Marco Lenci

(Università di Bologna)

Recurrence for
persistent random walks
in two dimensions

Persistent (Newtonian) random walks

Persistent random walk (PRW) in \mathbb{Z}^{ν} : $2^{\text {nd }}$ order Markov chain on $\mathbb{Z}^{\nu}=$ stochastic process $\left\{X_{n}\right\}_{n \in \mathbb{N}}$ with $X_{n} \in \mathbb{Z}^{\nu}$ s.t.

$$
\begin{aligned}
& \operatorname{Prob}\left(X_{n+1} \mid X_{n}, X_{n-1}, \ldots, X_{0}\right)= \\
& \operatorname{Prob}\left(X_{n+1} \mid X_{n}, X_{n-1}\right)
\end{aligned}
$$

Persistent (Newtonian) random walks

Persistent random walk (PRW) in \mathbb{Z}^{ν} : $2^{\text {nd }}$ order Markov chain on $\mathbb{Z}^{\nu}=$ stochastic process $\left\{X_{n}\right\}_{n \in \mathbb{N}}$ with $X_{n} \in \mathbb{Z}^{\nu}$ s.t.

$$
\begin{aligned}
& \operatorname{Prob}\left(X_{n+1} \mid X_{n}, X_{n-1}, \ldots, X_{0}\right)= \\
& \operatorname{Prob}\left(X_{n+1} \mid X_{n}, X_{n-1}\right)= \\
& \operatorname{Prob}\left(X_{n+1} \mid X_{n}, D_{n}\right)
\end{aligned}
$$

with $D_{n}:=X_{n}-X_{n-1}=$ incoming direction \simeq "velocity"
(whence "Newtonian" random walk)

Persistent (Newtonian) random walks

Persistent random walk (PRW) in \mathbb{Z}^{ν} : $2^{\text {nd }}$ order Markov chain on $\mathbb{Z}^{\nu}=$ stochastic process $\left\{X_{n}\right\}_{n \in \mathbb{N}}$ with $X_{n} \in \mathbb{Z}^{\nu}$ s.t.

$$
\begin{aligned}
& \operatorname{Prob}\left(X_{n+1} \mid X_{n}, X_{n-1}, \ldots, X_{0}\right)= \\
& \operatorname{Prob}\left(X_{n+1} \mid X_{n}, X_{n-1}\right)= \\
& \operatorname{Prob}\left(X_{n+1} \mid X_{n}, D_{n}\right)
\end{aligned}
$$

with $D_{n}:=X_{n}-X_{n-1}=$ incoming direction \simeq "velocity"
Will assume $\nu=2$ and

$$
D_{n} \in \Delta:=\left\{ \pm e_{1}, \pm e_{2}\right\}
$$

$\Delta=$ fundamental directions \Longrightarrow nearest-neighbor PRW

Environment: $\omega=\left\{\omega_{x}\right\}_{x \in \mathbb{Z}^{2}} \in\left(M_{\Delta}\right)^{\mathbb{Z}^{2}}=: \mathcal{E}$ (environment space)
$\omega_{x}=\left\{\omega_{x}\left(d, d^{\prime}\right)\right\}_{d, d^{\prime} \in \Delta} \in M_{\Delta} \stackrel{\text { def }}{\Longleftrightarrow} \sum_{d^{\prime} \in \Delta} \omega_{x}\left(d, d^{\prime}\right)=1 \quad \forall d \in \Delta$
l.e., ω prescribes a $\Delta \times \Delta$ stochastic matrix in every site of \mathbb{Z}^{2}

Environment: $\omega=\left\{\omega_{x}\right\}_{x \in \mathbb{Z}^{2}} \in\left(M_{\Delta}\right)^{\mathbb{Z}^{2}}=: \mathcal{E}$ (environment space)
$\omega_{x}=\left\{\omega_{x}\left(d, d^{\prime}\right)\right\}_{d, d^{\prime} \in \Delta} \in M_{\Delta} \stackrel{\text { def }}{\Longleftrightarrow} \sum_{d^{\prime} \in \Delta} \omega_{x}\left(d, d^{\prime}\right)=1 \quad \forall d \in \Delta$
I.e., ω prescribes a $\Delta \times \Delta$ stochastic matrix in every site of \mathbb{Z}^{2}

So, formally: PRW $=$ Markov chain P_{p}^{ω} on $\mathbb{Z}^{2} \times \Delta$ defined by

$$
\begin{aligned}
& P_{p}^{\omega}\left(\left(X_{0}, D_{0}\right)=(x, d)\right)=p(x, d) ; \\
& P_{p}^{\omega}\left(\left(X_{n+1}, D_{n+1}\right)=\left(x^{\prime}, d^{\prime}\right) \mid\left(X_{n}, D_{n}\right)=(x, d)\right)= \\
& \qquad\left\{\begin{aligned}
\omega_{x}\left(d, d^{\prime}\right), & \text { if } x^{\prime}=x+d^{\prime} \\
0, & \text { otherwise }
\end{aligned}\right.
\end{aligned}
$$

$p=$ probability on $\mathbb{Z}^{2} \times \Delta$ (initial state)

$$
\text { E.g., } p(x, d)=\delta_{x, x_{0}} \delta_{d, d_{0}}
$$

Recurrence

Defn (recurrence). PRW in ω with initial state p is recurrent if

$$
P_{p}^{\omega}\left(\left(X_{n}, D_{n}\right)=\left(X_{0}, D_{0}\right) \text { for infinitely many } n \in \mathbb{N}\right)=1
$$

Recurrence

Defn (recurrence). PRW in ω with initial state p is recurrent if

$$
P_{p}^{\omega}\left(\left(X_{n}, D_{n}\right)=\left(X_{0}, D_{0}\right) \text { for infinitely many } n \in \mathbb{N}\right)=1
$$

Will consider:

- Homogeneous PRWs: $\omega_{x}=\omega_{0} \forall x \in \mathbb{Z}^{2}$

Recurrence

Defn (recurrence). PRW in ω with initial state p is recurrent if

$$
P_{p}^{\omega}\left(\left(X_{n}, D_{n}\right)=\left(X_{0}, D_{0}\right) \text { for infinitely many } n \in \mathbb{N}\right)=1
$$

Will consider:

- Homogeneous PRWs: $\omega_{x}=\omega_{0} \forall x \in \mathbb{Z}^{2}$
- PRWs in random environment (PRWRE): ω chosen in \mathcal{E} with random law Π
Study almost sure recurrence, i.e, recurrence for Π-a.e. $\omega \in \mathcal{E}$

Recurrence

Defn (recurrence). PRW in ω with initial state p is recurrent if

$$
P_{p}^{\omega}\left(\left(X_{n}, D_{n}\right)=\left(X_{0}, D_{0}\right) \text { for infinitely many } n \in \mathbb{N}\right)=1
$$

Will consider:

- Homogeneous PRWs: $\omega_{x}=\omega_{0} \forall x \in \mathbb{Z}^{2}$
- PRWs in random environment (PRWRE): ω chosen in \mathcal{E} with random law Π
Study almost sure recurrence, i.e, recurrence for Π-a.e. $\omega \in \mathcal{E}$
- (Some) inhomogeneous PRW via dual graph

Dynamical systems and cocycles

Probability-preserving dynamical system: (\mathcal{S}, T, μ) with

$$
\begin{array}{ll}
T: \mathcal{S} \longrightarrow \mathcal{S} \\
\mu\left(T^{-1} A\right)=\mu(A), \forall A \subset \mathcal{S} & (\mu T \text {-invariant }) \\
\mu(\mathcal{S})=1 & (\mu \text { probability })
\end{array}
$$

Dynamical systems and cocycles

Probability-preserving dynamical system: (\mathcal{S}, T, μ) with

$$
\begin{array}{ll}
T: \mathcal{S} \longrightarrow \mathcal{S} \\
\mu\left(T^{-1} A\right)=\mu(A), \forall A \subset \mathcal{S} & (\mu T \text {-invariant }) \\
\mu(\mathcal{S})=1 & (\mu \text { probability })
\end{array}
$$

Defn. $\left\{S_{n}\right\}_{n \in \mathbb{N}}$ is a ν-dimensional commutative cocycle for (\mathcal{S}, T, μ) if $S_{0} \equiv 0$ and

$$
S_{n}:=\sum_{k=0}^{n-1} f \circ T^{k}
$$

for some $f: \mathcal{S} \longrightarrow \mathbb{R}^{\nu}, f \in L^{2}(\mathcal{S}, \mu)$ (vector-valued Birkhoff sum).
If $f: \mathcal{S} \longrightarrow \mathbb{L}$, with \mathbb{L} lattice of \mathbb{R}^{ν}, cocycle is called discrete.

Defn. $\left\{S_{n}\right\}$ is recurrent if, $\forall \varepsilon>0$, μ-a.s.

$$
\left\|S_{n}\right\| \leq \varepsilon \quad \text { for infinitely many } n
$$

If $\left\{S_{n}\right\}$ is discrete: $S_{n}=0$ for infinitely many n.

Defn. $\left\{S_{n}\right\}$ is recurrent if, $\forall \varepsilon>0, \mu$-a.s.

$$
\left\|S_{n}\right\| \leq \varepsilon \quad \text { for infinitely many } n
$$

If $\left\{S_{n}\right\}$ is discrete: $S_{n}=0$ for infinitely many n.

Thm (Schmidt '98, Conze '99). If (\mathcal{S}, T, μ) is ergodic, $\left\{S_{n}\right\}$ is 2D and verifies the centered CLT (even with ∞ variance), then $\left\{S_{n}\right\}$ is recurrent.

Application: Define $\sigma:\left(\mathbb{Z}^{2} \times \Delta\right)^{\mathbb{N}} \longrightarrow\left(\mathbb{Z}^{2} \times \Delta\right)^{\mathbb{N}}$ as

$$
\sigma\left(\left(X_{0}, D_{0}\right),\left(X_{1}, D_{1}\right), \ldots\right):=\left(\left(X_{1}, D_{1}\right),\left(X_{2}, D_{2}\right), \ldots\right)
$$

(left shift on paths $=$ time evolution). Then

$$
X_{n}-X_{0}=\sum_{j=1}^{n} D_{n}=\sum_{k=0}^{n-1} D_{1} \circ \sigma^{k}
$$

would be a discrete 2D cocycle for $\left(\left(\mathbb{Z}^{2} \times \Delta\right)^{\mathbb{N}}, \sigma, P_{p}^{\omega}\right)$

Application: Define $\sigma:\left(\mathbb{Z}^{2} \times \Delta\right)^{\mathbb{N}} \longrightarrow\left(\mathbb{Z}^{2} \times \Delta\right)^{\mathbb{N}}$ as

$$
\sigma\left(\left(X_{0}, D_{0}\right),\left(X_{1}, D_{1}\right), \ldots\right):=\left(\left(X_{1}, D_{1}\right),\left(X_{2}, D_{2}\right), \ldots\right)
$$

(left shift on paths $=$ time evolution). Then

$$
X_{n}-X_{0}=\sum_{j=1}^{n} D_{n}=\sum_{k=0}^{n-1} D_{1} \circ \sigma^{k}
$$

would be a discrete 2D cocycle for $\left(\left(\mathbb{Z}^{2} \times \Delta\right)^{\mathbb{N}}, \sigma, P_{p}^{\omega}\right)$
Problem: P_{p}^{ω} never (dynamics-)invariant!
(because p not translation-invariant on $\mathbb{Z}^{2} \times \Delta$, noncompact)

Application: Define $\sigma:\left(\mathbb{Z}^{2} \times \Delta\right)^{\mathbb{N}} \longrightarrow\left(\mathbb{Z}^{2} \times \Delta\right)^{\mathbb{N}}$ as

$$
\sigma\left(\left(X_{0}, D_{0}\right),\left(X_{1}, D_{1}\right), \ldots\right):=\left(\left(X_{1}, D_{1}\right),\left(X_{2}, D_{2}\right), \ldots\right)
$$

(left shift on paths $=$ time evolution). Then

$$
X_{n}-X_{0}=\sum_{j=1}^{n} D_{n}=\sum_{k=0}^{n-1} D_{1} \circ \sigma^{k}
$$

would be a discrete 2D cocycle for $\left(\left(\mathbb{Z}^{2} \times \Delta\right)^{\mathbb{N}}, \sigma, P_{p}^{\omega}\right)$
Problem: P_{p}^{ω} never (dynamics-)invariant!
(because p not translation-invariant on $\mathbb{Z}^{2} \times \Delta$, noncompact)
\Longrightarrow Must choose suitable dynamical system

Homogeneous PRWs

Propn. Take homogeneous PRW defined by $\omega_{0} \in M_{\Delta}$, irreducible aperiodic (ergodic). CLT holds. CLT is centered (thus recurrence holds $) \Longleftrightarrow \pi=$ stationary vector of $\omega_{0}\left(\sum_{d} \pi(d) \omega_{0}\left(d, d^{\prime}\right)=\pi\left(d^{\prime}\right)\right)$ is balanced, i.e.

$$
\pi\left(e_{1}\right)=\pi\left(-e_{1}\right), \quad \pi\left(e_{2}\right)=\pi\left(-e_{2}\right) .
$$

Homogeneous PRWs

Propn. Take homogeneous PRW defined by $\omega_{0} \in M_{\Delta}$, irreducible aperiodic (ergodic). CLT holds. CLT is centered (thus recurrence holds $) \Longleftrightarrow \pi=$ stationary vector of $\omega_{0}\left(\sum_{d} \pi(d) \omega_{0}\left(d, d^{\prime}\right)=\pi\left(d^{\prime}\right)\right)$ is balanced, i.e.

$$
\pi\left(e_{1}\right)=\pi\left(-e_{1}\right), \quad \pi\left(e_{2}\right)=\pi\left(-e_{2}\right) .
$$

Proof: Use $\left(\Delta^{\mathbb{N}}, \sigma, \mathcal{P}_{\pi}\right)$, where

$$
\sigma\left(D_{0}, D_{1}, \ldots\right):=\left(D_{1}, D_{2}, \ldots\right) \quad \text { (abuse of notation) }
$$

$\mathcal{P}_{\pi}=$ finite-state Markov chain on Δ with initial state π
$\Longrightarrow \mathcal{P}_{\pi}$ invariant (since π stationary for ω_{0})
Ergodicity and CLT standard

Random environments

Tóth random environments (\mathcal{E}, Π)

- Ergodic for the action of $\left(\tau_{y} \omega\right)_{x}:=\omega_{x+y}$ (e.g., $\left\{\omega_{x}\right\}$ i.i.d.)
- Elliptic: $\exists \varepsilon>0$ s.t. $\forall x, d, d^{\prime}, \omega_{x}\left(d, d^{\prime}\right) \geq \varepsilon$ (can do better)
- Isotropic: Π-a.s., $\omega_{x}^{T} \in M_{\Delta}$ (ω_{x} doubly stochastic)
\Rightarrow PRW in ω "invertible" (backward dyn. given by $\omega^{T}=\left\{\omega_{x}^{T}\right\}$)
\Rightarrow underlying "probability flow" incompressible

Random environments

Tóth random environments (\mathcal{E}, Π)

- Ergodic for the action of $\left(\tau_{y} \omega\right)_{x}:=\omega_{x+y}$ (e.g., $\left\{\omega_{x}\right\}$ i.i.d.)
- Elliptic: $\exists \varepsilon>0$ s.t. $\forall x, d, d^{\prime}, \omega_{x}\left(d, d^{\prime}\right) \geq \varepsilon$ (can do better)
- Isotropic: Π-a.s., $\omega_{x}^{T} \in M_{\Delta}$ (ω_{x} doubly stochastic) \Rightarrow PRW in ω "invertible" (backward dyn. given by $\omega^{T}=\left\{\omega_{x}^{T}\right\}$) \Rightarrow underlying "probability flow" incompressible

Thm (Tóth '86). PRWREs as above verify the annealed centered CLT (i.e., relative to both random dynamics and random environment).

Random environments

Tóth random environments (\mathcal{E}, Π)

- Ergodic for the action of $\left(\tau_{y} \omega\right)_{x}:=\omega_{x+y}$ (e.g., $\left\{\omega_{x}\right\}$ i.i.d.)
- Elliptic: $\exists \varepsilon>0$ s.t. $\forall x, d, d^{\prime}, \omega_{x}\left(d, d^{\prime}\right) \geq \varepsilon$ (can do better)
- Isotropic: Π-a.s., $\omega_{x}^{T} \in M_{\Delta}$ (ω_{x} doubly stochastic) \Rightarrow PRW in ω "invertible" (backward dyn. given by $\omega^{T}=\left\{\omega_{x}^{T}\right\}$) \Rightarrow underlying "probability flow" incompressible

Thm (Tóth '86). PRWREs as above verify the annealed centered CLT (i.e., relative to both random dynamics and random environment).

Proof: Uses $\left((\Delta \times \mathcal{E})^{\mathbb{N}}, \sigma, \mathbb{P}\right)$ (point of view of the particle), then adaptation of Kipnis-Varadhan ' 86 for CLT.

Random environments

Tóth random environments (\mathcal{E}, Π)

- Ergodic for the action of $\left(\tau_{y} \omega\right)_{x}:=\omega_{x+y}$ (e.g., $\left\{\omega_{x}\right\}$ i.i.d.)
- Elliptic: $\exists \varepsilon>0$ s.t. $\forall x, d, d^{\prime}, \omega_{x}\left(d, d^{\prime}\right) \geq \varepsilon$ (can do better)
- Isotropic: Π-a.s., $\omega_{x}^{T} \in M_{\Delta}$ (ω_{x} doubly stochastic) \Rightarrow PRW in ω "invertible" (backward dyn. given by $\omega^{T}=\left\{\omega_{x}^{T}\right\}$) \Rightarrow underlying "probability flow" incompressible

Thm (Tóth '86). PRWREs as above verify the annealed centered CLT (i.e., relative to both random dynamics and random environment).

Propn. Tóth PRWREs are a.s. recurrent.

Digression: The Manhattan lattice

Symmetric RW is recurrent

The dual graph

Goal: Map $2^{\text {nd }}$ order $R W$ on \mathbb{Z}^{2} into $1^{\text {st }}$ order $R W$ on some graph Γ
For $x \in \mathbb{Z}^{2}$, consider incoming/outgoing displacements:

The dual graph

Goal: Map $2^{\text {nd }}$ order $R W$ on \mathbb{Z}^{2} into $1^{\text {st }}$ order $R W$ on some graph Γ
For $x \in \mathbb{Z}^{2}$, consider incoming/outgoing displacements: sites of Γ

The dual graph

Goal: Map $2^{\text {nd }}$ order $R W$ on \mathbb{Z}^{2} into $1^{\text {st }}$ order $R W$ on some graph Γ
For $x \in \mathbb{Z}^{2}$, consider incoming/outgoing displacements: sites of Γ

The dual graph

Goal: Map $2^{\text {nd }}$ order $R W$ on \mathbb{Z}^{2} into $1^{\text {st }}$ order $R W$ on some graph Γ
For $x \in \mathbb{Z}^{2}$, consider incoming/outgoing displacements: sites of Γ

Γ looks like

Two Manhattan lattices (blue and red) with opposite orientations connected by other links (green and yellow)
Γ looks like

Two Manhattan lattices (blue and red) with opposite orientations connected by other links (green and yellow)
Γ looks like

Two Manhattan lattices (blue and red) with opposite orientations connected by other links (green and yellow)
Γ looks like

Two Manhattan lattices (blue and red) with opposite orientations connected by other links (green and yellow)

3D rendering:

Blue: lower level
Red: upper level

3D rendering:

Blue: lower level
Red: upper level
Yellow goes up
Green goes down

Application: Further examples of recurrence

Set $\mathbb{Z}_{\text {even }}^{2}:=\left\{\left(x^{1}, x^{2}\right) \in \mathbb{Z}^{2} \mid x^{1}+x^{2} \in 2 \mathbb{Z}\right\}, \mathbb{Z}_{\text {odd }}^{2}:=\mathbb{Z}^{2} \backslash \mathbb{Z}_{\text {even }}^{2}$

$\mathbb{Z}_{\text {even }}^{2}=$ "checkerboard" subgroup of \mathbb{Z}^{2}

Application: Further examples of recurrence

Set $\mathbb{Z}_{\text {even }}^{2}:=\left\{\left(x^{1}, x^{2}\right) \in \mathbb{Z}^{2} \mid x^{1}+x^{2} \in 2 \mathbb{Z}\right\}, \mathbb{Z}_{\text {odd }}^{2}:=\mathbb{Z}^{2} \backslash \mathbb{Z}_{\text {even }}^{2}$
(1) Inhomogeneous forward probability

For $\zeta_{x} \in[0,1]$ (non-random), define $\omega=\left\{\omega_{x}\right\}$ via the following:

$$
\begin{aligned}
& \text { For } x \in \mathbb{Z}_{\text {even }}^{2}, d=e_{1}, \\
& \omega_{x}(d, \mathbf{F})=\zeta_{x}, \omega_{x}(d, \mathbf{L})=\omega_{x}(d, \mathbf{R})=\left(1-\zeta_{x}\right) / 2, \omega_{x}(d, \mathbf{B})=0 \\
& \text { For } x \in \mathbb{Z}_{\text {even }}^{2} d \neq e_{1} \\
& \omega_{x}(d, \mathbf{F})=0, \quad \omega_{x}(d, \mathbf{L})=\omega_{x}(d, \mathbf{R})=1 / 2, \quad \omega_{x}(d, \mathbf{B})=0 \\
& \text { For } x \in \mathbb{Z}_{\text {odd, }}^{2} d=-e_{1}, \\
& \omega_{x}(d, \mathbf{F})=\zeta_{x}, \omega_{x}(d, \mathbf{L})=\omega_{x}(d, \mathbf{R})=\left(1-\zeta_{x}\right) / 2, \omega_{x}(d, \mathbf{B})=0 \\
& \text { For } x \in \mathbb{Z}_{\text {odd, }}^{2}, d \neq-e_{1}, \\
& \omega_{x}(d, \mathbf{F})=0, \quad \omega_{x}(d, \mathbf{L})=\omega_{x}(d, \mathbf{R})=1 / 2, \quad \omega_{x}(d, \mathbf{B})=0 \\
& (\mathbf{F}=\mathbf{F}(d)=d \text { (Forward }), \mathbf{B}=\mathbf{B}(d)=-d \text { (Backward), } \mathbf{L}=\text { Left, } \mathrm{R}=\text { Right })
\end{aligned}
$$

Application: Further examples of recurrence

Set $\mathbb{Z}_{\text {even }}^{2}:=\left\{\left(x^{1}, x^{2}\right) \in \mathbb{Z}^{2} \mid x^{1}+x^{2} \in 2 \mathbb{Z}\right\}, \mathbb{Z}_{\text {odd }}^{2}:=\mathbb{Z}^{2} \backslash \mathbb{Z}_{\text {even }}^{2}$
(1) Inhomogeneous forward probability

For $\zeta_{x} \in[0,1]$ (non-random), define $\omega=\left\{\omega_{x}\right\}$ via the following:

$$
\begin{aligned}
& \text { For } x \in \mathbb{Z}_{\text {even }}^{2}, d=e_{1} \text {, } \\
& \omega_{x}(d, \mathbf{F})=\zeta_{x}, \omega_{x}(d, \mathbf{L})=\omega_{x}(d, \mathbf{R})=\left(1-\zeta_{x}\right) / 2, \omega_{x}(d, \mathbf{B})=0 \\
& \text { For } x \in \mathbb{Z}_{\text {even }}^{2}, d \neq e_{1} \text {, } \\
& \omega_{x}(d, \mathbf{F})=0, \quad \omega_{x}(d, \mathbf{L})=\omega_{x}(d, \mathbf{R})=1 / 2, \quad \omega_{x}(d, \mathbf{B})=0 \\
& \text { For } x \in \mathbb{Z}_{\text {odd }}^{2}, d=-e_{1} \text {, } \\
& \omega_{x}(d, \mathbf{F})=\zeta_{x}, \omega_{x}(d, \mathbf{L})=\omega_{x}(d, \mathbf{R})=\left(1-\zeta_{x}\right) / 2, \omega_{x}(d, \mathbf{B})=0 \\
& \text { For } x \in \mathbb{Z}_{\text {odd }}^{2}, d \neq-e_{1} \text {, } \\
& \omega_{x}(d, \mathbf{F})=0, \quad \omega_{x}(d, \mathbf{L})=\omega_{x}(d, \mathbf{R})=1 / 2, \quad \omega_{x}(d, \mathbf{B})=0
\end{aligned}
$$

\Longrightarrow Symmetric Left-Right PRW with extra Forward displacements

Remark. Forward displacements need not be statistically balanced, namely the local drift $\delta_{\omega}(x, d):=\sum_{d^{\prime} \in \Delta} \omega_{x}\left(d, d^{\prime}\right) d^{\prime}$ may not average out to zero:

$$
\lim _{\Lambda \nearrow \mathbb{Z}^{2}} \frac{1}{4|\Lambda|} \sum_{\substack{x \in \Lambda \\ d \in \Delta}} \delta_{\omega}(x, d) \text { can be } \neq 0
$$

Remark. Forward displacements need not be statistically balanced, namely the local drift $\delta_{\omega}(x, d):=\sum_{d^{\prime} \in \Delta} \omega_{x}\left(d, d^{\prime}\right) d^{\prime}$ may not average out to zero:

$$
\lim _{\Lambda \subset \mathbb{Z}^{2}} \frac{1}{4|\Lambda|} \sum_{\substack{x \in \Lambda \\ d \in \Delta}} \delta_{\omega}(x, d) \text { can be } \neq 0
$$

Propn 1. If, for at least one $x \in \mathbb{Z}_{\text {even }}^{2}, \zeta_{x}>0$ and, for at least one $y \in \mathbb{Z}_{\text {odd }}^{2}, \zeta_{y}>0$, the PRW in ω is recurrent for all initial conditions.

Remark. Forward displacements need not be statistically balanced, namely the local drift $\delta_{\omega}(x, d):=\sum_{d^{\prime} \in \Delta} \omega_{x}\left(d, d^{\prime}\right) d^{\prime}$ may not average out to zero:

$$
\lim _{\Lambda \subset \mathbb{Z}^{2}} \frac{1}{4|\Lambda|} \sum_{\substack{x \in \Lambda \\ d \in \Delta}} \delta_{\omega}(x, d) \text { can be } \neq 0
$$

Propn 1. If, for at least one $x \in \mathbb{Z}_{\text {even }}^{2}, \zeta_{x}>0$ and, for at least one $y \in \mathbb{Z}_{\text {odd }}^{2}, \zeta_{y}>0$, the PRW in ω is recurrent for all initial conditions.

Proof:

(2) Inhomogeneous backward probability

For $\zeta_{x} \in[0,1]$ (non-random), define $\omega=\left\{\omega_{x}\right\}$ via the following:
For $x \in \mathbb{Z}_{\text {even }}^{2}, d=e_{1}$,

$$
\omega_{x}(d, \mathbf{F})=0, \omega_{x}(d, \mathbf{L})=\omega_{x}(d, \mathbf{R})=\left(1-\zeta_{x}\right) / 2, \omega_{x}(d, \mathbf{B})=\zeta_{x}
$$

For $x \in \mathbb{Z}_{\text {even }}^{2}, d \neq e_{1}$,
$\omega_{x}(d, \mathbf{F})=0, \omega_{x}(d, \mathbf{L})=\omega_{x}(d, \mathbf{R})=1 / 2, \quad \omega_{x}(d, \mathbf{B})=0$
For $x \in \mathbb{Z}_{\text {odd }}^{2}, d=-e_{1}$,

$$
\omega_{x}(d, \mathbf{F})=0, \omega_{x}(d, \mathbf{L})=\omega_{x}(d, \mathbf{R})=\left(1-\zeta_{x}\right) / 2, \omega_{x}(d, \mathbf{B})=\zeta_{x}
$$

For $x \in \mathbb{Z}_{\text {odd }}^{2}, d \neq-e_{1}$,

$$
\omega_{x}(d, \mathbf{F})=0, \omega_{x}(d, \mathbf{L})=\omega_{x}(d, \mathbf{R})=1 / 2, \quad \omega_{x}(d, \mathbf{B})=0
$$

(2) Inhomogeneous backward probability

For $\zeta_{x} \in[0,1]$ (non-random), define $\omega=\left\{\omega_{x}\right\}$ via the following:

$$
\begin{array}{ll}
\text { For } x \in \mathbb{Z}_{\text {even, }}^{2}, d=e_{1}, \\
\omega_{x}(d, \mathbf{F})=0, \omega_{x}(d, \mathbf{L})=\omega_{x}(d, \mathbf{R})=\left(1-\zeta_{x}\right) / 2, & \omega_{x}(d, \mathbf{B})=\zeta_{x} \\
\text { For } x \in \mathbb{Z}_{\text {even }}^{2}, d \neq e_{1}, \\
\omega_{x}(d, \mathbf{F})=0, \omega_{x}(d, \mathbf{L})=\omega_{x}(d, \mathbf{R})=1 / 2, & \omega_{x}(d, \mathbf{B})=0 \\
\text { For } x \in \mathbb{Z}_{\text {odd }}^{2}, d=-e_{1}, \\
\omega_{x}(d, \mathbf{F})=0, \omega_{x}(d, \mathbf{L})=\omega_{x}(d, \mathbf{R})=\left(1-\zeta_{x}\right) / 2, & \omega_{x}(d, \mathbf{B})=\zeta_{x} \\
\text { For } x \in \mathbb{Z}_{\text {odd, }}^{2}, d \neq-e_{1}, & \\
\omega_{x}(d, \mathbf{F})=0, \omega_{x}(d, \mathbf{L})=\omega_{x}(d, \mathbf{R})=1 / 2, & \omega_{x}(d, \mathbf{B})=0
\end{array}
$$

\Longrightarrow Symmetric Left-Right PRW with extra Backward displacements
Once again, Backward displacements need not be statistically balanced

Propn 2. Suppose that, for at least one $x \in \mathbb{Z}_{\text {even }}^{2}, \zeta_{x}>0$ and, for at least one $y \in \mathbb{Z}_{\text {odd }}^{2}, \zeta_{y}>0$. Suppose also that there is no $x \in \mathbb{Z}_{\text {even }}^{2}$ such that $\zeta_{x}=\zeta_{x-e_{1}}=1$. Then the PRW in ω is recurrent for all initial conditions.

Propn 2. Suppose that, for at least one $x \in \mathbb{Z}_{\text {even }}^{2}, \zeta_{x}>0$ and, for at least one $y \in \mathbb{Z}_{\text {odd }}^{2}, \zeta_{y}>0$. Suppose also that there is no $x \in \mathbb{Z}_{\text {even }}^{2}$ such that $\zeta_{x}=\zeta_{x-e_{1}}=1$. Then the PRW in ω is recurrent for all initial conditions.

Proof:

