sequencg&Z, Z», - - - ) can be described by the following two-stages procedure:
1. pick = at random from distributio®

2. then let(Z;) be i.i.d. with distributionr.
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1. Exchangeability

The law of an extendible sequencéZ,, 7, Z5)

Let v be defined oves® by
V(Ax BxC(C)= /W(A)?T(B)?T(C)@(dﬂ')

thenv is the law of an extendible sequencé,, 7>, Z3).

14/ 27



2. Two related LDPs for empirical measures

Generalities
The relative entropy

Let 1 be a probability measure over some spacg: € P(X)). The relative entropy
with respect tqu is defined by:

| (g—Z) log (3—;) dp  if v << p,
00 otherwise

H(v | p) =

The relative entropy has a key-role in describing the rate functions assiciated to LDPs
of various empirical measures, as we shall see.

Symmetrization

When studyingin, one can check that &y y z is one of the terms, all the terms
based on permutations 0K, Y, 7) are also present. We will keep this feature in the

forthcoming examples.
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2. Two related LDPs for empirical measures

A Sanov-Like theorem

Consider the following empirical probability measure:

n(n—1)(n—2)

3! 3! 1
Sn = =S X Ko X
n(n — 1)(n — 2) ; 3' Z (Xza(l)ang(z),ng(g))

) oES3

The measuré®,, has the following properties:

> S, iIs based om(n — 1)(n — 2) terms,

(n—1)(n—2)

> there are® 5

iIndependent random variables

> the “range” ofX,,; IS 6

> the “symmetrization” feature holds
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2. Two related LDPs for empirical measures

Denote byPs; = P(S°) and byC; = C/(S?).

Theorem

The empirical measurg, satisfies the LDP iPs, o(Ps, C3)) with good rate
function/ i.e:

1
' InP(S5,, < -7
h?in—?olip Y PR nP(S, € C) (C)
1
] ] ]P) n > _I
hnrr_1>101gf WD 2 InP(S,, € O) (0)

where

I(v) =

5 H(v | p®?) if vis 3-exchangeable
00 otherwise

Note that/ is convex.
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2. Two related LDPs for empirical measures

Large Deviations for the U-statistics

We follow Eischelsbacher and Schmock (2002) and look at:

1
Uy, = 5(xs. Xo X,
" n(n — 1)(n —_ 2) Z (Xll 7X127X7,3>

1Si1,’i2,i3§n

pairwise differents

The main features of this problem are the following:

> U, is based om(n — 1)(n — 2) terms.

> there aren independent random variables

> the range of the random variahblg is6(n — 1)(n — 2).
> the “symmetrization” feature holds

Compared to the previously mentioned Sanov theorem, the dependence between the
terms is much more important since there are less random variables.
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2. Two related LDPs for empirical measures

Theorem
The empirical measur€,, satisfies the LDP itiP3, o(Ps, C'3)) with good rate

functionJ 1.e:
1
lim sup nP(U,eC) < —-J(O)
n—ooo M(n —1)(n —2)
1
o P(U, S _
l%rrigfn( 1)(n_2)1n U,€0) > —-J(O)
where
I
00 otherwise

In this case/ is no longer convex.
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2. Two related LDPs for empirical measures

Comparison with the tracial empirical measure

model Sanov-like Tracial measure  U-statistics
measure S, L, U,
- n(n—1)(n—2) n(n—1)
# independent r.v| 5 — n
range of eachr.v. 6 2(n — 2) 6(n—1)(n—2)
rate function =H | p) 77 tH(v | p)
if v exchangeable ?7? if v=0p%
convex 77 non-convex
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3. A graph interpretation of the model

The measureL,, as a measure on triangles

Let
- (G, be a complete graph

- E,, the set of its edgesard(E,,) = (5);

- T, the set of its trianglesard(T,) = (5)

Assume that the random variablg,; = X ; is associated to the edgg j), thenL,,
can be viewed as a measure on the triangles of the graph:

~ 1
Ly = (X i Ximse Ko
’n,(n — 1)(n — 2) Z (X%1127X%2137X137,1)

1§i17i25i3 <n

pairwise differents

SED DR S Pt
(n 0(1)20(2)’ 0(2)10(3),)(10(3)7;0(1))'

(i1,12,i3)€T, . oES3
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3. A graph interpretation of the model

If one defines by

P30
3! (X’ia(1)’ia(2)’X’L’a(Q)’ia(:s)’X’ia(3)’ia(1))
ocE€S3

the empirical measure related to the trian@le i, i3 ), its action over a bounded
continuous function is well-defined.
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3. A graph interpretation of the model

The Gibbs Conditioning Principle
Denote byr,, = % >, dx, and recall the Gibbs Conditioning Principle:

c <X1

In loose terms: in order for the empirical measure to behave clagecteery
“particle” X; should behave as.

Question

What can we infer by mimicking this reasoning 8p?
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3. A graph interpretation of the model

What if a GCP holds for L,,?

A Gibbs conditioning principle should hold and yield:

L (Triangle(Xlz,X23,X31)

any)—>y

In this case,

- every triangle should behave a%o insure a deviation behaviour for the empirical
measurd.,,

- a “compatibility” condition between adjacent triangles must hold
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3. A graph interpretation of the model

Constraints on the rate function

Both constraints can be fulfilled if

- vis a product measure, i.e.= v®?:
> it suffices to let each random variable associated to a given edge be distributed
asvq, independently.

- vis extendible, i.ev = [ #®°0(dr):
> it suffices to first pick at random a distributianfollowing © then to let the(?)
edges be i.i.d with distribution.
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4. A conjecture for the rate function

In view of the previous (fully qualitative) analysis, we make the following guess

Conjecture

the empirical measurg,, satisfies a LDP iPs, o(P3, C3)) with good rate functioi®
l.e:

InP(L, € C) < -I(C)

y
TSI = 1) (n—2)

InP(L, €0) > —I(O)

lim inf
n— 00 n(n —1

~ |
—~
S
|
[ \W)
~

wherel is given by:
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4. A conjecture for the rate function

p

ksH (v | p®3) if vis 3-exchangeable and extendible

) = ¢ i.e.v = [7®30(dn)

00 otherwise

\

In the previous formula, the exact valuergf has to be found. We also believe that the
previous formula extends to the case whiere 3.
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