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Network information theory:
some (recent) history

- 70’'s: classical network information theory
= exact results for “networks” of 3 or 4 users

- 90's: development of self-organized wireless
networks with a large number of users (~ 100)
= the focus has changed:

1) exact results — scaling laws

2) entire capacity region — sum capacity, or
transport capacity (Gupta-Kumar 00):
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Setup

- hetwork composed of n nodes,
independently and uniformly distributed
in some (square) region of diameter D

- expanding network: D ~ /n
(<« constant density of nodes)

- no fixed infrastructure (ad hoc network)



Further general assumptions

- transmit power constraint P on each node

- additive M(0,1) noise at each receiving node

- power attenuation r—29 over a distance r
(typically, 6 € [1,2])

- deterministic fading (the only randomness
comes from the random distances between nodes)



Theorem (GK 00)
if & > 1 and we restrict ourselves to:

i) point-to-point communications
i) interference being treated as noise,

then
Te(n) = O(D+/n)

However:

what about group communication schemes?
or interference cancellation strategies?

= need for information theoretic answers!



First information theoretic results
a) Kumar-Xie (04-05), Jovicic&al (04-05)

if 0 > 2.25, then under no specific assumption
on the way communication is established, we
have

Te(n) = O(Dv/n)

b) Lévéque-Telatar (05)

if & > 1, then under no specific assumption on
the way communication is established, we have

Te(n) = o(Dn)

But both these results miss the target, espe-
cially if one looks more closely at their proofs!



Our approach (red dots = added mirror users)

Max flow of information accross the boundary:
Cn < sup I(X1,.... X0 Y1,...,Yy)
px:E(|X;|?)<P, Vi
where
(Y, =20 Gy X+ Z;

Q.. — 1
LY =yl



Successive majorizations...

= Cp<2logdet({ +vnPQG)

Ultimate hope: show that C,, = O(y/n)
(as this would imply Te(n) = O(D+/n))
However:

- no simple upper bound on the determinant
gives a satisfying answer

- classical random matrix theory is useless in
this context



A simpler case: one-dimensional networks

ceve dbeees

1

= G =
Y (m )0

Theorem (Leveque-Preissmann, IT Trans 05)

if 6 € [1,2], then under no specific assumption
on the way communication is established,

Te(n) = O(D(logn)3T¢)

Note: in this setting, Gupta-Kumar’s scaling
law reads:

Te(n) = O(D)



Proof idea

1) in order to upperbound det(l 4+ G), use
det(/4+G) =14 Tr(G) + ... + det(G)
= X jc{1,..nydet(Gy)

SO one only needs to upperbound detd

_ _ 1
2) let Dy = detG = det ({($i+wj)5}>

integral representation of the determinant
-+ HOolder's inequality

=  Ds < Cs5(D1)?7 (Do)t vsel1,2]

SO one only needs to upperbound D¢ and D>



Proof idea (cont'd)

3) Cauchy and Borchardt formulas:

Dy = det ({ - }) _ (i — ;)7
e [1; (% + z5)

on e (o ()

4) key step: a refined analysis of the above ex-
pressions gives the following precise estimate:

1
D1, Dy < exp(—Kn3/?)
(dmin)n

where dmin = Mminimum distance between any
two nodes in the network (typically, dmin ~ %)




Proof idea (conclusion)

5) gathering all estimates together leads to
Cn <2logdet(I + vVnPG) < K (log n)3"'6

6) implication on transport capacity:

> Rijrij = ) Ry Z Tl k1

1<J 1<J

n—1

— Z Tkk—l—l Z Rz] <DCn
k=1 1<k<y



Remark

following the steps of the preceding proof,
one sees that the scaling law

Te(n) = O(D(log n)>1¢)
still holds for both

- dense randomly distributed networks (D cst)

- networks with an arbitrary placement of nodes
separated by a minimum distance dmin



Back to two-dimensional networks

in this setting, we have
T (@ )2+ (g — y)2)0?

computing the determinant of such matrices is
harder... nevertheless, we have the following:

Theorem (Ozgiir-Lévéque, IZS 06)

if 6 € [1,2], then under no specific assumption
on the way communication is established,

1 1
Te(n) = O (D n§+—2(5+4)+6>



Proof idea: get back to the 1D case!

S o, S N strips

Cn < 2logdet(I +vnPG)

N
<23 logdet(I +vnPGW)
[=1

with G the diagonal block of the matrix G
corresponding to the strip [.



Proof idea (cont'd)

1) averaging:

Ex y(logdet(I + vnPQ))

[=1

N
< Ey (Z log det(I + \/’n—PEy(G(Z))))

this quantity turns out to be an O(N(logn)371¢)
1 1
for N > n2 126+

2) concentration (use a theorem of McDiarmid
and the interlacing property of eigenvalues):

[logdet(/+vnPG)—Ex y(logdet(I+vnPG))|

= O(n27)



Conclusion

in the main regime of interest (§ € [1, 2]),

we have recovered Gupta-Kumar’s square root
law from an information theoretic point of view
(up to a small polynomial factor)

T he following improvements are expected:
- general result for 6 > 1

- exact scaling law up to logn factors

- results for dense or arbitrarily placed
2D networks



