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Introduction
Notation and results

Proofs

Random graphs

I Take a graph G = (V ,E ), finite or infinite.

I Choose a parameter 0 < p < 1; keep each edge in E with
probability p and remove it with probability 1− p,
independently of all other edges.

I What is the component structure of the induced graph, in
particular the size and structure of the largest component C1,
as a function of the edge probability p?

I Also, how big is the second largest component, C2? Under
what conditions is there a giant component, dominating all
the others in size?

I Further, what is the shape of the degree sequence of the
largest component?
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Earlier work

I These questions have received a great deal of attention in the
context of the well-known Erdös-Rényi random graph G (n, p),
and this model is now more or less fully understood.

I Here there are n vertices, and every pair of distinct vertices
are connected by an edge with probability p = p(n).

I A phase transition occurs when p = 1
n .

I More precisely, consider p(n) = 1+ε
n , with ε → 0.

I When εn1/3 → −∞, then the maximum component size is
‘about’ ε−2 log n.

I When |εn1/3| ≤ C then the maximum component size is
‘about’ n2/3 (and there are several components of this size).

I Finally, when εn1/3 →∞, then with high probability there is a
unique ‘giant’ component, of size approximately
2εn(1 + o(1)), and the second largest component is of the
order about ε−2 log n.
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I In the random graph G (n, p), suppose that p = λ/n.

I Then the degree sequence is approximately Poisson, in the
sense that the number of vertices of degree k is
asymptotically ‘close’ to ne−λλk/k!.

I Let λ = 1, and let D denote a Poisson random variable with
mean 1. Note, for later use, that we have E[D(D − 2)] = 0.
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There have also been studies of the component structure in other
random graph models, notably the random graph with a given
degree sequence:

Molloy and Reed (1995, 1998)

Kang and Seierstad (2007).
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Notation and results

Proofs

Our main results

I Here we study the largest component of a random
(multi)graph on n vertices with a given degree sequence,
letting n →∞.

I Under some regularity conditions on the degree sequence we
give conditions on its asymptotic shape that imply that whp
all the components are small; and other conditions that imply
that whp there is a giant component, and the sizes of its
vertex and edge sets satisfy a law of large numbers.

I Under suitable conditions, these are the only two possibilities.
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Our main results

I In particular, we recover the results by Molloy and Reed on
the size of the largest component in a random graph with a
given degree sequence.

I We further obtain a new sharp result for the giant component
just above the threshold, generalising the case of G (n, p) with
np = 1 + ω(n)n−1/3, where ω(n) →∞ arbitrarily slowly.
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Comparison to earlier studies

I Molloy and Reed (1995) found a threshold for the appearance
of a giant component in a random graph on n vertices with a
given degree sequence.

I Molloy and Reed (1998) found the size of the giant above the
critical threshold (away from the critical window).

I They analyse an edge deletion algorithm that finds the
components and approximate the random process by a
differential equation.

I Their proof is rather long and complicated, and uses a bound
of the order n1/4 on the maximum vertex degree.

I Recently, Kang and Seierstad (2007) considered the
near-critical behaviour, again assuming the maximum vertex
degree does not exceed n1/4−ε.

I Using singularity analysis of generating functions, they
determine the size of the giant close to the critical window -
with a gap of the order log n.
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Our methods and assumptions

I Our method is based on the properties of empirical
distributions of independent random variables, and leads to
simple proofs.

I Like Molloy and Reed, we work directly with the configuration
model, exposing the edges one by one as they are needed.

I Unlike Molloy and Reed, we do not use differential equations.
(In fact, we use a variant of the method used in JL (2007) to
study the k-core of a random graph.)
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I In the supercritical and subcritical regime, we require only
conditions on the second moment of the asymptotic degree
distribution.

I In the critical regime, we need a 4th moment condition, but
go all the way to the critical window, without any separation.

I We work with random graphs with given vertex degrees.
Results for other random graphs, such as G (n, p) and G (n,m)
follow immediately by conditioning on the vertex degrees.
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No separation from criticality

I It is striking that we are able to go all the way to criticality.

I Indeed, in many other models, logarithmic or even larger
separation is hard to get rid of.

I Examples of such difficulties include
I van der Hofstad and L. (2008+) in the case of percolation on

the Cartesian product of two complete graphs on n vertices,
where logarithmic separation occurs.

I Borgs, Chayes, van der Hofstad, Slade and Spencer (2006) in
the case of percolation on the n-cube, where the separation is
polynomial in the number of vertices;

I Kang and Seierstad (2007) for the model analysed in this work.
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Notation and model

I For a graph G , let v(G ) and e(G ) denote the numbers of
vertices and edges in G ; also vk(G ) is the number of vertices
of degree k, for k ≥ 0.

I Let n ∈ N and let (di )
n
1 be a sequence of non-negative

integers, such that
∑n

i=1 di is even.

I We let G (n, (di )
n
1) be a random graph with degree sequence

(di )
n
1, uniformly chosen among all possibilities (tacitly

assuming that there is any such graph at all).

I We work with multigraphs, i.e. there may be multiple edges
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Our model

I Precisely, we let G ∗(n, (di )
n
1) be the random multigraph with

given degree sequence (di )
n
1, defined by the configuration

model.

I That is, take a set of di half-edges for each vertex i , and
combine the half-edges into pairs by a uniformly random
matching of the set of all half-edges.

I G ∗(n, (di )
n
1) is not exactly uniformly distributed: there is a

weight with a factor 1/j! for every edge of multiplicity j , and
a factor 1/2 for every loop.

I But conditioned on the multigraph being a (simple) graph, we
obtain G (n, (di )

n
1), the uniformly distributed random graph

with the given degree sequence.
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More notation

I We write m = m(n) := 1
2

∑n
i=1 di and

nk = nk(n) := #{i : di = k}, for k ≥ 0.

I Thus m is the number of edges and nk is the number of
vertices of degree k in G (n, (di )

n
1) (or G ∗(n, (di )

n
1)).

I We consider asymptotics as n →∞, and all unspecified limits
below are as n →∞.

I We say that an event holds whp (with high probability), if it
holds with probability tending to 1 as n →∞.

I We shall use
p−→ for convergence in probability and Op and

op in the standard way.
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Conditions on degree sequence

Condition
For each n, (di )

n
1 = (d

(n)
i )n1 is a sequence of non-negative integers

such that
∑n

i=1 di is even. Furthermore, (pk)∞k=0 is a probability
distribution independent of n such that

1. nk/n = #{i : di = k}/n → pk as n →∞, for every k ≥ 0;

2. λ :=
∑

k kpk ∈ (0,∞);

3.
∑

i d
2
i = O(n);

4. p1 > 0.
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Condition - interpretation

I Let Dn be the degree of a random (uniformly chosen) vertex
in G (n, (di )

n
1) or G ∗(n, (di )

n
1); thus

P(Dn = k) = nk/n. (1)

Note that E Dn = n−1
∑n

i=1 di = 2m/n.
I Let D be a random variable with the distribution

P(D = k) = pk . Then the above implies

Dn
d−→ D, (2)

so D describes the asymptotic distribution of the degree of a
random vertex in G (n, (di )

n
1).

I Also by the above, λ = E D ∈ (0,∞), P(D = 1) > 0, and

E D2
n = O(1). (3)
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I In particular, the Condition implies that the Dn are uniformly
integrable, and thus implies E Dn → E D, i.e.

2m

n
= n−1

n∑
i=1

di → λ. (4)

I Let

g(x) :=
∞∑

k=0

pkxk = E xD , (5)

the probability generating function of the probability
distribution (pk)∞k=0.

I Let

h(x) := xg ′(x) =
∞∑

k=1

kpkxk , (6)

H(x) := λx2 − h(x). (7)
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I Note that h(0) = 0 and h(1) = λ, and thus H(0) = H(1) = 0.

I Note also that

H ′(1) = 2λ−
∑
k

k2pk = E(2D − D2) = −E D(D − 2). (8)

I Our first theorem is essentially the main results of Molloy and
Reed (1995,1998).
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First theorem: supercritical and subcritical case

Theorem
Assume the Condition, and let C1 and C2 be the largest and second
largest components of G (n, (di )

n
1).

1. If E D(D − 2) =
∑

k k(k − 2)pk > 0, then there is a unique
ξ ∈ (0, 1) such that H(ξ) = 0, or equivalently g ′(ξ) = λξ, and

v(C1)/n
p−→ 1− g(ξ) > 0, vk(C1)/n

p−→ pk(1− ξk), for every

k ≥ 0, and e(C1)/n
p−→ 1

2λ(1− ξ2), while v(C2)/n
p−→ 0 and

e(C2)/n
p−→ 0.

2. If E D(D − 2) =
∑

k k(k − 2)pk ≤ 0, then v(C1)/n
p−→ 0 and

e(C1)/n
p−→ 0.

The same holds for G ∗(n, (di )
n
1).
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Second theorem: critical case

Theorem
Assume the Condition and that E D(D− 2) =

∑
k k(k − 2)pk = 0.

Assume also that αn := E Dn(Dn − 2) =
∑n

i=1 di (di − 2)/n > 0

and that n1/3αn →∞, and that
∑n

i=1 d4+η
i = O(n) for some

η > 0. Let β := E D(D − 1)(D − 2). Then, β > 0 and

v(C1) =
2λ

β
nαn + op(nαn),

vk(C1) =
2

β
kpknαn + op(nαn), for every k ≥ 0,

e(C1) =
2λ

β
nαn + op(nαn),

while v(C2) = op(nαn) and e(C2)/n = op(nαn).
The same results hold for G ∗(n, (di )

n
1).
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Remarks

Remark
The moment condition in the critical case means that
E D4+η

n < ∞; it thus implies that D2
n and D3

n are uniformly
integrable. Combined with our earlier assumptions, it implies that
E D2

n → E D2 and E D3
n → E D3. In particular, we have

αn := E Dn(Dn − 2) → E D(D − 2) = 0 (9)

and

βn := E Dn(Dn − 1)(Dn − 2) → E D(D − 1)(D − 2) = β. (10)

We do not think that this is best possible; we conjecture that it is
enough to assume that D3

n are uniformly integrable, i.e.
E D3

n → E D3 < ∞.
Malwina J Luczak A new approach to the giant component problem



Introduction
Notation and results

Proofs

Remarks

Our assumption that
∑

i d
2
i = O(n) and n−1

∑
di → λ implies

that
lim inf P

(
G ∗(n, (di )

n
1) is a simple graph

)
> 0, (11)

see for instance Bollobás (2001), McKay (1985) or McKay and
Wormald (1991) under some extra condition on max di and Janson
(2007+) for the general case.

Since we obtain G (n, (di )
n
1) by conditioning G ∗(n, (di )

n
1) on being a

simple graph, and all results in our Theorems are (or can be) stated
in terms of convergence in probability, the results for G (n, (di )

n
1)

follow from the results for G ∗(n, (di )
n
1) by this conditioning.
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Proofs

Remarks

Remark
The assumption

∑n
i=1 d2

i = O(n) is used in our proof mainly for
the reduction to G ∗(n, (di )

n
1).

In fact, the proof of our ’non-critical’ theorem for G ∗(n, (di )
n
1)

holds with simple modifications also if it is replaced by the weaker
condition that Dn are uniformly integrable, or equivalently,
E Dn → E D.

It might also be possible to extend the theorem for G (n, (di )
n
1) too,

under some weaker assumption than our condition, by combining
estimates of P

(
G ∗(n, (di )

n
1) is simple

)
from McKay and Wormald

(1991) with more precise estimates of the error probabilities in our
proof, but we have not pursued this.
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Remarks

I Note that our condition excludes the case p1 = 0.

I In this case, E D(D − 2) =
∑∞

k=3 k(k − 2)pk ≥ 0, with strict
inequality as soon as pk > 0 for some k ≥ 3. Different kinds
of behaviour can occur.

I First, if p1 = 0 and E D(D − 2) > 0, i.e. if p1 = 0 and∑
k≥3 pk > 0, then all but op(n) vertices and edges belong to

a single giant component. Hence, the conclusions of the first
theorem hold with ξ = 0. (In this case, H(x) > 0 for every
x ∈ (0, 1).)

I The case p1 = 0 and E D(D − 2) = 0, i.e. pk = 0 for all
k 6= 0, 2, is much more exceptional. (In this case, H(x) = 0
for all x .)
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pk = 0, k 6= 0, 2: examples

I Since isolated vertices do not matter, let us assume p0 = 0
too and consider thus the case p2 = 1.

I If all di = 2 (random 2-regular graph), the components are
cycles. In the multigraph the distribution of cycle lengths is
given by the Ewens’s sampling formula ESF(1/2), and thus
v(C1)/n converges to a non-degenerate distribution on [0, 1].
The same is true for v(C2)/n (and for v(C3)/n, . . . ), so there
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Introduction
Notation and results

Proofs

Potential extensions

I Quantitative results, e.g a central limit theorem for the size of
the giant component, as for the k-core in JL (2007+).

I Large deviation estimates.
I Inside the transition window, where αn = O(n1/3), an

appropriate scaling seems to lead to convergence to Gaussian
processes, like in Aldous (1997); similar results on the
distribution of the sizes of the largest components could be
obtained.

I We have not given more precise bounds on C2. Direct analysis
of the Markov process (A(t),V0(t),V1(t), . . .) can show that
the largest component has size O(log n) in the subcritical
phase, and that so does the supercritical second largest
component, but we have not pursued this.

I Finally, it seems possible to adapt the methods of this paper
to random hypergraphs.
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Introduction
Notation and results

Proofs

G (n, p), G (n, m) and other random graphs

I Can apply our results to some other random graphs by
conditioning on vertex degrees, whenever the random graph
conditioned on the degree sequence is uniformly distributed.

I Examples: G (n, p) and G (n,m); also Britton, Janson and
Martin-Löf (2007+), Britton, Deijfen and Martin-Löf
(2007+), Grimmett and Janson (2007+).

I If, furthermore, our conditions hold in probability (where now
di are the random vertex degrees), then both Theorems hold.

I In the latter, we define αn :=
∑n

i=1 di (di − 2)/n, which now is
random.

I For the proof, it is convenient to use the Skorohod coupling
theorem, and assume that the conditions hold a.s.
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Introduction
Notation and results

Proofs

I For G (n, p) with np → λ or G (n,m) with 2m/n → λ, where
0 < λ < ∞, the assumptions hold with D ∼ Po(λ).

I Thus g(x) = eλ(x−1), h(x) = λxeλ(x−1),
H(x) = λx

(
x − eλ(x−1)

)
, and we recover the both the

classical threshold λ = 1 and the standard equation
ξ = eλ(ξ−1) for the size of the giant component when λ > 1.

I In G (n, p) with p = (1 + εn)/n where εn → 0 in the critical

case, we have αn/εn
p−→ 1 by the second moment method as

soon as nεn →∞. So we need n1/3εn →∞ in order to apply
the theorem.

I It is also well known that if n1/3εn = O(1), then v(C1) and
v(C2) are both of the same order n2/3 and Theorem 3 fails,
which shows that the condition n1/3αn →∞ in the critical
case is best possible.
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Introduction
Notation and results

Proofs

Finding the components: standard procedure

I Pick an arbitrary vertex v and determine the component of v
as follows: include all the neighbours of v in an arbitrary
order; then add in the neighbours of neighbours, and so on,
until no more vertices can be added.

I The vertices included until this moment form the component
of v .

I If there are still vertices left in the graph, pick any such vertex
w , and repeat the above to determine the second component
(the component of vertex w).

I Carry on in this manner until all the components have been
found.
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Notation and results

Proofs

Finding components - equivalent procedure

I Regard each edge as consisting of two half-edges, each
half-edge having one endpoint.

I Label the vertices as sleeping or awake (= used) and the
half-edges as sleeping, active or dead; the sleeping and active
half-edges are also called living.

I We start with all vertices and half-edges sleeping.
I Pick a vertex and label its half-edges as active. Then take any

active half-edge, say x and find its partner y in the graph;
label these two half-edges as dead; further, if the endpoint of
y is sleeping, label it as awake and all other half-edges there
as active. Repeat as long as there is any active half-edge.

I When there is no active half-edge left, we have obtained the
first component. Then start again with another vertex until all
components are found.
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Notation and results

Proofs

Finding components in a random multigraph

I Apply this to a random multigraph G ∗(n, (di )
n
1) with a given

degree sequence, revealing its edges during the process.

I Thus observe initially only the vertex degrees and the
half-edges, but not how they are joined to form edges. Hence,
each time we need a partner of an half-edge, it is uniformly
distributed over all other living half-edges. (The dead
half-edges are the ones that already are paired into edges.)

I These random choices are made by giving the half-edges i.i.d.
random maximal lifetimes τx with the distribution Exp(1); i.e.
each half-edge dies spontaneously with rate 1 (unless killed
earlier).

I Each time we need the partner of a half-edge x , we wait until
the next living half-edge 6= x dies and take that one.
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Notation and results

Proofs

Algorithm constructing G ∗(n, (di)
n
1) and exploring its

components simultaneously

I Start with all vertices and half-edges sleeping.
I C1: If there is no active half-edge, select a sleeping vertex (by

choosing a half-edge uniformly at random among all sleeping
half-edges), declare it awake and its half-edges active. If no
sleeping half-edge left, stop; the remaining sleeping vertices
are all isolated and we have explored all components.

I C2: Pick an active half-edge (which one does not matter) and
kill it, i.e., change its status to dead.

I C3: Wait until the next half-edge dies (spontaneously). This
half-edge is joined to the one killed in the previous step C2 to
form an edge of the graph. If the vertex it belongs to is
sleeping, we change this vertex to awake and all other
half-edges there to active. Repeat from C1.
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The components are created between the successive times C1 is
performed; the vertices in the component created during one of
these intervals are the vertices that are awakened during the
interval.

Note also that a component is completed and C1 is performed
exactly when the number of active half-edges is 0 and a half-edge
dies at a vertex where all other half-edges (if any) are dead.
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Proofs

Analysis of the algorithm for G ∗(n, (di)
n
1)

I Let S(t) and A(t) be the numbers of sleeping and active
half-edges at time t. Let L(t) = S(t) + A(t) be the number
of living half-edges (all assumed right-continuous).

I Consider L(t) first.

I We start with 2m half-edges, all sleeping and thus living, but
we immediately perform C1 and C2 and kill one of them; thus
L(0) = 2m − 1.

I Afterwards, as soon as a living half-edge dies, perform C3 and
then (instantly) either C2 or both C1 and C2.

I Since C1 does not change the number of living half-edges
while C2 and C3 each decrease it by 1, L(t) is decreased by 2
each time one of the living half-edges dies, except when the
last living one dies and the process terminates.
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Hence we have:

Lemma
As n →∞,

sup
t≥0

|n−1L(t)− λe−2t | p−→ 0.

Proof.
This (or rather an equivalent statement in a slightly different
situation) was proved in JL (2006) as a consequence of the
Glivenko–Cantelli theorem on convergence of empirical distribution
functions.

Malwina J Luczak A new approach to the giant component problem



Introduction
Notation and results

Proofs

Analysis continued

I Next consider the sleeping half-edges. Let Vk(t) be the
number of sleeping vertices of degree k at time t; thus

S(t) =
∞∑

k=1

kVk(t).

Note that C2 does not affect sleeping half-edges, and that C3
implies that each sleeping vertex of degree k is eliminated
(i.e., awakened) with intensity k, independently of all other
vertices. There are also some sleeping vertices eliminated by
C1.

I We first ignore the effect of C1: let Ṽk(t) be the number of
vertices of degree k such that all their half-edges have
maximal lifetimes τx > t. (I.e., none of their k half-edges
would have died spontaneously up to time t, assuming they all
escaped C1.)

I Let further S̃(t) :=
∑

k kṼk(t).
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Analysis continued

Lemma
As n →∞,

sup
t≥0

|n−1Ṽk(t)− pke−kt | p−→ 0 (12)

for every k ≥ 0 and

sup
t≥0

|n−1
∞∑

k=0

Ṽk(t)− g(e−t)| p−→ 0, (13)

sup
t≥0

|n−1S̃(t)− h(e−t)| p−→ 0. (14)

Proof.
Once again, this follows from Glivenko-Cantelli, together with the
uniform integrability of the Dn.
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Difference between S(t) and S̃(t)

This is easily estimated.

Lemma
If dmax := maxi di is the maximum degree of G ∗(n, (di )

n
1), then

0 ≤ S̃(t)− S(t) < sup
0≤s≤t

(
S̃(s)− L(s)

)
+ dmax.

Let Ã(t) := L(t)− S̃(t) = A(t)−
(
S̃(t)− S(t)

)
.

Then the Lemma can be written

0 ≤ S̃(t)− S(t) < − inf
s≤t

Ã(s) + dmax. (15)
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Also, from the previous Lemmas

sup
t≥0

|n−1Ã(t)− H(e−t)| p−→ 0. (16)

Remark
By the above, we obtain further the relation

Ã(t) ≤ A(t) < Ã(t)− inf
s≤t

Ã(s) + dmax.
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Functional equation

We further need to study the behaviour of the function H(x).

Lemma
Suppose that the Condition holds and let H(x) be given as above,
i.e. H(x) = λx2 − h(x), with h(x) = xg ′(x).

1. If E D(D − 2) =
∑

k k(k − 2)pk > 0, then there is a unique
ξ ∈ (0, 1) such that H(ξ) = 0; or equivalently g ′(ξ) = λξ;
moreover, H(x) < 0 for x ∈ (0, ξ) and H(x) > 0 for
x ∈ (ξ, 1). and H ′(ξ) > 0.

2. If E D(D − 2) =
∑

k k(k − 2)pk ≤ 0, then H(x) < 0 for
x ∈ (0, 1).
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Connecting all the pieces together

I Let ξ be the zero of H given by the above and let τ := − ln ξ.
Then, by the lemma, H(e−t) > 0 for 0 < t < τ , and thus
inft≤τ H(e−t) = 0.

I Consequently,

n−1 inf
t≤τ

Ã(t) = inf
t≤τ

n−1Ã(t)− inf
t≤τ

H(e−t)
p−→ 0. (17)

I Further, by the Condition, dmax = O(
√

n), and thus
n−1dmax → 0, which implies

sup
t≤τ

n−1|A(t)− Ã(t)| = sup
t≤τ

n−1|S̃(t)− S(t)| p−→ 0 (18)

I Hence also
sup
t≤τ

|n−1A(t)− H(e−t)| p−→ 0. (19)
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I Let 0 < ε < τ/2. Since H(e−t) > 0 on the compact interval
[ε, τ − ε], whp A(t) remains positive on [ε, τ − ε], and thus
no new component is started during this interval.

I Also, H(e−τ−ε) < 0 and so n−1Ã(τ + ε)
p−→ H(e−τ−ε), while

A(τ + ε) ≥ 0.

I Thus, with δ := |H(e−τ−ε)|/2 > 0, whp

S̃(τ + ε)−S(τ + ε) = A(τ + ε)− Ã(τ + ε) ≥ −Ã(τ + ε) > nδ,
(20)

while S̃(τ)− S(τ) < nδ whp.

I Consequently, whp S̃(τ + ε)− S(τ + ε) > S̃(τ)− S(τ), so C1
is performed between τ and τ + ε.

I Let T1 be the last time C1 was performed before τ/2 and let
T2 be the next time it is performed. Then whp 0 ≤ T1 ≤ ε
and τ − ε ≤ T2 ≤ τ + ε, so T1

p−→ 0 and T2
p−→ τ .
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One more lemma

Lemma
Let T ∗

1 and T ∗
2 be two (random) times when C1 are performed,

with T ∗
1 ≤ T ∗

2 , and assume that T ∗
1

p−→ t1 and T ∗
2

p−→ t2 where
0 ≤ t1 ≤ t2 ≤ τ . Let C ∗ be the union of all components explored
between T ∗

1 and T ∗
2 . Then

vk(C ∗)/n
p−→ pk

(
e−kt1 − e−kt2

)
, k ≥ 0, (21)

v(C ∗)/n
p−→ g(e−t1)− g(e−t2), (22)

e(C ∗)/n
p−→ 1

2
h(e−t1)− 1

2
h(e−t2). (23)

In particular, if t1 = t2, then v(C ∗)/n
p−→ 0 and e(C ∗)/n

p−→ 0.
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I Let C′ be the component created at T1 and explored until T2.

I By the above lemma, with t1 = 0 and t2 = τ ,

vk(C′)/n
p−→ pk(1− e−kτ ), (24)

v(C′)/n
p−→ g(1)− g(e−τ ) = 1− g(ξ), (25)

e(C′)/n
p−→ 1

2

(
h(1)− h(e−τ )

)
= 1

2

(
h(1)− h(ξ)

)
=

λ

2
(1− ξ2),

(26)

using the fact that H(1) = H(ξ) = 0.

I We have found one large component C′ with the claimed
numbers of vertices and edges. It remains to show that there
is whp no other large component.
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I However, let T3 be the first time after T2 that C1 is
performed. One can show that T3

p−→ τ .
I Thus if C′′ is the component created between T2 and T3, then

v(C′′)/n
p−→ 0 and e(C′′)/n

p−→ 0.
I Also, if η > 0, then the total number of vertices and edges in

all components found before C′, i.e, before T1, is oP(n),

because T1
p−→ 0; hence

P(a component C with e(C) ≥ ηm is found before C′) → 0.
(27)

I On the other hand, conditioning on the final graph
G ∗(n, (di )

n
1) that is constructed by the algorithm, if there

exists a component C 6= C′ in G ∗(n, (di )
n
1) with at least ηm

edges that has not been found before C′, then with probability
at least η, the vertex chosen at random by C1 at T2 starting
the component C′′ belongs to C, and thus C = C′′.
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Proofs

I Consequently,

P(a component C with e(C) ≥ ηm is found after C′)
≤ η−1 P(e(C′′) ≥ ηm) → 0. (28)

I Hence whp there is no component except C′ with at least ηm
edges.

I Take η small to deduce that whp C′ = C1, the largest
component, and further e(C2) < ηm.

I Hence also v(C2)/n
p−→ 0 because m = O(n) and

v(C2) ≤ e(C2) + 1.
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