Marco Lenci

(Università di Bologna)

Recurrence for persistent random walks in two dimensions

Persistent (Newtonian) random walks

Persistent random walk (PRW) in \mathbb{Z}^{ν} :

2nd order Markov chain on $\mathbb{Z}^{\nu} =$ stochastic process $\{X_n\}_{n \in \mathbb{N}}$ with $X_n \in \mathbb{Z}^{\nu}$ s.t.

$$\operatorname{Prob} \left(X_{n+1} \mid X_n, X_{n-1}, \dots, X_0 \right) = \operatorname{Prob} \left(X_{n+1} \mid X_n, X_{n-1} \right)$$

Persistent (Newtonian) random walks

Persistent random walk (PRW) in \mathbb{Z}^{ν} :

 2^{nd} order Markov chain on $\mathbb{Z}^{\nu} =$ stochastic process $\{X_n\}_{n \in \mathbb{N}}$ with $X_n \in \mathbb{Z}^{\nu}$ s.t.

$$\operatorname{Prob} \left(X_{n+1} \mid X_n, X_{n-1}, \dots, X_0 \right) =$$

$$\operatorname{Prob} \left(X_{n+1} \mid X_n, X_{n-1} \right) =$$

$$\operatorname{Prob} \left(X_{n+1} \mid X_n, D_n \right)$$

with $D_n := X_n - X_{n-1}$ = incoming direction \simeq "velocity" (whence "Newtonian" random walk)

Persistent (Newtonian) random walks

Persistent random walk (PRW) in \mathbb{Z}^{ν} :

 2^{nd} order Markov chain on $\mathbb{Z}^{\nu} =$ stochastic process $\{X_n\}_{n \in \mathbb{N}}$ with $X_n \in \mathbb{Z}^{\nu}$ s.t.

Prob
$$(X_{n+1} \mid X_n, X_{n-1}, \dots, X_0) =$$

Prob $(X_{n+1} \mid X_n, X_{n-1}) =$
Prob $(X_{n+1} \mid X_n, D_n)$

with $D_n := X_n - X_{n-1}$ = incoming direction \simeq "velocity"

Will assume $\nu = 2$ and

$$D_n \in \Delta := \{\pm e_1, \pm e_2\}$$

 $\Delta =$ fundamental directions \implies nearest-neighbor PRW

Environment:
$$\omega = \{\omega_x\}_{x \in \mathbb{Z}^2} \in (M_\Delta)^{\mathbb{Z}^2} =: \mathcal{E} \text{ (environment space)}$$

 $\omega_x = \{\omega_x(d, d')\}_{d, d' \in \Delta} \in M_\Delta \iff \sum_{d' \in \Delta} \omega_x(d, d') = 1 \quad \forall d \in \Delta$

I.e., ω prescribes a $\Delta\times\Delta$ stochastic matrix in every site of \mathbb{Z}^2

Environment:
$$\omega = \{\omega_x\}_{x \in \mathbb{Z}^2} \in (M_\Delta)^{\mathbb{Z}^2} =: \mathcal{E} \text{ (environment space)}$$

 $\omega_x = \{\omega_x(d, d')\}_{d, d' \in \Delta} \in M_\Delta \iff \sum_{d' \in \Delta} \omega_x(d, d') = 1 \quad \forall d \in \Delta$

I.e., ω prescribes a $\Delta \times \Delta$ stochastic matrix in every site of \mathbb{Z}^2

So, formally: PRW = Markov chain P_p^{ω} on $\mathbb{Z}^2 \times \Delta$ defined by

$$P_{p}^{\omega}((X_{0}, D_{0}) = (x, d)) = p(x, d);$$

$$P_{p}^{\omega}((X_{n+1}, D_{n+1}) = (x', d') | (X_{n}, D_{n}) = (x, d)) = \begin{cases} \omega_{x}(d, d'), & \text{if } x' = x + d'; \\ 0, & \text{otherwise} \end{cases}$$

 $p = probability on \mathbb{Z}^2 \times \Delta$ (initial state) E.g., $p(x, d) = \delta_{x, x_0} \delta_{d, d_0}$

Defn (recurrence). *PRW in* ω *with initial state* p *is recurrent if* $P_p^{\omega}((X_n, D_n) = (X_0, D_0)$ for infinitely many $n \in \mathbb{N}) = 1$.

Defn (recurrence). *PRW in* ω *with initial state* p *is recurrent if* $P_p^{\omega}((X_n, D_n) = (X_0, D_0)$ for infinitely many $n \in \mathbb{N}) = 1$.

