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Persistent (Newtonian) random walks

Persistent random walk (PRW) in Z
ν:

2nd order Markov chain on Z
ν =

stochastic process {Xn}n∈N with Xn ∈ Z
ν s.t.

Prob (Xn+1 | Xn, Xn−1, . . . , X0) =

Prob (Xn+1 | Xn, Xn−1)
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Persistent (Newtonian) random walks

Persistent random walk (PRW) in Z
ν:

2nd order Markov chain on Z
ν =

stochastic process {Xn}n∈N with Xn ∈ Z
ν s.t.

Prob (Xn+1 | Xn, Xn−1, . . . , X0) =

Prob (Xn+1 | Xn, Xn−1) =

Prob (Xn+1 | Xn, Dn)

with Dn := Xn − Xn−1 = incoming direction ≃ “velocity”

(whence “Newtonian” random walk)
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Persistent (Newtonian) random walks

Persistent random walk (PRW) in Z
ν:

2nd order Markov chain on Z
ν =

stochastic process {Xn}n∈N with Xn ∈ Z
ν s.t.

Prob (Xn+1 | Xn, Xn−1, . . . , X0) =

Prob (Xn+1 | Xn, Xn−1) =

Prob (Xn+1 | Xn, Dn)

with Dn := Xn − Xn−1 = incoming direction ≃ “velocity”

Will assume ν = 2 and

Dn ∈ ∆ := {±e1,±e2}

∆ = fundamental directions =⇒ nearest-neighbor PRW
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Environment: ω = {ωx}x∈Z2 ∈ (M∆)Z
2

=: E (environment space)

ωx = {ωx(d, d′)}d,d′∈∆ ∈ M∆

def
⇐⇒

∑

d′∈∆

ωx(d, d′) = 1 ∀d ∈ ∆

I.e., ω prescribes a ∆ × ∆ stochastic matrix in every site of Z
2
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Environment: ω = {ωx}x∈Z2 ∈ (M∆)Z
2

=: E (environment space)

ωx = {ωx(d, d′)}d,d′∈∆ ∈ M∆

def
⇐⇒

∑

d′∈∆

ωx(d, d′) = 1 ∀d ∈ ∆

I.e., ω prescribes a ∆ × ∆ stochastic matrix in every site of Z
2

So, formally: PRW = Markov chain P ω
p on Z

2 × ∆ defined by

P ω
p ( (X0, D0) = (x, d) ) = p(x, d);

P ω
p ( (Xn+1, Dn+1) = (x′, d′) | (Xn, Dn) = (x, d) ) =

{

ωx(d, d′), if x′ = x + d′;
0, otherwise

p = probability on Z
2 × ∆ (initial state)

E.g., p(x, d) = δx,x0
δd,d0
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Recurrence

Defn (recurrence). PRW in ω with initial state p is recurrent if

P ω
p ( (Xn, Dn) = (X0, D0) for infinitely many n ∈ N ) = 1.
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Will consider:
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• PRWs in random environment (PRWRE): ω chosen in E with
random law Π

Study almost sure recurrence, i.e, recurrence for Π-a.e. ω ∈ E
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Recurrence

Defn (recurrence). PRW in ω with initial state p is recurrent if

P ω
p ( (Xn, Dn) = (X0, D0) for infinitely many n ∈ N ) = 1.

Will consider:

• Homogeneous PRWs: ωx = ω0 ∀x ∈ Z
2

• PRWs in random environment (PRWRE): ω chosen in E with
random law Π

Study almost sure recurrence, i.e, recurrence for Π-a.e. ω ∈ E

• (Some) inhomogeneous PRW via dual graph
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Dynamical systems and cocycles

Probability-preserving dynamical system: (S, T, µ) with

T : S −→ S
µ(T−1A) = µ(A), ∀A ⊂ S (µ T -invariant)
µ(S) = 1 (µ probability)
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Dynamical systems and cocycles

Probability-preserving dynamical system: (S, T, µ) with

T : S −→ S
µ(T−1A) = µ(A), ∀A ⊂ S (µ T -invariant)
µ(S) = 1 (µ probability)

Defn. {Sn}n∈N is a ν-dimensional commutative cocycle for (S, T, µ)
if S0 ≡ 0 and

Sn :=
n−1
∑

k=0

f ◦ T k

for some f : S −→ R
ν, f ∈ L2(S, µ) (vector-valued Birkhoff sum).

If f : S −→ L, with L lattice of R
ν, cocycle is called discrete.
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Defn. {Sn} is recurrent if, ∀ε > 0, µ-a.s.

‖Sn‖ ≤ ε for infinitely many n.

If {Sn} is discrete: Sn = 0 for infinitely many n.



YEP-V, Eurandom, March 2008 5

Defn. {Sn} is recurrent if, ∀ε > 0, µ-a.s.

‖Sn‖ ≤ ε for infinitely many n.

If {Sn} is discrete: Sn = 0 for infinitely many n.

Thm (Schmidt ’98, Conze ’99). If (S, T, µ) is ergodic, {Sn} is 2D
and verifies the centered CLT (even with ∞ variance), then {Sn} is
recurrent.
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Application: Define σ : (Z2 × ∆)N −→ (Z2 × ∆)N as

σ((X0, D0), (X1, D1), . . .) := ((X1, D1), (X2, D2), . . .)

(left shift on paths = time evolution). Then

Xn − X0 =
n

∑

j=1

Dn =
n−1
∑

k=0

D1 ◦ σk

would be a discrete 2D cocycle for
(

(Z2 × ∆)N, σ, P ω
p

)
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Application: Define σ : (Z2 × ∆)N −→ (Z2 × ∆)N as

σ((X0, D0), (X1, D1), . . .) := ((X1, D1), (X2, D2), . . .)

(left shift on paths = time evolution). Then

Xn − X0 =
n

∑

j=1

Dn =
n−1
∑

k=0

D1 ◦ σk

would be a discrete 2D cocycle for
(

(Z2 × ∆)N, σ, P ω
p

)

Problem: P ω
p never (dynamics-)invariant!

(because p not translation-invariant on Z
2 × ∆, noncompact)
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Application: Define σ : (Z2 × ∆)N −→ (Z2 × ∆)N as

σ((X0, D0), (X1, D1), . . .) := ((X1, D1), (X2, D2), . . .)

(left shift on paths = time evolution). Then

Xn − X0 =
n

∑

j=1

Dn =
n−1
∑

k=0

D1 ◦ σk

would be a discrete 2D cocycle for
(

(Z2 × ∆)N, σ, P ω
p

)

Problem: P ω
p never (dynamics-)invariant!

(because p not translation-invariant on Z
2 × ∆, noncompact)

=⇒ Must choose suitable dynamical system
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Homogeneous PRWs

Propn. Take homogeneous PRW defined by ω0 ∈ M∆, irreducible
aperiodic (ergodic). CLT holds. CLT is centered (thus recurrence
holds) ⇐⇒ π = stationary vector of ω0 (

∑

d π(d)ω0(d, d′) = π(d′))
is balanced, i.e.

π(e1) = π(−e1), π(e2) = π(−e2).
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Homogeneous PRWs

Propn. Take homogeneous PRW defined by ω0 ∈ M∆, irreducible
aperiodic (ergodic). CLT holds. CLT is centered (thus recurrence
holds) ⇐⇒ π = stationary vector of ω0 (

∑

d π(d)ω0(d, d′) = π(d′))
is balanced, i.e.

π(e1) = π(−e1), π(e2) = π(−e2).

Proof: Use (∆N, σ,Pπ), where

σ(D0, D1, . . .) := (D1, D2, . . .) (abuse of notation)
Pπ = finite-state Markov chain on ∆ with initial state π

=⇒ Pπ invariant (since π stationary for ω0)

Ergodicity and CLT standard Q.E.D.
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Random environments

Tóth random environments (E , Π)

• Ergodic for the action of (τyω)x := ωx+y (e.g., {ωx} i.i.d.)

• Elliptic: ∃ε > 0 s.t. ∀x, d, d′, ωx(d, d′) ≥ ε (can do better)

• Isotropic: Π-a.s., ωT
x ∈ M∆ (ωx doubly stochastic)

⇒ PRW in ω “invertible” (backward dyn. given by ωT = {ωT
x })

⇒ underlying “probability flow” incompressible
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Random environments

Tóth random environments (E , Π)

• Ergodic for the action of (τyω)x := ωx+y (e.g., {ωx} i.i.d.)

• Elliptic: ∃ε > 0 s.t. ∀x, d, d′, ωx(d, d′) ≥ ε (can do better)

• Isotropic: Π-a.s., ωT
x ∈ M∆ (ωx doubly stochastic)

⇒ PRW in ω “invertible” (backward dyn. given by ωT = {ωT
x })

⇒ underlying “probability flow” incompressible

Thm (Tóth ’86). PRWREs as above verify the annealed centered CLT
(i.e., relative to both random dynamics and random environment).
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Random environments

Tóth random environments (E , Π)

• Ergodic for the action of (τyω)x := ωx+y (e.g., {ωx} i.i.d.)

• Elliptic: ∃ε > 0 s.t. ∀x, d, d′, ωx(d, d′) ≥ ε (can do better)

• Isotropic: Π-a.s., ωT
x ∈ M∆ (ωx doubly stochastic)

⇒ PRW in ω “invertible” (backward dyn. given by ωT = {ωT
x })

⇒ underlying “probability flow” incompressible

Thm (Tóth ’86). PRWREs as above verify the annealed centered CLT
(i.e., relative to both random dynamics and random environment).

Proof: Uses
(

(∆ × E)N, σ, P
)

(point of view of the particle), then adap-
tation of Kipnis-Varadhan ’86 for CLT.
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Random environments

Tóth random environments (E , Π)

• Ergodic for the action of (τyω)x := ωx+y (e.g., {ωx} i.i.d.)

• Elliptic: ∃ε > 0 s.t. ∀x, d, d′, ωx(d, d′) ≥ ε (can do better)

• Isotropic: Π-a.s., ωT
x ∈ M∆ (ωx doubly stochastic)

⇒ PRW in ω “invertible” (backward dyn. given by ωT = {ωT
x })

⇒ underlying “probability flow” incompressible

Thm (Tóth ’86). PRWREs as above verify the annealed centered CLT
(i.e., relative to both random dynamics and random environment).

Propn. Tóth PRWREs are a.s. recurrent.
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Digression: The Manhattan lattice
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Digression: The Manhattan lattice
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Digression: The Manhattan lattice
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Digression: The Manhattan lattice

Symmetric RW is recurrent
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The dual graph

Goal: Map 2nd order RW on Z
2 into 1st order RW on some graph Γ

For x ∈ Z
2, consider incoming/outgoing displacements:
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2, consider incoming/outgoing displacements: sites of Γ
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The dual graph

Goal: Map 2nd order RW on Z
2 into 1st order RW on some graph Γ

For x ∈ Z
2, consider incoming/outgoing displacements: sites of Γ
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Γ looks like

Two Manhattan lattices (blue and red) with opposite orientations
connected by other links (green and yellow)
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Γ looks like

Two Manhattan lattices (blue and red) with opposite orientations
connected by other links (green and yellow)
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Γ looks like

Two Manhattan lattices (blue and red) with opposite orientations
connected by other links (green and yellow)
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3D rendering:
Blue: lower level

Red: upper level

Yellow goes up

Green goes down
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3D rendering:
Blue: lower level

Red: upper level

Yellow goes up

Green goes down
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Application: Further examples of recurrence

Set Z
2
even :=

{

(x1, x2) ∈ Z
2

∣

∣ x1 + x2 ∈ 2Z
}

, Z
2
odd

:= Z
2 \ Z

2
even

Z
2
even = “checkerboard” subgroup of Z

2
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Application: Further examples of recurrence

Set Z
2
even :=

{

(x1, x2) ∈ Z
2

∣

∣ x1 + x2 ∈ 2Z
}

, Z
2
odd

:= Z
2 \ Z

2
even

(1) Inhomogeneous forward probability

For ζx ∈ [0, 1] (non-random), define ω = {ωx} via the following:

For x ∈ Z
2
even, d = e1,

ωx(d,F) = ζx, ωx(d,L) = ωx(d,R) = (1 − ζx)/2, ωx(d,B) = 0
For x ∈ Z

2
even, d 6= e1,

ωx(d,F) = 0, ωx(d,L) = ωx(d,R) = 1/2, ωx(d,B) = 0
For x ∈ Z

2
odd

, d = −e1,
ωx(d,F) = ζx, ωx(d,L) = ωx(d,R) = (1 − ζx)/2, ωx(d,B) = 0

For x ∈ Z
2
odd

, d 6= −e1,
ωx(d,F) = 0, ωx(d,L) = ωx(d,R) = 1/2, ωx(d,B) = 0

(F = F(d) = d (Forward), B = B(d) = −d (Backward), L = Left, R = Right)
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Application: Further examples of recurrence

Set Z
2
even :=

{

(x1, x2) ∈ Z
2

∣

∣ x1 + x2 ∈ 2Z
}

, Z
2
odd

:= Z
2 \ Z

2
even

(1) Inhomogeneous forward probability

For ζx ∈ [0, 1] (non-random), define ω = {ωx} via the following:

For x ∈ Z
2
even, d = e1,

ωx(d,F) = ζx, ωx(d,L) = ωx(d,R) = (1 − ζx)/2, ωx(d,B) = 0
For x ∈ Z

2
even, d 6= e1,

ωx(d,F) = 0, ωx(d,L) = ωx(d,R) = 1/2, ωx(d,B) = 0
For x ∈ Z

2
odd

, d = −e1,
ωx(d,F) = ζx, ωx(d,L) = ωx(d,R) = (1 − ζx)/2, ωx(d,B) = 0

For x ∈ Z
2
odd

, d 6= −e1,
ωx(d,F) = 0, ωx(d,L) = ωx(d,R) = 1/2, ωx(d,B) = 0

=⇒ Symmetric Left-Right PRW with extra Forward displacements
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Remark. Forward displacements need not be statistically balanced,
namely the local drift δω(x, d) :=

∑

d′∈∆
ωx(d, d′)d′ may not average

out to zero:

lim
ΛրZ2

1

4|Λ|

∑

x∈Λ
d∈∆

δω(x, d) can be 6= 0
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Remark. Forward displacements need not be statistically balanced,
namely the local drift δω(x, d) :=

∑

d′∈∆
ωx(d, d′)d′ may not average

out to zero:

lim
ΛրZ2

1

4|Λ|

∑

x∈Λ
d∈∆

δω(x, d) can be 6= 0

Propn 1. If, for at least one x ∈ Z
2
even, ζx > 0 and, for at least one

y ∈ Z
2
odd

, ζy > 0, the PRW in ω is recurrent for all initial conditions.
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Remark. Forward displacements need not be statistically balanced,
namely the local drift δω(x, d) :=

∑

d′∈∆
ωx(d, d′)d′ may not average

out to zero:

lim
ΛրZ2

1

4|Λ|

∑

x∈Λ
d∈∆

δω(x, d) can be 6= 0

Propn 1. If, for at least one x ∈ Z
2
even, ζx > 0 and, for at least one

y ∈ Z
2
odd

, ζy > 0, the PRW in ω is recurrent for all initial conditions.

Proof:



YEP-V, Eurandom, March 2008 15

(2) Inhomogeneous backward probability

For ζx ∈ [0, 1] (non-random), define ω = {ωx} via the following:

For x ∈ Z
2
even, d = e1,

ωx(d,F) = 0, ωx(d,L) = ωx(d,R) = (1 − ζx)/2, ωx(d,B) = ζx

For x ∈ Z
2
even, d 6= e1,

ωx(d,F) = 0, ωx(d,L) = ωx(d,R) = 1/2, ωx(d,B) = 0
For x ∈ Z

2
odd

, d = −e1,
ωx(d,F) = 0, ωx(d,L) = ωx(d,R) = (1 − ζx)/2, ωx(d,B) = ζx

For x ∈ Z
2
odd

, d 6= −e1,
ωx(d,F) = 0, ωx(d,L) = ωx(d,R) = 1/2, ωx(d,B) = 0
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(2) Inhomogeneous backward probability

For ζx ∈ [0, 1] (non-random), define ω = {ωx} via the following:

For x ∈ Z
2
even, d = e1,

ωx(d,F) = 0, ωx(d,L) = ωx(d,R) = (1 − ζx)/2, ωx(d,B) = ζx

For x ∈ Z
2
even, d 6= e1,

ωx(d,F) = 0, ωx(d,L) = ωx(d,R) = 1/2, ωx(d,B) = 0
For x ∈ Z

2
odd

, d = −e1,
ωx(d,F) = 0, ωx(d,L) = ωx(d,R) = (1 − ζx)/2, ωx(d,B) = ζx

For x ∈ Z
2
odd

, d 6= −e1,
ωx(d,F) = 0, ωx(d,L) = ωx(d,R) = 1/2, ωx(d,B) = 0

=⇒ Symmetric Left-Right PRW with extra Backward displacements

Once again, Backward displacements need not be statistically balanced
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Propn 2. Suppose that, for at least one x ∈ Z
2
even, ζx > 0 and, for at

least one y ∈ Z
2
odd

, ζy > 0. Suppose also that there is no x ∈ Z
2
even

such that ζx = ζx−e1
= 1. Then the PRW in ω is recurrent for all

initial conditions.
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Propn 2. Suppose that, for at least one x ∈ Z
2
even, ζx > 0 and, for at

least one y ∈ Z
2
odd

, ζy > 0. Suppose also that there is no x ∈ Z
2
even

such that ζx = ζx−e1
= 1. Then the PRW in ω is recurrent for all

initial conditions.

Proof:


