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• A user types a query to find relevant pages.

• Problem: Normally, there are hundreds of relevant pages.
In which order should we list the pages for the user??

• The ‘best’-text-match-techniques quickly became insufficient (besides,
they are not user-friendly)

• S. Brin and L. Page (1998), J.M. Kleinberg (1999)

Idea: List most important and popular pages first. Define the
importance through the hyperlink structure

S. Brin, L. Page, R. Motwami and T. Winograd (1998) The PageRank
citation ranking: bringing order to the web.
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• PageRank πi of page i is the long run fraction of time that a random
surfer spends on page i.

• ‘Easily bored surfer’ model. With probability c (=0.85), a surfer follows
a randomly chosen outgoing link. Otherwise, he/she jumps to a
random page.
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dj – out-degree of j

c < 1 ⇒ solution exists

Page is important if many important pages link to it!
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• n is the total number of pages

• P = (pij) - hyperlink matrix

pij =







1/di if j is one of the di outgoing links of i
1/n if di = 0
0 otherwise

• Modified transition matrix: P̃ = cP + (1 − c)(1/N)E
E is an n × n matrix consisting of one’s, c = 0.85

• PageRank vector: πP̃ = π, π1 = 1
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• Power Iterations: π(0) = (1/N, . . . , 1/N); π(t) = π(t−1)P̃ , t > 0

Accuracy of the order ct ( 50–100 iterations with c = 0.85)
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• PageRank is a stationary distribution of a huge Markov chain: state
space is the set of all Web pages.

• The task of PageRank computation trigged enormous developments in
the well established area of numerical solution of large MC.

• Advanced linear algebra methods to speed up power iterations
(off-line)

• Monte Carlo methods (off-line or on-line)
• Other non-trivial on-line methods. One such method by Abiteboul,

Preda and Cobena (1999) we will discuss today.
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• Consider a crawler that performs a Markov random walk
{C(t), t = 0, 1, . . .} on directed graph of N nodes.
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• Consider a crawler that performs a Markov random walk
{C(t), t = 0, 1, . . .} on directed graph of N nodes.

• Transition matrix P , where pij > 0 iff there is a link (edge) from i to j.
The goal is to define the stationary distribution π.

• Algorithm:

• At t = 0, each node receives an equal amount 1/N of cash.

• Each time the crawler visits a node i, the node distributes all its
cash among its outgoing links proportional to pij .

• Xi(t): the amount of cash at node i at time t

• History of a node: Hi(t) =
∑t

s=0 Xi(s)1[C(s)=i], amount of cash
distributed by node i on [0, t]
Total history: H(t) =

∑n
i=1 Hi(t)

• The estimator of πi at time t is

πi(t) =
Hi(t) + Xi(t)

H(t) + 1
.
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• Xi(t): the amount of cash at node i at time t

• History of a node: Hi(t) =
∑t

k=0 Xi(k)1[C(k)=i], amount of cash
distributed by node i on [0, t]. Total history: H(t) =

∑n
i=1 H(t)

• The estimator of πi at time t is πi(t) = (Hi(t) + Xi(t))/(H(t) + 1).

Lemma. H(t) → ∞ w.p. 1.
Pf. Cover time: a time needed to visit all states and come back to the
original state. The cover time is finite w.p. 1. During one cover time cycle,
H(t) grows by at least 1 cash unit.

Theorem. πi(t) → π a.s. as t → ∞.
Pf. From the APC paper

Hi(t) + Ci(t) = 1/n +
∑

j

pjiHj(t), i = 1, . . . , n

Divide by H(t): πi(t) = [1/n − Ci(t)]/H(t) +
∑

j pjiπj(t), i = 1, . . . , n

Solution: πi(t) = πi +
[

[(1/n − C(t))/H(t)]
(
∑∞

k=0 P k − 1
T π

)]

i

(here 1 is a row-vector of ones)
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• The speed of convergence is determined by the term
[(1/n − C(t))/H(t)], with H(t) in denominator. Thus, the algorithm
converges as 1/H(t) when t → ∞.

• H(t) =
∑t

s=0

∑

i Xi(s)1[C(s)=i]. The cash process {Xi(t)} is
determining for the speed of convergence of the algorithm.

• But how can we characterize the cash process? For instance, can we
prove that Xi(t) converges, or, at least, E[Xi(t)] converges?

• The cash process is inconvenient for analysis.
Idea: to translate it into an easier process.
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• Cat performs the Markov random walk C(t), transition matrix P .
• At time t, the mouse is at the node M(t).
• The mouse makes a move only when found by the cat, the event

[C(t) = M(t)]. In this case, the mouse makes one step, using the
same transition matrix P .

Ft: σ-field generated by C(0), C(1), . . . , C(t).

Theorem. For t ≥ 0,

(Xi(t), 1 ≤ i ≤ N)
dist.
= (P[M(t) = i | Ft−1], 1 ≤ i ≤ N) .

In particular, for 1 ≤ i ≤ N ,

E(Xi(t)) = P(M(t) = i).
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C(t) – cat position; M(t) – mouse position; Xi(t) – cash on page i.
We need to prove that: E(Xi(t)) = P(M(t) = i).

P(M(t + 1) = i | Ft) =
∑

j 6=i

1{C(t)=j}pj,i × P(M(t) = j | Ft−1)

+ 1{C(t) 6=i}P(M(t) = i | Ft−1).

On the other hand, for the cash

E[Xi(t + 1)] =
∑

j 6=i

1{C(t)=j}pj,i × E[Xj(t)] + 1{C(t) 6=i}E[Xi(t)].

Same equation! Statement follows by induction in t.
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q(i,j),(k,j) = pi,k if i 6= j;

q(j,j),(k,k′) = pj,kpj,k′ .
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The MC (C(t), M(t)) has a transition matrix q(·, ·) given by

q(i,j),(k,j) = pi,k if i 6= j;

q(j,j),(k,k′) = pj,kpj,k′ .

ν = P(C∞ = · , M∞ = ·) is the invariant distribution. Then

ν(i, j) =
∑

k 6=j

ν(k, j)pk,i +
∑

k

ν(k, k)pk,ipk,j

Note:
∑

j ν(i, j) = πi. Summing over i we get
∑

k

ν(k, k)pk,j = ν(j, j), and

therefore that there exists some constant c such that,

ν(j, j) = cπj, j = 1, . . . , N.

We have E(Xj(t)|Ct = j) = P(Mt = j|Ct = j) → c as t → ∞. On average,
the ‘transaction’ is c at each step. Thus, E[H(t)] ∼ ct.
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Denote by
p∗i,j =

πj

πi
pj,i

the transition matrix of the reversed Markov chain (C∗(t)) associated to
(C(t)). Let

Tj = inf{t > 0 : C(t) = j}.
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Denote by
p∗i,j =

πj

πi
pj,i

the transition matrix of the reversed Markov chain (C∗(t)) associated to
(C(t)). Let

Tj = inf{t > 0 : C(t) = j}.

Proposition. The stationary distribution of the mouse is

P(M(∞) = j) = cEπ

[

pC(0),j Tj

]

and

c =

[

∑

k

Eπ

[

pC(0),k Tk

]

]−1
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It is assumed for the moment that (C(t)) is a reversible Markov chain, i.e.
πipij = πjpji

Eπ

[

pC(0),j Tj

]

=
∑

i

πipijEi(Tj) =
∑

i

πjpjiEi(Tj)

= πjEj(Tj − 1) = 1 − π(y),

Consequently,

c =
1

N − 1
and P(S∞ = y) =

1 − π(y)

N − 1
.

Tetali (1994) showed that if (C(t)) is a general recurrent Markov chain,
then

∑

k

Eπ

[

pC(0),k Tk

]

≤ N − 1. (1)

It follows that the value c = 1/(N − 1) obtained for reversible chains, is the
minimal possible value of c.
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• C(t) is a simple random walk on Z+ reflected at zero. If the current
state is x > 0, then the next state is x + 1 or x − 1 w.p. p = λ/(λ + µ)
or q = λ/(λ + µ). If the current state is 0, then the next state is 1 with
probability one.
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• C(t) is a simple random walk on Z+ reflected at zero. If the current
state is x > 0, then the next state is x + 1 or x − 1 w.p. p = λ/(λ + µ)
or q = λ/(λ + µ). If the current state is 0, then the next state is 1 with
probability one.

• This is a slotted version of the M/M/1 queue with arrival rate λ and
service rate µ. We assume that the system is stable, that is,
ρ = λ/µ = p/q < 1.

• Assume that initially, the mouse is at some remote position x → ∞,
while the cat just left the neighborhood of x and went back to zero.
The time needed for the cat to reach zero is approximately linear in x.
The time needed to come back to x, multiplied by ρx, converges to an
exponential random variable with parameter (µ − λ)2/µ.

• Note that for a finite reversible chain, c = 1/(N − 1) where N is the
number of states. For N = ∞ we obtain that the chain (C(t), M(t)) is
null-recurrent. The question is: where does the mouse stay?
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• The cat and the mouse meet at some remote state x. Possibilities:

• mouse up, cat up (p2)
• mouse down, cat down (q2)
• mouse down, cat up (pq), they will meet again soon
• mouse up cat down (pq), the cat leaves ‘forever’ w.p. (1 − ρ2).

• Mouse makes a geometric number G of steps, where

P(G = k) = [1 − pq(1 − ρ2)]kpq(1 − ρ2), k = 0, 1, . . .

and then the cat leaves for a long time. A step X distributed as follows:

X =

{

+1 with probability p2+pqρ2

1−pq(1−ρ2)
= p2(1+ρ)

1−pq(1−ρ2)
,

−1 with probability q2+pq
1−pq(1−ρ2)

= q
1−pq(1−ρ2)

.

The last step of the mouse is always of size +1. After that the cat and
the mouse will meet again after ≈ exponentially distributed time with
parameter ρy(µ − λ)2/µ, at the mouse’s current position y.
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• ‘Free’ continuous-time Markov process (M̃(t)): At state x, the
transition rate of (M̃(t)) is ρx(µ − λ)2/µ. At each transition, the
process (M̃(t)) makes a jump of a random size

∆ = 1 +
G

∑

i=1

Xi
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• ‘Free’ continuous-time Markov process (M̃(t)): At state x, the
transition rate of (M̃(t)) is ρx(µ − λ)2/µ. At each transition, the
process (M̃(t)) makes a jump of a random size

∆ = 1 +
G

∑

i=1

Xi

• E[∆] = E[G]E[X] + 1 = −ρ−1 < 0, and E[u∆] is well-defined if

u1 =
(1 −

√

1 − 4p2)q

2p2
< u <

(1 +
√

1 − 4p2)q

2p2
= u2.

E[u∆] is well defined on the interval [1, 1/ρ].
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• ‘Free’ continuous-time Markov process (M̃(t)): At state x, the
transition rate of (M̃(t)) is ρx(µ − λ)2/µ. At each transition, the
process (M̃(t)) makes a jump of a random size

∆ = 1 +
G

∑

i=1

Xi

• E[∆] = E[G]E[X] + 1 = −ρ−1 < 0, and E[u∆] is well-defined if

u1 =
(1 −

√

1 − 4p2)q

2p2
< u <

(1 +
√

1 − 4p2)q

2p2
= u2.

E[u∆] is well defined on the interval [1, 1/ρ].
• After the first transition of size ∆, the transition rate becomes

ρx+∆(µ − λ)2/µ. The expected time until the next transition is

E[ρ−(x+∆)µ/(µ − λ)2] = ρ−xµE[ρ−∆]/(µ − λ)2 = ρ−xµ/(µ − λ)2 (!)
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• Consider following scaled process:

S̄x(t) =
S̃([ρ−xµ/(µ − λ)2]t)

x
, t ≥ 0.
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S̃([ρ−xµ/(µ − λ)2]t)

x
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Lemma. For any t ≥ 0, lim
x→∞

M̄x(t) =

{

1, t < W ;
−∞, t ≥ W.

where W =
∑∞

n=0[ρ
−(∆1+...+∆n)]En with where E1, E2, . . . i.i.d.

exponential(1) random variables, independent of the ∆i’s
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• Consider following scaled process:

S̄x(t) =
S̃([ρ−xµ/(µ − λ)2]t)

x
, t ≥ 0.

Lemma. For any t ≥ 0, lim
x→∞

M̄x(t) =

{

1, t < W ;
−∞, t ≥ W.

where W =
∑∞

n=0[ρ
−(∆1+...+∆n)]En with where E1, E2, . . . i.i.d.

exponential(1) random variables, independent of the ∆i’s
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Intuition: It takes time to get on some distance from x but then the drop
happens in ‘no time’
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• For the proof, we need to show that: 1) the scaled process converges
to 1 before time W and to 0 after time W ; 2) the time W is finite.
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• For the proof, we need to show that: 1) the scaled process converges
to 1 before time W and to 0 after time W ; 2) the time W is finite.

• The random variable W satisfies

W
d
= ρ−∆W + E

This type of random variables is well-known in literature.

• W is extremely heavy-tailed: E[W s] < ∞ for

− log(u1)/ log(ρ) − 1 < s < 1.

• With other random walk of the cat (M/M/∞, symmetric r.w., etc.) the
mouse behavior is entirely different

• Work in progress...

• I hope you liked the cat and mouse...

• Thank you for your attention!
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