Will consider:

• Homogeneous PRWs: $\omega_x = \omega_0 \ \forall x \in \mathbb{Z}^2$

Defn (recurrence). *PRW in* ω *with initial state* p *is recurrent if* $P_p^{\omega}((X_n, D_n) = (X_0, D_0)$ for infinitely many $n \in \mathbb{N}) = 1$.

Will consider:

- Homogeneous PRWs: $\omega_x = \omega_0 \ \forall x \in \mathbb{Z}^2$
- PRWs in random environment (PRWRE): ω chosen in ${\mathcal E}$ with random law Π

Study almost sure recurrence, i.e, recurrence for $\Pi\text{-a.e.}\ \omega\in\mathcal{E}$

Defn (recurrence). *PRW in* ω *with initial state* p *is recurrent if* $P_p^{\omega}((X_n, D_n) = (X_0, D_0)$ for infinitely many $n \in \mathbb{N}) = 1$.

Will consider:

- Homogeneous PRWs: $\omega_x = \omega_0 \ \forall x \in \mathbb{Z}^2$
- PRWs in random environment (PRWRE): ω chosen in ${\mathcal E}$ with random law Π

Study almost sure recurrence, i.e, recurrence for Π -a.e. $\omega \in \mathcal{E}$

• (Some) inhomogeneous PRW via dual graph

Dynamical systems and cocycles

Probability-preserving dynamical system: (\mathcal{S}, T, μ) with

$$\begin{split} T : \mathcal{S} &\longrightarrow \mathcal{S} \\ \mu(T^{-1}A) &= \mu(A), \, \forall A \subset \mathcal{S} \quad (\mu \text{ T-invariant}) \\ \mu(\mathcal{S}) &= 1 & (\mu \text{ probability}) \end{split}$$

Dynamical systems and cocycles

Probability-preserving dynamical system: (\mathcal{S}, T, μ) with

$$\begin{split} T : \mathcal{S} &\longrightarrow \mathcal{S} \\ \mu(T^{-1}A) &= \mu(A), \, \forall A \subset \mathcal{S} \quad (\mu \text{ T-invariant}) \\ \mu(\mathcal{S}) &= 1 & (\mu \text{ probability}) \end{split}$$

Defn. $\{S_n\}_{n\in\mathbb{N}}$ is a ν -dimensional commutative cocycle for (\mathcal{S}, T, μ) if $S_0 \equiv 0$ and

$$S_n := \sum_{k=0}^{n-1} f \circ T^k$$

for some $f : S \longrightarrow \mathbb{R}^{\nu}$, $f \in L^{2}(S, \mu)$ (vector-valued Birkhoff sum). If $f : S \longrightarrow \mathbb{L}$, with \mathbb{L} lattice of \mathbb{R}^{ν} , cocycle is called discrete.

Defn. $\{S_n\}$ is recurrent if, $\forall \varepsilon > 0$, μ -a.s. $\|S_n\| \le \varepsilon$ for infinitely many n.

If $\{S_n\}$ is discrete: $S_n = 0$ for infinitely many n.

Defn. $\{S_n\}$ is recurrent if, $\forall \varepsilon > 0$, μ -a.s. $\|S_n\| \le \varepsilon$ for infinitely many n. If $\{S_n\}$ is discrete: $S_n = 0$ for infinitely many n.

Thm (Schmidt '98, Conze '99). If (S, T, μ) is ergodic, $\{S_n\}$ is 2D and verifies the centered CLT (even with ∞ variance), then $\{S_n\}$ is recurrent.

Application: Define $\sigma : (\mathbb{Z}^2 \times \Delta)^{\mathbb{N}} \longrightarrow (\mathbb{Z}^2 \times \Delta)^{\mathbb{N}}$ as $\sigma((X_0, D_0), (X_1, D_1), \ldots) := ((X_1, D_1), (X_2, D_2), \ldots)$

(left shift on paths = time evolution). Then

$$X_n - X_0 = \sum_{j=1}^n D_n = \sum_{k=0}^{n-1} D_1 \circ \sigma^k$$

would be a discrete 2D cocycle for $((\mathbb{Z}^2 \times \Delta)^{\mathbb{N}}, \sigma, P_p^{\omega})$

Application: Define $\sigma : (\mathbb{Z}^2 \times \Delta)^{\mathbb{N}} \longrightarrow (\mathbb{Z}^2 \times \Delta)^{\mathbb{N}}$ as $\sigma((X_0, D_0), (X_1, D_1), \ldots) := ((X_1, D_1), (X_2, D_2), \ldots)$

(left shift on paths = time evolution). Then

$$X_n - X_0 = \sum_{j=1}^n D_n = \sum_{k=0}^{n-1} D_1 \circ \sigma^k$$

would be a discrete 2D cocycle for $((\mathbb{Z}^2 \times \Delta)^{\mathbb{N}}, \sigma, P_p^{\omega})$

<u>Problem</u>: P_p^{ω} never (dynamics-)invariant! (because p not translation-invariant on $\mathbb{Z}^2 \times \Delta$, noncompact)

Application: Define $\sigma : (\mathbb{Z}^2 \times \Delta)^{\mathbb{N}} \longrightarrow (\mathbb{Z}^2 \times \Delta)^{\mathbb{N}}$ as $\sigma((X_0, D_0), (X_1, D_1), \ldots) := ((X_1, D_1), (X_2, D_2), \ldots)$

(left shift on paths = time evolution). Then

$$X_n - X_0 = \sum_{j=1}^n D_n = \sum_{k=0}^{n-1} D_1 \circ \sigma^k$$

would be a discrete 2D cocycle for $((\mathbb{Z}^2 \times \Delta)^{\mathbb{N}}, \sigma, P_p^{\omega})$

<u>Problem</u>: P_p^{ω} never (dynamics-)invariant! (because p not translation-invariant on $\mathbb{Z}^2 \times \Delta$, noncompact)

\implies Must choose suitable dynamical system

Homogeneous PRWs

Propn. Take homogeneous PRW defined by $\omega_0 \in M_\Delta$, irreducible aperiodic (ergodic). CLT holds. CLT is centered (thus recurrence holds) $\iff \pi = \text{stationary vector of } \omega_0 \left(\sum_d \pi(d) \omega_0(d, d') = \pi(d') \right)$ is balanced, i.e.

$$\pi(e_1) = \pi(-e_1), \qquad \pi(e_2) = \pi(-e_2).$$

Homogeneous PRWs

Propn. Take homogeneous PRW defined by $\omega_0 \in M_\Delta$, irreducible aperiodic (ergodic). CLT holds. CLT is centered (thus recurrence holds) $\iff \pi = \text{stationary vector of } \omega_0 \left(\sum_d \pi(d) \omega_0(d, d') = \pi(d') \right)$ is balanced, i.e.

$$\pi(e_1) = \pi(-e_1), \qquad \pi(e_2) = \pi(-e_2).$$

Proof: Use $(\Delta^{\mathbb{N}}, \sigma, \mathcal{P}_{\pi})$, where $\sigma(D_0, D_1, \ldots) := (D_1, D_2, \ldots)$ (abuse of notation) \mathcal{P}_{π} = finite-state Markov chain on Δ with initial state π $\Longrightarrow \mathcal{P}_{\pi}$ invariant (since π stationary for ω_0) Ergodicity and CLT standard

Q.E.D.

<u>Tóth random environments</u> (\mathcal{E}, Π)

- Ergodic for the action of $(\tau_y \omega)_x := \omega_{x+y}$ (e.g., $\{\omega_x\}$ i.i.d.)
- Elliptic: $\exists \varepsilon > 0$ s.t. $\forall x, d, d'$, $\omega_x(d, d') \ge \varepsilon$ (can do better)
- Isotropic: Π-a.s., ω_x^T ∈ M_Δ (ω_x doubly stochastic)
 ⇒ PRW in ω "invertible" (backward dyn. given by ω^T = {ω_x^T})
 ⇒ underlying "probability flow" incompressible

<u>Tóth random environments</u> (\mathcal{E}, Π)

- Ergodic for the action of $(\tau_y \omega)_x := \omega_{x+y}$ (e.g., $\{\omega_x\}$ i.i.d.)
- Elliptic: $\exists \varepsilon > 0$ s.t. $\forall x, d, d'$, $\omega_x(d, d') \ge \varepsilon$ (can do better)
- Isotropic: Π-a.s., ω_x^T ∈ M_Δ (ω_x doubly stochastic)
 ⇒ PRW in ω "invertible" (backward dyn. given by ω^T = {ω_x^T})
 ⇒ underlying "probability flow" incompressible

Thm (*Tóth '86*). *PRWREs as above verify the annealed centered CLT* (*i.e., relative to both random dynamics and random environment*).

