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Network information theory:

some (recent) history

- 70’s: classical network information theory

⇒ exact results for “networks” of 3 or 4 users

- 90’s: development of self-organized wireless

networks with a large number of users (∼ 100)

⇒ the focus has changed:

1) exact results → scaling laws

2) entire capacity region → sum capacity, or

transport capacity (Gupta-Kumar 00):

Tc(n) = sup
n∑

i,j=1

Rijrij



Setup

- network composed of n nodes,

independently and uniformly distributed

in some (square) region of diameter D

- expanding network: D ∼
√

n

(↔ constant density of nodes)

- no fixed infrastructure (ad hoc network)



Further general assumptions

- transmit power constraint P on each node

- additive N (0,1) noise at each receiving node

- power attenuation r−2δ over a distance r

(typically, δ ∈ [1,2])

- deterministic fading (the only randomness

comes from the random distances between nodes)



Theorem (GK 00)

if δ > 1 and we restrict ourselves to:

i) point-to-point communications

ii) interference being treated as noise,

then

Tc(n) = O(D
√

n)

However:

what about group communication schemes?

or interference cancellation strategies?

⇒ need for information theoretic answers!



First information theoretic results

a) Kumar-Xie (04-05), Jovicic&al (04-05)

if δ > 2.25, then under no specific assumption

on the way communication is established, we

have

Tc(n) = O(D
√

n)

b) Lévêque-Telatar (05)

if δ > 1, then under no specific assumption on

the way communication is established, we have

Tc(n) = o(Dn)

But both these results miss the target, espe-

cially if one looks more closely at their proofs!



Our approach (red dots = added mirror users)

Max flow of information accross the boundary:

Cn ≤ sup
pX:E(|Xi|2)≤P, ∀i

I(X1, ..., Xn;Y1, ..., Yn)

where 
Yj =

∑n
i=1 GijXi + Zj

Gij = 1
‖xi−yj‖δ



Successive majorizations...

⇒ Cn ≤ 2 logdet(I +
√

nP G)

Ultimate hope: show that Cn = O(
√

n)

(as this would imply Tc(n) = O(D
√

n))

However:

- no simple upper bound on the determinant

gives a satisfying answer

- classical random matrix theory is useless in

this context



A simpler case: one-dimensional networks

⇒ Gij =
1

(xi + xj)δ

Theorem (Leveque-Preissmann, IT Trans 05)

if δ ∈ [1,2], then under no specific assumption

on the way communication is established,

Tc(n) = O(D(logn)3+ε)

Note: in this setting, Gupta-Kumar’s scaling

law reads:

Tc(n) = O(D)



Proof idea

1) in order to upperbound det(I + G), use

det(I + G) = 1 + Tr(G) + ... + det(G)

=
∑

J⊂{1,...,n} det(GJ)

so one only needs to upperbound detG

2) let Dδ = detG = det
({

1
(xi+xj)δ

})

integral representation of the determinant

+ Hölder’s inequality

⇒ Dδ ≤ Cδ(D1)
2−δ(D2)

δ−1 ∀δ ∈ [1,2]

so one only needs to upperbound D1 and D2



Proof idea (cont’d)

3) Cauchy and Borchardt formulas:

D1 = det

({
1

xi + xj

})
=

∏
i<j(xi − xj)

2∏
i,j(xi + xj)

D2 = det

({
1

xi + xj

})
perm

({
1

xi + xj

})

4) key step: a refined analysis of the above ex-

pressions gives the following precise estimate:

D1, D2 ≤
1

(dmin)n
exp(−Kn3/2)

where dmin = minimum distance between any

two nodes in the network (typically, dmin ∼ 1
n)



Proof idea (conclusion)

5) gathering all estimates together leads to

Cn ≤ 2 logdet(I +
√

nP G) ≤ K (logn)3+ε

6) implication on transport capacity:

∑
i<j

Rijrij =
∑
i<j

Rij

j−1∑
k=i

rk,k+1

=
n−1∑
k=1

rk,k+1
∑

i≤k<j

Rij ≤ D Cn

�



Remark

following the steps of the preceding proof,

one sees that the scaling law

Tc(n) = O(D(logn)3+ε)

still holds for both

- dense randomly distributed networks (D cst)

- networks with an arbitrary placement of nodes

separated by a minimum distance dmin



Back to two-dimensional networks

in this setting, we have

Gij =
1

((xi + xj)2 + (yi − yj)2)δ/2

computing the determinant of such matrices is

harder... nevertheless, we have the following:

Theorem (Özgür-Lévêque, IZS 06)

if δ ∈ [1,2], then under no specific assumption

on the way communication is established,

Tc(n) = O

(
D n

1
2+

1
2(δ+4)

+ε
)



Proof idea: get back to the 1D case!

N strips

Cn ≤ 2 logdet(I +
√

nP G)

≤ 2
N∑

l=1

log det(I +
√

nP G(l))

with G(l) the diagonal block of the matrix G

corresponding to the strip l.



Proof idea (cont’d)

1) averaging:

EX,Y (logdet(I +
√

nPG))

≤ EX

 N∑
l=1

log det(I +
√

nP EY (G(l)))


this quantity turns out to be an O(N(logn)3+ε)

for N ≥ n
1
2+

1
2(δ+4)

2) concentration (use a theorem of McDiarmid

and the interlacing property of eigenvalues):

| log det(I+
√

nPG)−EX,Y (logdet(I+
√

nPG))|

= O(n
1
2+ε)

�



Conclusion

in the main regime of interest (δ ∈ [1,2]),

we have recovered Gupta-Kumar’s square root

law from an information theoretic point of view

(up to a small polynomial factor)

The following improvements are expected:

- general result for δ ≥ 1

- exact scaling law up to logn factors

- results for dense or arbitrarily placed

2D networks


