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Constraint satisfaction problems

“The boolean satisfiability problems (SAT) is of central importance in various 
areas of computer science, including theoretical computer science, algorithmics, 
artificial intelligence, hardware design, electronic design automation, and 
verification.” (from Wikipedia - Boolean satisfiability problem)
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(x1 ∨ ¬x2 ∨ x3) ∧ (x2 ∨ ¬x4 ∨ ¬x5) ∧ (¬x1 ∨ x4 ∨ x5)

“The problem of coloring a graph has found 
a number of applications. Some of them are 
scheduling, register allocation in compilers, 
frequency assignment in mobile radios, and 
pattern matching.” (from Wikipedia - Graph 
coloring)

NP complete in the worst case - but many instances are easy!
Where the really hard problems are?
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Phase diagram of random K-SAT and q-COL
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Random K-SAT

What makes problems hard to solve ?

Experiment : 

 random 3-SAT  
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heuristic implementation of the definition in terms of pure state
decomposition (see Eq. 4). Generalizing the results of ref. 16, it is
possible to show that the two calculations provide identical results.
However, the first one is technically simpler and under much better
control. As mentioned above we obtain, for all k ! 4 a value of "d(k)
larger than the one quoted in refs. 6 and 11.

Further we determined the distribution of cluster sizes wn, thus
unveiling a third ‘‘condensation’’ phase transition at "c(k) ! "d(k)
(strict inequality holds for k ! 4 in SAT and q ! 4 in coloring, see
below). For " ! "c(k) the weights wn concentrate on a logarithmic
scale [namely, "log wn is #(N) with #(N1/2) fluctuations]. Roughly
speaking, the measure is evenly split among an exponential number
of clusters.

For " $ "c(k) [and ! "s(k)] the measure is carried by a
subexponential number of clusters. More precisely, the ordered
sequence {wn} converges to a well known Poisson-Dirichlet process
{w*n}, first recognized in the spin glass context by Ruelle (26). This
is defined by w*n % xn/&xn, where xn $ 0 are the points of a Poisson
process with rate x"1"m(") and m(") ! (0, 1). This picture is known
in spin glass theory as one-step replica symmetry breaking (1RSB)
and has been proven in ref. 27 for some special models. The Parisi
1RSB parameter m(") is monotonically decreasing from 1 to 0
when " increases from "c(k) to "s(k) (see Fig. 3).

Remarkably, the condensation phase transition is also linked to
an appropriate notion of correlation decay. If i(1), . . . , i(n) ! [N]
are uniformly random variable indices, then, for " ! "c(k) and any
fixed n:

! !
'xi!(

"#)xi)1* . . . xi)n** $ #)xi)1** . . . #)xi)n**"3 0 [5]

as N3 +. Conversely, the quantity on the left side of Eq. 5 remains
positive for " $ "c(k). It is easy to understand that this condition
is even weaker than the extremality one (compare Eq. 3) in that we
probe correlations of finite subsets of the variables. In the next two
sections we discuss the calculation of "d and "c.

Dynamic Phase Transition and Gibbs Measure Extremality. A rigorous
calculation of "d(k) along any of the two definitions provided above
(compare Eqs. 3 and 4) remains an open problem. Each of the two

approaches has, however, an heuristic implementation that we shall
now describe. It can be proved that the two calculations yield equal
results as further discussed in the last section.

The approach based on the extremality condition in Eq. 3 relies
on an easy-to-state assumption and typically provides a more
precise estimate. We begin by observing that, because of the
Markov structure of #!, it is sufficient for Eq. 3 to hold that the
same condition is verified by the correlation between xi and the set
of variables at distance exactly ! from i, that we shall keep denoting
as x!. The idea is then to consider a large yet finite neighborhood
of i. Given !" ! !, the factor graph neighborhood of radius !" around
i converges in distribution to the radius-!" neighborhood of the root
in a well defined random tree factor graph T.

For coloring of random regular graphs, the correct limiting
tree model T is coloring on the infinite l-regular tree. For random
k-SAT, T is defined by the following construction. Start from the
root variable node and connect it to l new function nodes
(clauses), l being a Poisson random variable of mean k". Connect
each of these function nodes with k " 1 new variables and repeat.
The resulting tree is infinite with nonvanishing probability if " $
1/k(k" 1). Associate a formula to this graph in the usual way,
with each variable occurrence being negated independently with
probability 1/2.

The basic assumption within the first approach is that the
extremality condition in Eq. 3 can be checked on the correlation
between the root and generation-! variables in the tree model. On
the tree, #! is defined to be a translation invariant Gibbs measure
(17) associated to the infinite factor graphj T (which provides a
specification). The correlation between the root and generation-!
variables can be computed through a recursive procedure (defining
a sequence of distributions P" !, see Eq. 15 below). The recursion can
be efficiently implemented numerically yielding the values pre-
sented in Table 1 for k (resp. q) % 4, 5, 6. For large k (resp. q) one
can formally expand the equations on P! and obtain:

"d)k* %
2k

k # log k,log log k & 'd & O$ log log k
log k % & [6]

ld)q* % q- log q & log log q & 'd & o)1*. [7]

with 'd % 1 (under a technical assumption of the structure of P!).
The second approach to the determination of "d(k) is based on

the ‘‘cavity method’’ (6, 25). It begins by assuming a decomposition
in pure states of the form 4 with two crucial properties: (i) if we
denote by Wn the size of the nth cluster (and hence wn % Wn/& Wn),
then the number of clusters of size Wn % eNs grows approximately
as eN&(s); (ii) for each single-cluster measure #n!, a correlation
decay condition of the form 3 holds.

The approach aims at determining the rate function &(s), com-
plexity: the result is expressed in terms of the solution of a
distributional fixed point equation. For the sake of simplicity we

jMore precisely #! is obtained as a limit of free boundary measures.

αd,+ αd αc αs
Fig. 2. Pictorial representation of the different phase transitions in the set of solutions of a rCSP. At "d,, some clusters appear, but for "d,, ! " ! "d they comprise
only an exponentially small fraction of solutions. For "d ! " ! "c the solutions are split among about eN&" clusters of size eNs". If "c ! " ! "s the set of solutions
is dominated by a few large clusters (with strongly fluctuating weights), and above "s the problem does not admit solutions any more.
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Fig. 3. The Parisi 1RSB parameter m(") as a function of the constraint density
". In the Inset, the complexity &(s) as a function of the cluster entropy for " %
"s(k) " 0.1 [the slope at &(s) % 0 is "m(")]. Both curves have been computed
from the large k expansion.
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αcαd αs

The results of statistical physics (1RSB)

• Dynamical transition

• Condensation transition

• SAT/UNSAT threshold                           

F. Krząkała, A. Montanari, F. Ricci-Tersenghi, G. Semerjian, L. Z.: 
Proc. Natl. Acad. Sci. U.S.A., 104, 10318 (2007). 



 

Lenka Zdeborová YEP - V, Eindhoven, March 2008

So where are we in understanding clusters?

• Definition: Using concepts of reconstruction on trees, Gibbs 
measure extremality (Krzakala, Montanari, et al, PNAS, 2007)

‣ Good news! Definition exists.

‣ Good property: “Equivalent to the cavity clusters”

‣ Useful to prove things about the un-clustered phase. But not yet very 
useful to understand the clustered phase.

• Existence: Geometrically separated clusters exist (Mezard,Mora,Zecchina,

2005, Achlioptas, Ricci-Tersenghi,2006), far too strong definition used here.

• Properties: Via the cavity method, 

‣ Satisfactory for physicist, but still complicated. 

‣ Not that satisfactory for mathematicians.  

5
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Conclusion: We are in need of a “REM-like” model here!
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Random Subcubes Model 

Definition: Random Cluster  A is a subcube of  

where 

Choose independently                                        random cluster.

6

A = {σ |∀i ∈ {1 . . . N},σi ∈ πA(i)}

πA(i) = {0} prob p/2
πA(i) = {1} prob p/2

πA(i) = {0, 1} prob 1− p

{0, 1}N

N = 2(1−α)N

S = ∪Na=1Aa
α

Aim: Study the structure of the set of “solutions”                                    
parameters p and     
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Distribution of sizes of clusters
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Internal entropy s of a cluster: fraction of unfrozen variables in the cluster.

Typical entropy: styp = 1− p

2NΣ(s)

2NΣ(s) = 2(1−α)N

(
N

sN

)
(1− p)sNp(1−s)N

Σ(s) = (1− α)−D(s||1− p)

D(s||1− p) = −s log2
s

1− p
− (1− s) log2

1− s

p(Kullback-Leibler divergence)

Definition of complexity function:  #{clusters of entropy s} = 
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The total entropy (dominating clusters)

The entropy of dominating clusters s*, and the total entropy:

8

s∗ = arg max
s

[(Σ(s) + s) | Σ(s) ≥ 0]

stot = max
s

[(Σ(s) + s) | Σ(s) ≥ 0] = Σ(s∗) + s∗
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4 different phases

9

αd = log2 (2− p) αc = p/(2− p) + log2 (2− p)

heuristic implementation of the definition in terms of pure state
decomposition (see Eq. 4). Generalizing the results of ref. 16, it is
possible to show that the two calculations provide identical results.
However, the first one is technically simpler and under much better
control. As mentioned above we obtain, for all k ! 4 a value of "d(k)
larger than the one quoted in refs. 6 and 11.

Further we determined the distribution of cluster sizes wn, thus
unveiling a third ‘‘condensation’’ phase transition at "c(k) ! "d(k)
(strict inequality holds for k ! 4 in SAT and q ! 4 in coloring, see
below). For " ! "c(k) the weights wn concentrate on a logarithmic
scale [namely, "log wn is #(N) with #(N1/2) fluctuations]. Roughly
speaking, the measure is evenly split among an exponential number
of clusters.

For " $ "c(k) [and ! "s(k)] the measure is carried by a
subexponential number of clusters. More precisely, the ordered
sequence {wn} converges to a well known Poisson-Dirichlet process
{w*n}, first recognized in the spin glass context by Ruelle (26). This
is defined by w*n % xn/&xn, where xn $ 0 are the points of a Poisson
process with rate x"1"m(") and m(") ! (0, 1). This picture is known
in spin glass theory as one-step replica symmetry breaking (1RSB)
and has been proven in ref. 27 for some special models. The Parisi
1RSB parameter m(") is monotonically decreasing from 1 to 0
when " increases from "c(k) to "s(k) (see Fig. 3).

Remarkably, the condensation phase transition is also linked to
an appropriate notion of correlation decay. If i(1), . . . , i(n) ! [N]
are uniformly random variable indices, then, for " ! "c(k) and any
fixed n:

! !
'xi!(

"#)xi)1* . . . xi)n** $ #)xi)1** . . . #)xi)n**"3 0 [5]

as N3 +. Conversely, the quantity on the left side of Eq. 5 remains
positive for " $ "c(k). It is easy to understand that this condition
is even weaker than the extremality one (compare Eq. 3) in that we
probe correlations of finite subsets of the variables. In the next two
sections we discuss the calculation of "d and "c.

Dynamic Phase Transition and Gibbs Measure Extremality. A rigorous
calculation of "d(k) along any of the two definitions provided above
(compare Eqs. 3 and 4) remains an open problem. Each of the two

approaches has, however, an heuristic implementation that we shall
now describe. It can be proved that the two calculations yield equal
results as further discussed in the last section.

The approach based on the extremality condition in Eq. 3 relies
on an easy-to-state assumption and typically provides a more
precise estimate. We begin by observing that, because of the
Markov structure of #!, it is sufficient for Eq. 3 to hold that the
same condition is verified by the correlation between xi and the set
of variables at distance exactly ! from i, that we shall keep denoting
as x!. The idea is then to consider a large yet finite neighborhood
of i. Given !" ! !, the factor graph neighborhood of radius !" around
i converges in distribution to the radius-!" neighborhood of the root
in a well defined random tree factor graph T.

For coloring of random regular graphs, the correct limiting
tree model T is coloring on the infinite l-regular tree. For random
k-SAT, T is defined by the following construction. Start from the
root variable node and connect it to l new function nodes
(clauses), l being a Poisson random variable of mean k". Connect
each of these function nodes with k " 1 new variables and repeat.
The resulting tree is infinite with nonvanishing probability if " $
1/k(k" 1). Associate a formula to this graph in the usual way,
with each variable occurrence being negated independently with
probability 1/2.

The basic assumption within the first approach is that the
extremality condition in Eq. 3 can be checked on the correlation
between the root and generation-! variables in the tree model. On
the tree, #! is defined to be a translation invariant Gibbs measure
(17) associated to the infinite factor graphj T (which provides a
specification). The correlation between the root and generation-!
variables can be computed through a recursive procedure (defining
a sequence of distributions P" !, see Eq. 15 below). The recursion can
be efficiently implemented numerically yielding the values pre-
sented in Table 1 for k (resp. q) % 4, 5, 6. For large k (resp. q) one
can formally expand the equations on P! and obtain:
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k # log k,log log k & 'd & O$ log log k
log k % & [6]

ld)q* % q- log q & log log q & 'd & o)1*. [7]

with 'd % 1 (under a technical assumption of the structure of P!).
The second approach to the determination of "d(k) is based on

the ‘‘cavity method’’ (6, 25). It begins by assuming a decomposition
in pure states of the form 4 with two crucial properties: (i) if we
denote by Wn the size of the nth cluster (and hence wn % Wn/& Wn),
then the number of clusters of size Wn % eNs grows approximately
as eN&(s); (ii) for each single-cluster measure #n!, a correlation
decay condition of the form 3 holds.

The approach aims at determining the rate function &(s), com-
plexity: the result is expressed in terms of the solution of a
distributional fixed point equation. For the sake of simplicity we

jMore precisely #! is obtained as a limit of free boundary measures.
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Fig. 2. Pictorial representation of the different phase transitions in the set of solutions of a rCSP. At "d,, some clusters appear, but for "d,, ! " ! "d they comprise
only an exponentially small fraction of solutions. For "d ! " ! "c the solutions are split among about eN&" clusters of size eNs". If "c ! " ! "s the set of solutions
is dominated by a few large clusters (with strongly fluctuating weights), and above "s the problem does not admit solutions any more.
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Fig. 3. The Parisi 1RSB parameter m(") as a function of the constraint density
". In the Inset, the complexity &(s) as a function of the cluster entropy for " %
"s(k) " 0.1 [the slope at &(s) % 0 is "m(")]. Both curves have been computed
from the large k expansion.
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heuristic implementation of the definition in terms of pure state
decomposition (see Eq. 4). Generalizing the results of ref. 16, it is
possible to show that the two calculations provide identical results.
However, the first one is technically simpler and under much better
control. As mentioned above we obtain, for all k ! 4 a value of "d(k)
larger than the one quoted in refs. 6 and 11.

Further we determined the distribution of cluster sizes wn, thus
unveiling a third ‘‘condensation’’ phase transition at "c(k) ! "d(k)
(strict inequality holds for k ! 4 in SAT and q ! 4 in coloring, see
below). For " ! "c(k) the weights wn concentrate on a logarithmic
scale [namely, "log wn is #(N) with #(N1/2) fluctuations]. Roughly
speaking, the measure is evenly split among an exponential number
of clusters.

For " $ "c(k) [and ! "s(k)] the measure is carried by a
subexponential number of clusters. More precisely, the ordered
sequence {wn} converges to a well known Poisson-Dirichlet process
{w*n}, first recognized in the spin glass context by Ruelle (26). This
is defined by w*n % xn/&xn, where xn $ 0 are the points of a Poisson
process with rate x"1"m(") and m(") ! (0, 1). This picture is known
in spin glass theory as one-step replica symmetry breaking (1RSB)
and has been proven in ref. 27 for some special models. The Parisi
1RSB parameter m(") is monotonically decreasing from 1 to 0
when " increases from "c(k) to "s(k) (see Fig. 3).

Remarkably, the condensation phase transition is also linked to
an appropriate notion of correlation decay. If i(1), . . . , i(n) ! [N]
are uniformly random variable indices, then, for " ! "c(k) and any
fixed n:

! !
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"#)xi)1* . . . xi)n** $ #)xi)1** . . . #)xi)n**"3 0 [5]

as N3 +. Conversely, the quantity on the left side of Eq. 5 remains
positive for " $ "c(k). It is easy to understand that this condition
is even weaker than the extremality one (compare Eq. 3) in that we
probe correlations of finite subsets of the variables. In the next two
sections we discuss the calculation of "d and "c.

Dynamic Phase Transition and Gibbs Measure Extremality. A rigorous
calculation of "d(k) along any of the two definitions provided above
(compare Eqs. 3 and 4) remains an open problem. Each of the two

approaches has, however, an heuristic implementation that we shall
now describe. It can be proved that the two calculations yield equal
results as further discussed in the last section.

The approach based on the extremality condition in Eq. 3 relies
on an easy-to-state assumption and typically provides a more
precise estimate. We begin by observing that, because of the
Markov structure of #!, it is sufficient for Eq. 3 to hold that the
same condition is verified by the correlation between xi and the set
of variables at distance exactly ! from i, that we shall keep denoting
as x!. The idea is then to consider a large yet finite neighborhood
of i. Given !" ! !, the factor graph neighborhood of radius !" around
i converges in distribution to the radius-!" neighborhood of the root
in a well defined random tree factor graph T.

For coloring of random regular graphs, the correct limiting
tree model T is coloring on the infinite l-regular tree. For random
k-SAT, T is defined by the following construction. Start from the
root variable node and connect it to l new function nodes
(clauses), l being a Poisson random variable of mean k". Connect
each of these function nodes with k " 1 new variables and repeat.
The resulting tree is infinite with nonvanishing probability if " $
1/k(k" 1). Associate a formula to this graph in the usual way,
with each variable occurrence being negated independently with
probability 1/2.

The basic assumption within the first approach is that the
extremality condition in Eq. 3 can be checked on the correlation
between the root and generation-! variables in the tree model. On
the tree, #! is defined to be a translation invariant Gibbs measure
(17) associated to the infinite factor graphj T (which provides a
specification). The correlation between the root and generation-!
variables can be computed through a recursive procedure (defining
a sequence of distributions P" !, see Eq. 15 below). The recursion can
be efficiently implemented numerically yielding the values pre-
sented in Table 1 for k (resp. q) % 4, 5, 6. For large k (resp. q) one
can formally expand the equations on P! and obtain:

"d)k* %
2k

k # log k,log log k & 'd & O$ log log k
log k % & [6]

ld)q* % q- log q & log log q & 'd & o)1*. [7]

with 'd % 1 (under a technical assumption of the structure of P!).
The second approach to the determination of "d(k) is based on

the ‘‘cavity method’’ (6, 25). It begins by assuming a decomposition
in pure states of the form 4 with two crucial properties: (i) if we
denote by Wn the size of the nth cluster (and hence wn % Wn/& Wn),
then the number of clusters of size Wn % eNs grows approximately
as eN&(s); (ii) for each single-cluster measure #n!, a correlation
decay condition of the form 3 holds.

The approach aims at determining the rate function &(s), com-
plexity: the result is expressed in terms of the solution of a
distributional fixed point equation. For the sake of simplicity we

jMore precisely #! is obtained as a limit of free boundary measures.

αd,+ αd αc αs
Fig. 2. Pictorial representation of the different phase transitions in the set of solutions of a rCSP. At "d,, some clusters appear, but for "d,, ! " ! "d they comprise
only an exponentially small fraction of solutions. For "d ! " ! "c the solutions are split among about eN&" clusters of size eNs". If "c ! " ! "s the set of solutions
is dominated by a few large clusters (with strongly fluctuating weights), and above "s the problem does not admit solutions any more.

Σ (s)

s

αs(k)αc(k)

m (α)

1

0.5

0

Fig. 3. The Parisi 1RSB parameter m(") as a function of the constraint density
". In the Inset, the complexity &(s) as a function of the cluster entropy for " %
"s(k) " 0.1 [the slope at &(s) % 0 is "m(")]. Both curves have been computed
from the large k expansion.

10320 " www.pnas.org'cgi'doi'10.1073'pnas.0703685104 Krza̧kała et al.

αs = 1αcαd

stot < 1 Σ(s∗) > 0

stot < 1 Σ(s∗) = 0

Σ(s) < 0 ∀s

• Liquid phase: 

• Clustered phase:

• Condensed phase:

• Unsatisfiable phase:

stot = 1
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About the transitions

• The dynamical transition = ergodicity breaking (for a random 
walk in the solution space). 

• Total entropy has a discontinuity in the second derivative at the 
condensation transition (glass analog: jump in specific heat at 
the Kauzmann transition). 

• The slope of the function                                           is the Parisi 
parameter in the cavity (replica) method

• Condensed phase: the relative sizes of clusters follow the 
Poisson-Dirichlet process with parameter m.

10

∂Σ(s)/∂s = −m
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Subcubes are a limit case of K-SAT and q-COL

11

p→∞
REM 
        = is p-spin for 

Random Cluster Model  
        = large q limit of q-coloring of random graphs
        = large K limit of random K-satisfiability

Main differences between subcubes and K-SAT

‣ In subcubes: no underlying geometry, no graph of constraints.

‣ SAT: Unfrozen variables are not independent. 

‣ SAT: Clusters do not have to contain frozen variables, might 
contain only very much correlated variables.
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Subcubes model = large K limit of K-satisfiability

12

p = 1− ε

α = 1 + ε
1 + γ

ln 2

ε! 1
γ = Θ(1)

Reparametrisation in 
the subcubes model: 

Σ(s) ln 2 = s
(
1− ln

s

ε

)
− ε(2 + γ) + o(ε)

Consequence: Clusters in large K limit near to the satisfiability 
threshold fill the subcube!

K-SAT in the large K limit constant near to the satisfiability threshold:

ε =
1

2K+1

M

N
= 2K ln 2− ln 2

2
+

γ

2
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Energy landscape

13

eNΣ(E0/N)
Create                             random subcubes with energy        , 

where              is a nice increasing function.

E0

Σ(e0)

Define: energy of a configuration     !σ

E(!σ) := min
V

[E0(V ) + d(!σ, V )]

Crucial properties: Lipschitz continuity of the landscape.
                                 Gradient descent meaningful.
                                 Energetic barriers are extensive.
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Glassy dynamics in subcube energy landscape

14
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Fig. 4 (Color online) Energy as a function of temperature. At temperature
T > Td, the system is in a liquid state: the dynamics is exploring ergodically
all configurations of energy e∗. Below the dynamical temperature ergodicity is
broken. The upper “dynamical” curve shows the result of a quench/annealing
in temperature, whereby the systems remains stuck in a typical state of bot-
tom energy e∗0. For Tc < T < Td, equilibrium thermodynamics is dominated
by an exponential number of states (curve “glass”). Below the condensation
(Kauzmann) temperature thermodynamics is dominated by a finite number of
states (curve “condensed glass”). This number is given by a Poisson-Dirichlet
process of parameter m (plotted in the upper part of the diagram). The dashed
line shows the result of a quench/annealing starting from an equilibrium state
at temperature Tc < T < Td. The bottom line shows the bottom energies
of the thermodynamically dominating states. These curves were obtained for
Σ(e0) = −0.05 − 0.5e0 ln e0 and p = 0.6.

of the RSM resembles the one observed in glasses and spin-glasses. The
two distinct glassy transitions (dynamical and condensation), as well as
the phenomenon whereby the physical dynamics gets stuck in metastable
states, have been described for example in the p-spin glass [28], the spherical
p-spin glass [36], the Potts glass [37] and the lattice glass [38]. Several
related examples of energy-temperature diagrams were derived recently in
[39].

In the aforementioned mean-field models, the static behaviour is bet-
ter understood than the dynamics. Static properties are usually analyzed
by the replica/cavity method, with the help of Parisi’s replica symmetry
breaking scheme. A satisfactory analytic treatment of the dynamics exists

Σ(e0) = −0.05− 0.5e0 ln e0

p = 0.6
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Conclusions: Random Subcubes Model

•  A toy to understand clustering. 
• The same phase transitions as in K-SAT/q-COL.

• Which properties of SAT/COL are probabilistic and which are due to 
the structure of constraints.

• TO DO: Finite size corrections. 

• In the large K/q limit clusters in K-SAT/q-COL are subcube-like. 
TO DO: Prove that.

• Playground to study dynamics on a glassy energy landscape. 
TO DO: Different definition of the landscape to reproduce aging, 
rejuvenation, memory ... 

15
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