<u>Tóth random environments</u> (\mathcal{E}, Π)

- Ergodic for the action of $(\tau_y \omega)_x := \omega_{x+y}$ (e.g., $\{\omega_x\}$ i.i.d.)
- Elliptic: $\exists \varepsilon > 0$ s.t. $\forall x, d, d'$, $\omega_x(d, d') \ge \varepsilon$ (can do better)
- Isotropic: Π-a.s., ω_x^T ∈ M_Δ (ω_x doubly stochastic)
 ⇒ PRW in ω "invertible" (backward dyn. given by ω^T = {ω_x^T})
 ⇒ underlying "probability flow" incompressible

Thm (*Tóth '86*). *PRWREs as above verify the annealed centered CLT* (*i.e., relative to both random dynamics and random environment*).

Proof: Uses $((\Delta \times \mathcal{E})^{\mathbb{N}}, \sigma, \mathbb{P})$ (point of view of the particle), then adaptation of *Kipnis-Varadhan '86* for CLT.

<u>Tóth random environments</u> (\mathcal{E}, Π)

- Ergodic for the action of $(\tau_y \omega)_x := \omega_{x+y}$ (e.g., $\{\omega_x\}$ i.i.d.)
- Elliptic: $\exists \varepsilon > 0$ s.t. $\forall x, d, d'$, $\omega_x(d, d') \ge \varepsilon$ (can do better)
- Isotropic: Π-a.s., ω_x^T ∈ M_Δ (ω_x doubly stochastic)
 ⇒ PRW in ω "invertible" (backward dyn. given by ω^T = {ω_x^T})
 ⇒ underlying "probability flow" incompressible

Thm (*Tóth '86*). *PRWREs as above verify the annealed centered CLT* (*i.e., relative to both random dynamics and random environment*).

Propn. Toth PRWREs are a.s. recurrent.

Symmetric RW is recurrent

<u>Goal</u>: Map 2^{nd} order RW on \mathbb{Z}^2 into 1^{st} order RW on some graph Γ

For $x \in \mathbb{Z}^2$, consider incoming/outgoing displacements:

<u>Goal</u>: Map 2^{nd} order RW on \mathbb{Z}^2 into 1^{st} order RW on some graph Γ

For $x \in \mathbb{Z}^2$, consider incoming/outgoing displacements: sites of Γ

<u>Goal</u>: Map 2^{nd} order RW on \mathbb{Z}^2 into 1^{st} order RW on some graph Γ

For $x \in \mathbb{Z}^2$, consider incoming/outgoing displacements: sites of Γ

<u>Goal</u>: Map 2^{nd} order RW on \mathbb{Z}^2 into 1^{st} order RW on some graph Γ

For $x \in \mathbb{Z}^2$, consider incoming/outgoing displacements: sites of Γ

3D rendering:

Blue: lower level Red: upper level

3D rendering:

Blue: lower level Red: upper level Yellow goes up Green goes down

Application: Further examples of recurrence

Set $\mathbb{Z}^2_{\text{even}} := \left\{ (x^1, x^2) \in \mathbb{Z}^2 \mid x^1 + x^2 \in 2\mathbb{Z} \right\}$, $\mathbb{Z}^2_{\text{odd}} := \mathbb{Z}^2 \setminus \mathbb{Z}^2_{\text{even}}$

 $\mathbb{Z}^2_{even}=$ "checkerboard" subgroup of \mathbb{Z}^2

Application: Further examples of recurrence

Set $\mathbb{Z}^2_{\text{even}} := \left\{ (x^1, x^2) \in \mathbb{Z}^2 \mid x^1 + x^2 \in 2\mathbb{Z} \right\}$, $\mathbb{Z}^2_{\text{odd}} := \mathbb{Z}^2 \setminus \mathbb{Z}^2_{\text{even}}$

(1) Inhomogeneous forward probability

For $\zeta_x \in [0, 1]$ (non-random), define $\omega = \{\omega_x\}$ via the following:

For
$$x \in \mathbb{Z}^2_{\text{even}}$$
, $d = e_1$,
 $\omega_x(d, \mathbf{F}) = \zeta_x$, $\omega_x(d, \mathbf{L}) = \omega_x(d, \mathbf{R}) = (1 - \zeta_x)/2$, $\omega_x(d, \mathbf{B}) = 0$
For $x \in \mathbb{Z}^2_{\text{even}}$, $d \neq e_1$,
 $\omega_x(d, \mathbf{F}) = 0$, $\omega_x(d, \mathbf{L}) = \omega_x(d, \mathbf{R}) = 1/2$, $\omega_x(d, \mathbf{B}) = 0$
For $x \in \mathbb{Z}^2_{\text{odd}}$, $d = -e_1$,
 $\omega_x(d, \mathbf{F}) = \zeta_x$, $\omega_x(d, \mathbf{L}) = \omega_x(d, \mathbf{R}) = (1 - \zeta_x)/2$, $\omega_x(d, \mathbf{B}) = 0$
For $x \in \mathbb{Z}^2_{\text{odd}}$, $d \neq -e_1$,
 $\omega_x(d, \mathbf{F}) = 0$, $\omega_x(d, \mathbf{L}) = \omega_x(d, \mathbf{R}) = 1/2$, $\omega_x(d, \mathbf{B}) = 0$
F = F(d) = d (Forward), B = B(d) = -d (Backward), L = Left, R = Right)

Application: Further examples of recurrence

Set $\mathbb{Z}^2_{\text{even}} := \left\{ (x^1, x^2) \in \mathbb{Z}^2 \mid x^1 + x^2 \in 2\mathbb{Z} \right\}$, $\mathbb{Z}^2_{\text{odd}} := \mathbb{Z}^2 \setminus \mathbb{Z}^2_{\text{even}}$

(1) Inhomogeneous forward probability

For $\zeta_x \in [0,1]$ (non-random), define $\omega = \{\omega_x\}$ via the following:

For
$$x \in \mathbb{Z}^2_{\text{even}}$$
, $d = e_1$,
 $\omega_x(d, \mathbf{F}) = \zeta_x$, $\omega_x(d, \mathbf{L}) = \omega_x(d, \mathbf{R}) = (1 - \zeta_x)/2$, $\omega_x(d, \mathbf{B}) = 0$
For $x \in \mathbb{Z}^2_{\text{even}}$, $d \neq e_1$,
 $\omega_x(d, \mathbf{F}) = 0$, $\omega_x(d, \mathbf{L}) = \omega_x(d, \mathbf{R}) = 1/2$, $\omega_x(d, \mathbf{B}) = 0$
For $x \in \mathbb{Z}^2_{\text{odd}}$, $d = -e_1$,
 $\omega_x(d, \mathbf{F}) = \zeta_x$, $\omega_x(d, \mathbf{L}) = \omega_x(d, \mathbf{R}) = (1 - \zeta_x)/2$, $\omega_x(d, \mathbf{B}) = 0$
For $x \in \mathbb{Z}^2_{\text{odd}}$, $d \neq -e_1$,
 $\omega_x(d, \mathbf{F}) = 0$, $\omega_x(d, \mathbf{L}) = \omega_x(d, \mathbf{R}) = 1/2$, $\omega_x(d, \mathbf{B}) = 0$
 \Rightarrow Symmetric Left-Right PRW with extra Forward displacements

Remark. Forward displacements need not be statistically balanced, namely the local drift $\delta_{\omega}(x,d) := \sum_{d' \in \Delta} \omega_x(d,d')d'$ may not average out to zero:

$$\lim_{\Lambda \nearrow \mathbb{Z}^2} \frac{1}{4|\Lambda|} \sum_{\substack{x \in \Lambda \\ d \in \Delta}} \delta_{\omega}(x, d) \text{ can be } \neq 0$$

Remark. Forward displacements need not be statistically balanced, namely the local drift $\delta_{\omega}(x,d) := \sum_{d' \in \Delta} \omega_x(d,d')d'$ may not average out to zero:

$$\lim_{\Lambda \nearrow \mathbb{Z}^2} \frac{1}{4|\Lambda|} \sum_{\substack{x \in \Lambda \\ d \in \Delta}} \delta_{\omega}(x, d) \text{ can be } \neq 0$$

Propn 1. If, for at least one $x \in \mathbb{Z}^2_{\text{even}}$, $\zeta_x > 0$ and, for at least one $y \in \mathbb{Z}^2_{\text{odd}}$, $\zeta_y > 0$, the PRW in ω is recurrent for all initial conditions.

Remark. Forward displacements need not be statistically balanced, namely the local drift $\delta_{\omega}(x,d) := \sum_{d' \in \Delta} \omega_x(d,d')d'$ may not average out to zero:

$$\lim_{\Lambda \nearrow \mathbb{Z}^2} \frac{1}{4|\Lambda|} \sum_{\substack{x \in \Lambda \\ d \in \Delta}} \delta_{\omega}(x, d) \text{ can be } \neq 0$$

Propn 1. If, for at least one $x \in \mathbb{Z}^2_{even}$, $\zeta_x > 0$ and, for at least one $y \in \mathbb{Z}^2_{odd}$, $\zeta_y > 0$, the PRW in ω is recurrent for all initial conditions.

Proof:

(2) Inhomogeneous backward probability

For $\zeta_x \in [0,1]$ (non-random), define $\omega = \{\omega_x\}$ via the following:

For
$$x \in \mathbb{Z}_{even}^2$$
, $d = e_1$,
 $\omega_x(d, \mathbf{F}) = 0$, $\omega_x(d, \mathbf{L}) = \omega_x(d, \mathbf{R}) = (1 - \zeta_x)/2$, $\omega_x(d, \mathbf{B}) = \zeta_x$
For $x \in \mathbb{Z}_{even}^2$, $d \neq e_1$,
 $\omega_x(d, \mathbf{F}) = 0$, $\omega_x(d, \mathbf{L}) = \omega_x(d, \mathbf{R}) = 1/2$, $\omega_x(d, \mathbf{B}) = 0$
For $x \in \mathbb{Z}_{odd}^2$, $d = -e_1$,
 $\omega_x(d, \mathbf{F}) = 0$, $\omega_x(d, \mathbf{L}) = \omega_x(d, \mathbf{R}) = (1 - \zeta_x)/2$, $\omega_x(d, \mathbf{B}) = \zeta_x$
For $x \in \mathbb{Z}_{odd}^2$, $d \neq -e_1$,
 $\omega_x(d, \mathbf{F}) = 0$, $\omega_x(d, \mathbf{L}) = \omega_x(d, \mathbf{R}) = 1/2$, $\omega_x(d, \mathbf{B}) = 0$

(2) Inhomogeneous backward probability

For $\zeta_x \in [0,1]$ (non-random), define $\omega = \{\omega_x\}$ via the following:

For
$$x \in \mathbb{Z}^2_{\text{even}}$$
, $d = e_1$,
 $\omega_x(d, \mathbf{F}) = 0$, $\omega_x(d, \mathbf{L}) = \omega_x(d, \mathbf{R}) = (1 - \zeta_x)/2$, $\omega_x(d, \mathbf{B}) = \zeta_x$
For $x \in \mathbb{Z}^2_{\text{even}}$, $d \neq e_1$,
 $\omega_x(d, \mathbf{F}) = 0$, $\omega_x(d, \mathbf{L}) = \omega_x(d, \mathbf{R}) = 1/2$, $\omega_x(d, \mathbf{B}) = 0$
For $x \in \mathbb{Z}^2_{\text{odd}}$, $d = -e_1$,
 $\omega_x(d, \mathbf{F}) = 0$, $\omega_x(d, \mathbf{L}) = \omega_x(d, \mathbf{R}) = (1 - \zeta_x)/2$, $\omega_x(d, \mathbf{B}) = \zeta_x$
For $x \in \mathbb{Z}^2_{\text{odd}}$, $d \neq -e_1$,
 $\omega_x(d, \mathbf{F}) = 0$, $\omega_x(d, \mathbf{L}) = \omega_x(d, \mathbf{R}) = 1/2$, $\omega_x(d, \mathbf{B}) = 0$

⇒ Symmetric Left-Right PRW with extra Backward displacementsOnce again, Backward displacements need not be statistically balanced

Propn 2. Suppose that, for at least one $x \in \mathbb{Z}^2_{even}$, $\zeta_x > 0$ and, for at least one $y \in \mathbb{Z}^2_{odd}$, $\zeta_y > 0$. Suppose also that there is no $x \in \mathbb{Z}^2_{even}$ such that $\zeta_x = \zeta_{x-e_1} = 1$. Then the PRW in ω is recurrent for all initial conditions.

Propn 2. Suppose that, for at least one $x \in \mathbb{Z}^2_{even}$, $\zeta_x > 0$ and, for at least one $y \in \mathbb{Z}^2_{odd}$, $\zeta_y > 0$. Suppose also that there is no $x \in \mathbb{Z}^2_{even}$ such that $\zeta_x = \zeta_{x-e_1} = 1$. Then the PRW in ω is recurrent for all initial conditions.

Proof:

