A new approach to the giant component problem

Malwina J Luczak ${ }^{1}$
Department of Mathematics
London School of Economics
London WC2A 2AE
UK
e-mail: m.j.luczak@lse.ac.uk
March 2008

${ }^{1}$ This is based on joint work with Svante Janson

Random graphs

- Take a graph $G=(V, E)$, finite or infinite.
 as a function of the edge probability p ?

Random graphs

- Take a graph $G=(V, E)$, finite or infinite.
- Choose a parameter $0<p<1$; keep each edge in E with probability p and remove it with probability $1-p$, independently of all other edges.
particular the size and structure of the largest component C_{1} as a function of the edge probability p ? Also, how big is the second largest component, C_{2} ? Under what conditions is there a giant component, dominating all

Random graphs

- Take a graph $G=(V, E)$, finite or infinite.
- Choose a parameter $0<p<1$; keep each edge in E with probability p and remove it with probability $1-p$, independently of all other edges.
- What is the component structure of the induced graph, in particular the size and structure of the largest component C_{1}, as a function of the edge probability p ?

[^0] largest component?

Random graphs

- Take a graph $G=(V, E)$, finite or infinite.
- Choose a parameter $0<p<1$; keep each edge in E with probability p and remove it with probability $1-p$, independently of all other edges.
- What is the component structure of the induced graph, in particular the size and structure of the largest component C_{1}, as a function of the edge probability p ?
- Also, how big is the second largest component, C_{2} ? Under what conditions is there a giant component, dominating all the others in size?

Further, what is the shape of the degree sequence of the
largest component?

Random graphs

- Take a graph $G=(V, E)$, finite or infinite.
- Choose a parameter $0<p<1$; keep each edge in E with probability p and remove it with probability $1-p$, independently of all other edges.
- What is the component structure of the induced graph, in particular the size and structure of the largest component C_{1}, as a function of the edge probability p ?
- Also, how big is the second largest component, C_{2} ? Under what conditions is there a giant component, dominating all the others in size?
- Further, what is the shape of the degree sequence of the largest component?

Earlier work

- These questions have received a great deal of attention in the context of the well-known Erdös-Rényi random graph $G(n, p)$, and this model is now more or less fully understood.

Earlier work

- These questions have received a great deal of attention in the context of the well-known Erdös-Rényi random graph $G(n, p)$, and this model is now more or less fully understood.
- Here there are n vertices, and every pair of distinct vertices are connected by an edge with probability $p=p(n)$.

Earlier work

- These questions have received a great deal of attention in the context of the well-known Erdös-Rényi random graph $G(n, p)$, and this model is now more or less fully understood.
- Here there are n vertices, and every pair of distinct vertices are connected by an edge with probability $p=p(n)$.
- A phase transition occurs when $p=\frac{1}{n}$.

Earlier work

- These questions have received a great deal of attention in the context of the well-known Erdös-Rényi random graph $G(n, p)$, and this model is now more or less fully understood.
- Here there are n vertices, and every pair of distinct vertices are connected by an edge with probability $p=p(n)$.
- A phase transition occurs when $p=\frac{1}{n}$.
- More precisely, consider $p(n)=\frac{1+\epsilon}{n}$, with $\epsilon \rightarrow 0$.

Earlier work

- These questions have received a great deal of attention in the context of the well-known Erdös-Rényi random graph $G(n, p)$, and this model is now more or less fully understood.
- Here there are n vertices, and every pair of distinct vertices are connected by an edge with probability $p=p(n)$.
- A phase transition occurs when $p=\frac{1}{n}$.
- More precisely, consider $p(n)=\frac{1+\epsilon}{n}$, with $\epsilon \rightarrow 0$.
- When $\epsilon n^{1 / 3} \rightarrow-\infty$, then the maximum component size is 'about' $\epsilon^{-2} \log n$.
When $\left|\epsilon n^{1 / 3}\right| \leq C$ then the maximum component size is
'about' $n^{2 / 3}$ (and there are several components of this size)
Finally, when $\epsilon n^{1 / 3} \rightarrow \infty$, then with high probability there
unique 'giant' component, of size approximately
$2 \epsilon n(1+o(1))$, and the second largest component is of the

Earlier work

- These questions have received a great deal of attention in the context of the well-known Erdös-Rényi random graph $G(n, p)$, and this model is now more or less fully understood.
- Here there are n vertices, and every pair of distinct vertices are connected by an edge with probability $p=p(n)$.
- A phase transition occurs when $p=\frac{1}{n}$.
- More precisely, consider $p(n)=\frac{1+\epsilon}{n}$, with $\epsilon \rightarrow 0$.
- When $\epsilon n^{1 / 3} \rightarrow-\infty$, then the maximum component size is 'about' $\epsilon^{-2} \log n$.
- When $\left|\epsilon n^{1 / 3}\right| \leq C$ then the maximum component size is 'about' $n^{2 / 3}$ (and there are several components of this size).

Earlier work

- These questions have received a great deal of attention in the context of the well-known Erdös-Rényi random graph $G(n, p)$, and this model is now more or less fully understood.
- Here there are n vertices, and every pair of distinct vertices are connected by an edge with probability $p=p(n)$.
- A phase transition occurs when $p=\frac{1}{n}$.
- More precisely, consider $p(n)=\frac{1+\epsilon}{n}$, with $\epsilon \rightarrow 0$.
- When $\epsilon n^{1 / 3} \rightarrow-\infty$, then the maximum component size is 'about' $\epsilon^{-2} \log n$.
- When $\left|\epsilon n^{1 / 3}\right| \leq C$ then the maximum component size is 'about' $n^{2 / 3}$ (and there are several components of this size).
- Finally, when $\epsilon n^{1 / 3} \rightarrow \infty$, then with high probability there is a unique 'giant' component, of size approximately $2 \epsilon n(1+o(1))$, and the second largest component is of the order about $\epsilon^{-2} \log n$.
- In the random graph $G(n, p)$, suppose that $p=\lambda / n$.

Then the degree sequence is approximately Poisson, in the sense that the number of vertices of degree k is asymptotically 'close' to ne Let $\lambda=1$ mean 1

- In the random graph $G(n, p)$, suppose that $p=\lambda / n$.
- Then the degree sequence is approximately Poisson, in the sense that the number of vertices of degree k is asymptotically 'close' to $n e^{-\lambda} \lambda^{k} / k$!.
- In the random graph $G(n, p)$, suppose that $p=\lambda / n$.
- Then the degree sequence is approximately Poisson, in the sense that the number of vertices of degree k is asymptotically 'close' to $n e^{-\lambda} \lambda^{k} / k!$.
- Let $\lambda=1$, and let D denote a Poisson random variable with mean 1. Note, for later use, that we have $\mathbb{E}[D(D-2)]=0$.
- In the random graph $G(n, p)$, suppose that $p=\lambda / n$.
- Then the degree sequence is approximately Poisson, in the sense that the number of vertices of degree k is asymptotically 'close' to $n e^{-\lambda} \lambda^{k} / k!$.
- Let $\lambda=1$, and let D denote a Poisson random variable with mean 1. Note, for later use, that we have $\mathbb{E}[D(D-2)]=0$.

There have also been studies of the component structure in other random graph models, notably the random graph with a given degree sequence:

There have also been studies of the component structure in other random graph models, notably the random graph with a given degree sequence:

Molloy and Reed $(1995,1998)$

There have also been studies of the component structure in other random graph models, notably the random graph with a given degree sequence:

Molloy and Reed $(1995,1998)$
Kang and Seierstad (2007).

Our main results

- Here we study the largest component of a random (multi)graph on n vertices with a given degree sequence, letting $n \rightarrow \infty$.

Under some regularity conditions on the degree sequence we give conditions on its asymptotic shape that imply that whp all the components are small: and other conditions that imply that whp there is a giant component, and the sizes of its vertex and edge sets satisfy a law of large numbers. Under suitable conditions, these are the only two possibilities.

Our main results

- Here we study the largest component of a random (multi)graph on n vertices with a given degree sequence, letting $n \rightarrow \infty$.
- Under some regularity conditions on the degree sequence we give conditions on its asymptotic shape that imply that whp all the components are small; and other conditions that imply that whp there is a giant component, and the sizes of its vertex and edge sets satisfy a law of large numbers.

Under suitable conditions, these are the only two possibilities

Our main results

- Here we study the largest component of a random (multi)graph on n vertices with a given degree sequence, letting $n \rightarrow \infty$.
- Under some regularity conditions on the degree sequence we give conditions on its asymptotic shape that imply that whp all the components are small; and other conditions that imply that whp there is a giant component, and the sizes of its vertex and edge sets satisfy a law of large numbers.
- Under suitable conditions, these are the only two possibilities.

Our main results

- In particular, we recover the results by Molloy and Reed on the size of the largest component in a random graph with a given degree sequence.

Our main results

- In particular, we recover the results by Molloy and Reed on the size of the largest component in a random graph with a given degree sequence.
- We further obtain a new sharp result for the giant component just above the threshold, generalising the case of $G(n, p)$ with $n p=1+\omega(n) n^{-1 / 3}$, where $\omega(n) \rightarrow \infty$ arbitrarily slowly.

Comparison to earlier studies

- Molloy and Reed (1995) found a threshold for the appearance of a giant component in a random graph on n vertices with a given degree sequence.
\qquad They analyse an edge deletion algorithm that finds the components and approvimate the random process hy a differentia equation.

Comparison to earlier studies

- Molloy and Reed (1995) found a threshold for the appearance of a giant component in a random graph on n vertices with a given degree sequence.
- Molloy and Reed (1998) found the size of the giant above the critical threshold (away from the critical window).

```
components and approximate the random process by a
differential equation.
Their proof is rather long and complicated, and uses a bound
```


Comparison to earlier studies

- Molloy and Reed (1995) found a threshold for the appearance of a giant component in a random graph on n vertices with a given degree sequence.
- Molloy and Reed (1998) found the size of the giant above the critical threshold (away from the critical window).
- They analyse an edge deletion algorithm that finds the components and approximate the random process by a differential equation.
Their proof is rather long and complicated, and uses a bound
of the order $n^{1 / 4}$ on the maximum vertex degree
Recently Kano and Seierstad (2nก7) considered the near-critical behaviour, again assuming the maximum vertex

Comparison to earlier studies

- Molloy and Reed (1995) found a threshold for the appearance of a giant component in a random graph on n vertices with a given degree sequence.
- Molloy and Reed (1998) found the size of the giant above the critical threshold (away from the critical window).
- They analyse an edge deletion algorithm that finds the components and approximate the random process by a differential equation.
- Their proof is rather long and complicated, and uses a bound of the order $n^{1 / 4}$ on the maximum vertex degree.
near-critical behaviour, again assuming the maximum vertex

Comparison to earlier studies

- Molloy and Reed (1995) found a threshold for the appearance of a giant component in a random graph on n vertices with a given degree sequence.
- Molloy and Reed (1998) found the size of the giant above the critical threshold (away from the critical window).
- They analyse an edge deletion algorithm that finds the components and approximate the random process by a differential equation.
- Their proof is rather long and complicated, and uses a bound of the order $n^{1 / 4}$ on the maximum vertex degree.
- Recently, Kang and Seierstad (2007) considered the near-critical behaviour, again assuming the maximum vertex degree does not exceed $n^{1 / 4-\epsilon}$.

Comparison to earlier studies

- Molloy and Reed (1995) found a threshold for the appearance of a giant component in a random graph on n vertices with a given degree sequence.
- Molloy and Reed (1998) found the size of the giant above the critical threshold (away from the critical window).
- They analyse an edge deletion algorithm that finds the components and approximate the random process by a differential equation.
- Their proof is rather long and complicated, and uses a bound of the order $n^{1 / 4}$ on the maximum vertex degree.
- Recently, Kang and Seierstad (2007) considered the near-critical behaviour, again assuming the maximum vertex degree does not exceed $n^{1 / 4-\epsilon}$.
- Using singularity analysis of generating functions, they determine the size of the giant close to the critical window -

Our methods and assumptions

- Our method is based on the properties of empirical distributions of independent random variables, and leads to simple proofs.

Our methods and assumptions

- Our method is based on the properties of empirical distributions of independent random variables, and leads to simple proofs.
- Like Molloy and Reed, we work directly with the configuration model, exposing the edges one by one as they are needed.

Our methods and assumptions

- Our method is based on the properties of empirical distributions of independent random variables, and leads to simple proofs.
- Like Molloy and Reed, we work directly with the configuration model, exposing the edges one by one as they are needed.
- Unlike Molloy and Reed, we do not use differential equations.
study the k-core of a random graph.

Our methods and assumptions

- Our method is based on the properties of empirical distributions of independent random variables, and leads to simple proofs.
- Like Molloy and Reed, we work directly with the configuration model, exposing the edges one by one as they are needed.
- Unlike Molloy and Reed, we do not use differential equations. (In fact, we use a variant of the method used in JL (2007) to study the k-core of a random graph.)
- In the supercritical and subcritical regime, we require only conditions on the second moment of the asymptotic degree distribution.

In the critical regime, we need a 4th moment condition, but go all the way to the critical window, without any separation.

- In the supercritical and subcritical regime, we require only conditions on the second moment of the asymptotic degree distribution.
- In the critical regime, we need a 4th moment condition, but go all the way to the critical window, without any separation.

We work with random graphs with given vertex degrees. Results for other random graphs, such as $G(n, p)$ and $G(n, m)$ follow immediately by conditioning on the vertex degrees

- In the supercritical and subcritical regime, we require only conditions on the second moment of the asymptotic degree distribution.
- In the critical regime, we need a 4th moment condition, but go all the way to the critical window, without any separation.
- We work with random graphs with given vertex degrees. Results for other random graphs, such as $G(n, p)$ and $G(n, m)$ follow immediately by conditioning on the vertex degrees.

No separation from criticality

- It is striking that we are able to go all the way to criticality.
\square
Indeed, in many other models, logarithmic or even larger separation is hard to get rid of.

Examples of such difficulties include

No separation from criticality

- It is striking that we are able to go all the way to criticality.
- Indeed, in many other models, logarithmic or even larger separation is hard to get rid of.

Examples of such difficulties include

No separation from criticality

- It is striking that we are able to go all the way to criticality.
- Indeed, in many other models, logarithmic or even larger separation is hard to get rid of.
- Examples of such difficulties include

No separation from criticality

- It is striking that we are able to go all the way to criticality.
- Indeed, in many other models, logarithmic or even larger separation is hard to get rid of.
- Examples of such difficulties include
- van der Hofstad and L. (2008+) in the case of percolation on the Cartesian product of two complete graphs on n vertices, where logarithmic separation occurs.
the case of percolation on the n-cube, where the separation is
\qquad

No separation from criticality

- It is striking that we are able to go all the way to criticality.
- Indeed, in many other models, logarithmic or even larger separation is hard to get rid of.
- Examples of such difficulties include
- van der Hofstad and L. (2008+) in the case of percolation on the Cartesian product of two complete graphs on n vertices, where logarithmic separation occurs.
- Borgs, Chayes, van der Hofstad, Slade and Spencer (2006) in the case of percolation on the n-cube, where the separation is polynomial in the number of vertices;
for the model analysed in this work

No separation from criticality

- It is striking that we are able to go all the way to criticality.
- Indeed, in many other models, logarithmic or even larger separation is hard to get rid of.
- Examples of such difficulties include
- van der Hofstad and L. (2008+) in the case of percolation on the Cartesian product of two complete graphs on n vertices, where logarithmic separation occurs.
- Borgs, Chayes, van der Hofstad, Slade and Spencer (2006) in the case of percolation on the n-cube, where the separation is polynomial in the number of vertices;
- Kang and Seierstad (2007) for the model analysed in this work.

Notation and model

- For a graph G, let $v(G)$ and $e(G)$ denote the numbers of vertices and edges in G; also $v_{k}(G)$ is the number of vertices of degree k, for $k \geq 0$.

Notation and model

- For a graph G, let $v(G)$ and $e(G)$ denote the numbers of vertices and edges in G; also $v_{k}(G)$ is the number of vertices of degree k, for $k \geq 0$.
- Let $n \in \mathbb{N}$ and let $\left(d_{i}\right)_{1}^{n}$ be a sequence of non-negative integers, such that $\sum_{i=1}^{n} d_{i}$ is even.

We let $G\left(n,\left(d_{i}\right)_{1}^{n}\right)$ be a random graph with degree sequence
$\left(d_{i}\right)_{1}^{n}$, uniformly chosen among all possibilities (tacitly
assuming that there is any such graph at all).
We work with multigraphs, i.e. there may be multiple edges
and loops.

Notation and model

- For a graph G, let $v(G)$ and $e(G)$ denote the numbers of vertices and edges in G; also $v_{k}(G)$ is the number of vertices of degree k, for $k \geq 0$.
- Let $n \in \mathbb{N}$ and let $\left(d_{i}\right)_{1}^{n}$ be a sequence of non-negative integers, such that $\sum_{i=1}^{n} d_{i}$ is even.
- We let $G\left(n,\left(d_{i}\right)_{1}^{n}\right)$ be a random graph with degree sequence $\left(d_{i}\right)_{1}^{n}$, uniformly chosen among all possibilities (tacitly assuming that there is any such graph at all).
We work with multigraphs, i.e. there may be multiple edges
and loops.

Notation and model

- For a graph G, let $v(G)$ and $e(G)$ denote the numbers of vertices and edges in G; also $v_{k}(G)$ is the number of vertices of degree k, for $k \geq 0$.
- Let $n \in \mathbb{N}$ and let $\left(d_{i}\right)_{1}^{n}$ be a sequence of non-negative integers, such that $\sum_{i=1}^{n} d_{i}$ is even.
- We let $G\left(n,\left(d_{i}\right)_{1}^{n}\right)$ be a random graph with degree sequence $\left(d_{i}\right)_{1}^{n}$, uniformly chosen among all possibilities (tacitly assuming that there is any such graph at all).
- We work with multigraphs, i.e. there may be multiple edges and loops.

Our model

- Precisely, we let $G^{*}\left(n,\left(d_{i}\right)_{1}^{n}\right)$ be the random multigraph with given degree sequence $\left(d_{i}\right)_{1}^{n}$, defined by the configuration model.

Our model

- Precisely, we let $G^{*}\left(n,\left(d_{i}\right)_{1}^{n}\right)$ be the random multigraph with given degree sequence $\left(d_{i}\right)_{1}^{n}$, defined by the configuration model.
- That is, take a set of d_{i} half-edges for each vertex i, and combine the half-edges into pairs by a uniformly random matching of the set of all half-edges.

\qquad
\qquad
\qquad

Our model

- Precisely, we let $G^{*}\left(n,\left(d_{i}\right)_{1}^{n}\right)$ be the random multigraph with given degree sequence $\left(d_{i}\right)_{1}^{n}$, defined by the configuration model.
- That is, take a set of d_{i} half-edges for each vertex i, and combine the half-edges into pairs by a uniformly random matching of the set of all half-edges.
- $G^{*}\left(n,\left(d_{i}\right)_{1}^{n}\right)$ is not exactly uniformly distributed: there is a weight with a factor $1 / j$! for every edge of multiplicity j, and a factor $1 / 2$ for every loop.

Our model

- Precisely, we let $G^{*}\left(n,\left(d_{i}\right)_{1}^{n}\right)$ be the random multigraph with given degree sequence $\left(d_{i}\right)_{1}^{n}$, defined by the configuration model.
- That is, take a set of d_{i} half-edges for each vertex i, and combine the half-edges into pairs by a uniformly random matching of the set of all half-edges.
- $G^{*}\left(n,\left(d_{i}\right)_{1}^{n}\right)$ is not exactly uniformly distributed: there is a weight with a factor $1 / j$! for every edge of multiplicity j, and a factor $1 / 2$ for every loop.
- But conditioned on the multigraph being a (simple) graph, we obtain $G\left(n,\left(d_{i}\right)_{1}^{n}\right)$, the uniformly distributed random graph with the given degree sequence.

More notation

- We write $m=m(n):=\frac{1}{2} \sum_{i=1}^{n} d_{i}$ and $n_{k}=n_{k}(n):=\#\left\{i: d_{i}=k\right\}$, for $k \geq 0$.

More notation

- We write $m=m(n):=\frac{1}{2} \sum_{i=1}^{n} d_{i}$ and $n_{k}=n_{k}(n):=\#\left\{i: d_{i}=k\right\}$, for $k \geq 0$.
- Thus m is the number of edges and n_{k} is the number of vertices of degree k in $G\left(n,\left(d_{i}\right)_{1}^{n}\right)\left(\operatorname{or} G^{*}\left(n,\left(d_{i}\right)_{1}^{n}\right)\right)$.

We consider asymptotics as $n \rightarrow \infty$, and all unspecified limits
below are as $n \rightarrow \infty$.
M/e say that an event holds whp (with high probability), if it

More notation

- We write $m=m(n):=\frac{1}{2} \sum_{i=1}^{n} d_{i}$ and $n_{k}=n_{k}(n):=\#\left\{i: d_{i}=k\right\}$, for $k \geq 0$.
- Thus m is the number of edges and n_{k} is the number of vertices of degree k in $G\left(n,\left(d_{i}\right)_{1}^{n}\right)$ (or $G^{*}\left(n,\left(d_{i}\right)_{1}^{n}\right)$).
- We consider asymptotics as $n \rightarrow \infty$, and all unspecified limits below are as $n \rightarrow \infty$.

Ne say that an event holds whp (with high probability), if it holds with probability tending to 1 as $n \rightarrow \infty$ Me shall use P . for convergence in prohability and O and

More notation

- We write $m=m(n):=\frac{1}{2} \sum_{i=1}^{n} d_{i}$ and $n_{k}=n_{k}(n):=\#\left\{i: d_{i}=k\right\}$, for $k \geq 0$.
- Thus m is the number of edges and n_{k} is the number of vertices of degree k in $G\left(n,\left(d_{i}\right)_{1}^{n}\right)$ (or $G^{*}\left(n,\left(d_{i}\right)_{1}^{n}\right)$).
- We consider asymptotics as $n \rightarrow \infty$, and all unspecified limits below are as $n \rightarrow \infty$.
- We say that an event holds whp (with high probability), if it holds with probability tending to 1 as $n \rightarrow \infty$.
We shall use \longrightarrow for convergence in probability and O_{p} and
O_{p} in the standard way.

More notation

- We write $m=m(n):=\frac{1}{2} \sum_{i=1}^{n} d_{i}$ and $n_{k}=n_{k}(n):=\#\left\{i: d_{i}=k\right\}$, for $k \geq 0$.
- Thus m is the number of edges and n_{k} is the number of vertices of degree k in $G\left(n,\left(d_{i}\right)_{1}^{n}\right)$ (or $G^{*}\left(n,\left(d_{i}\right)_{1}^{n}\right)$).
- We consider asymptotics as $n \rightarrow \infty$, and all unspecified limits below are as $n \rightarrow \infty$.
- We say that an event holds whp (with high probability), if it holds with probability tending to 1 as $n \rightarrow \infty$.
- We shall use $\xrightarrow{\mathrm{p}}$ for convergence in probability and O_{p} and o_{p} in the standard way.

Conditions on degree sequence

Condition

For each $n,\left(d_{i}\right)_{1}^{n}=\left(d_{i}^{(n)}\right)_{1}^{n}$ is a sequence of non-negative integers such that $\sum_{i=1}^{n} d_{i}$ is even. Furthermore, $\left(p_{k}\right)_{k=0}^{\infty}$ is a probability distribution independent of n such that

1. $n_{k} / n=\#\left\{i: d_{i}=k\right\} / n \rightarrow p_{k}$ as $n \rightarrow \infty$, for every $k \geq 0$;
2. $\lambda:=\sum_{k} k p_{k} \in(0, \infty)$;
3. $\sum_{i} d_{i}^{2}=O(n)$;
4. $p_{1}>0$.

Condition - interpretation

- Let D_{n} be the degree of a random (uniformly chosen) vertex in $G\left(n,\left(d_{i}\right)_{1}^{n}\right)$ or $G^{*}\left(n,\left(d_{i}\right)_{1}^{n}\right)$; thus

$$
\begin{equation*}
\mathbb{P}\left(D_{n}=k\right)=n_{k} / n \tag{1}
\end{equation*}
$$

Note that $\mathbb{E} D_{n}=n^{-1} \sum_{i=1}^{n} d_{i}=2 m / n$. so D describes the asymptotic distribution of the degree of a

Condition - interpretation

- Let D_{n} be the degree of a random (uniformly chosen) vertex in $G\left(n,\left(d_{i}\right)_{1}^{n}\right)$ or $G^{*}\left(n,\left(d_{i}\right)_{1}^{n}\right)$; thus

$$
\begin{equation*}
\mathbb{P}\left(D_{n}=k\right)=n_{k} / n \tag{1}
\end{equation*}
$$

Note that $\mathbb{E} D_{n}=n^{-1} \sum_{i=1}^{n} d_{i}=2 m / n$.

- Let D be a random variable with the distribution $\mathbb{P}(D=k)=p_{k}$. Then the above implies

$$
\begin{equation*}
D_{n} \xrightarrow{\mathrm{~d}} D, \tag{2}
\end{equation*}
$$

so D describes the asymptotic distribution of the degree of a random vertex in $G\left(n,\left(d_{i}\right)_{1}^{n}\right)$.

Condition - interpretation

- Let D_{n} be the degree of a random (uniformly chosen) vertex in $G\left(n,\left(d_{i}\right)_{1}^{n}\right)$ or $G^{*}\left(n,\left(d_{i}\right)_{1}^{n}\right)$; thus

$$
\begin{equation*}
\mathbb{P}\left(D_{n}=k\right)=n_{k} / n \tag{1}
\end{equation*}
$$

Note that $\mathbb{E} D_{n}=n^{-1} \sum_{i=1}^{n} d_{i}=2 m / n$.

- Let D be a random variable with the distribution $\mathbb{P}(D=k)=p_{k}$. Then the above implies

$$
\begin{equation*}
D_{n} \xrightarrow{\mathrm{~d}} D, \tag{2}
\end{equation*}
$$

so D describes the asymptotic distribution of the degree of a random vertex in $G\left(n,\left(d_{i}\right)_{1}^{n}\right)$.

- Also by the above, $\lambda=\mathbb{E} D \in(0, \infty), \mathbb{P}(D=1)>0$, and

$$
\begin{equation*}
\mathbb{E} D_{n}^{2}=O(1) \tag{3}
\end{equation*}
$$

- In particular, the Condition implies that the D_{n} are uniformly integrable, and thus implies $\mathbb{E} D_{n} \rightarrow \mathbb{E} D$, i.e.

$$
\begin{equation*}
\frac{2 m}{n}=n^{-1} \sum_{i=1}^{n} d_{i} \rightarrow \lambda \tag{4}
\end{equation*}
$$

- In particular, the Condition implies that the D_{n} are uniformly integrable, and thus implies $\mathbb{E} D_{n} \rightarrow \mathbb{E} D$, i.e.

$$
\begin{equation*}
\frac{2 m}{n}=n^{-1} \sum_{i=1}^{n} d_{i} \rightarrow \lambda \tag{4}
\end{equation*}
$$

- Let

$$
\begin{equation*}
g(x):=\sum_{k=0}^{\infty} p_{k} x^{k}=\mathbb{E} x^{D}, \tag{5}
\end{equation*}
$$

the probability generating function of the probability distribution $\left(p_{k}\right)_{k=0}^{\infty}$.

- In particular, the Condition implies that the D_{n} are uniformly integrable, and thus implies $\mathbb{E} D_{n} \rightarrow \mathbb{E} D$, i.e.

$$
\begin{equation*}
\frac{2 m}{n}=n^{-1} \sum_{i=1}^{n} d_{i} \rightarrow \lambda \tag{4}
\end{equation*}
$$

- Let

$$
\begin{equation*}
g(x):=\sum_{k=0}^{\infty} p_{k} x^{k}=\mathbb{E} x^{D} \tag{5}
\end{equation*}
$$

the probability generating function of the probability distribution $\left(p_{k}\right)_{k=0}^{\infty}$.

- Let

$$
\begin{align*}
h(x) & :=x g^{\prime}(x)=\sum_{k=1}^{\infty} k p_{k} x^{k} \tag{6}\\
H(x) & :=\lambda x^{2}-h(x) \tag{7}
\end{align*}
$$

- Note that $h(0)=0$ and $h(1)=\lambda$, and thus $H(0)=H(1)=0$.
- Note that $h(0)=0$ and $h(1)=\lambda$, and thus $H(0)=H(1)=0$.
- Note also that

$$
\begin{equation*}
H^{\prime}(1)=2 \lambda-\sum_{k} k^{2} p_{k}=\mathbb{E}\left(2 D-D^{2}\right)=-\mathbb{E} D(D-2) . \tag{8}
\end{equation*}
$$

- Note that $h(0)=0$ and $h(1)=\lambda$, and thus $H(0)=H(1)=0$.
- Note also that

$$
\begin{equation*}
H^{\prime}(1)=2 \lambda-\sum_{k} k^{2} p_{k}=\mathbb{E}\left(2 D-D^{2}\right)=-\mathbb{E} D(D-2) . \tag{8}
\end{equation*}
$$

- Our first theorem is essentially the main results of Molloy and Reed $(1995,1998)$.

First theorem: supercritical and subcritical case

Theorem

Assume the Condition, and let \mathcal{C}_{1} and \mathcal{C}_{2} be the largest and second largest components of $G\left(n,\left(d_{i}\right)_{1}^{n}\right)$.

1. If $\mathbb{E} D(D-2)=\sum_{k} k(k-2) p_{k}>0$, then there is a unique $\xi \in(0,1)$ such that $H(\xi)=0$, or equivalently $g^{\prime}(\xi)=\lambda \xi$, and $v\left(\mathcal{C}_{1}\right) / n \xrightarrow{\mathrm{p}} 1-g(\xi)>0, v_{k}\left(\mathcal{C}_{1}\right) / n \xrightarrow{\mathrm{p}} p_{k}\left(1-\xi^{k}\right)$, for every $k \geq 0$, and $e\left(\mathcal{C}_{1}\right) / n \xrightarrow{\mathrm{p}} \frac{1}{2} \lambda\left(1-\xi^{2}\right)$, while $v\left(\mathcal{C}_{2}\right) / n \xrightarrow{\mathrm{p}} 0$ and $e\left(\mathcal{C}_{2}\right) / n \xrightarrow{\mathrm{p}} 0$.
2. If $\mathbb{E} D(D-2)=\sum_{k} k(k-2) p_{k} \leq 0$, then $v\left(\mathcal{C}_{1}\right) / n \xrightarrow{\mathrm{p}} 0$ and $e\left(\mathcal{C}_{1}\right) / n \xrightarrow{\mathrm{p}} 0$.
The same holds for $G^{*}\left(n,\left(d_{i}\right)_{1}^{n}\right)$.

Second theorem: critical case

Theorem

Assume the Condition and that $\mathbb{E} D(D-2)=\sum_{k} k(k-2) p_{k}=0$. Assume also that $\alpha_{n}:=\mathbb{E} D_{n}\left(D_{n}-2\right)=\sum_{i=1}^{n} d_{i}\left(d_{i}-2\right) / n>0$ and that $n^{1 / 3} \alpha_{n} \rightarrow \infty$, and that $\sum_{i=1}^{n} d_{i}^{4+\eta}=O(n)$ for some $\eta>0$. Let $\beta:=\mathbb{E} D(D-1)(D-2)$. Then, $\beta>0$ and

$$
\begin{aligned}
v\left(\mathcal{C}_{1}\right) & =\frac{2 \lambda}{\beta} n \alpha_{n}+o_{\mathrm{p}}\left(n \alpha_{n}\right), \\
v_{k}\left(\mathcal{C}_{1}\right) & =\frac{2}{\beta} k p_{k} n \alpha_{n}+o_{\mathrm{p}}\left(n \alpha_{n}\right), \text { for every } k \geq 0, \\
e\left(\mathcal{C}_{1}\right) & =\frac{2 \lambda}{\beta} n \alpha_{n}+o_{\mathrm{p}}\left(n \alpha_{n}\right),
\end{aligned}
$$

while $v\left(\mathcal{C}_{2}\right)=o_{\mathrm{p}}\left(n \alpha_{n}\right)$ and $e\left(\mathcal{C}_{2}\right) / n=o_{\mathrm{p}}\left(n \alpha_{n}\right)$.
The same results hold for $G^{*}\left(n,\left(d_{i}\right)_{1}^{n}\right)$.

Remarks

Remark

The moment condition in the critical case means that $\mathbb{E} D_{n}^{4+\eta}<\infty$; it thus implies that D_{n}^{2} and D_{n}^{3} are uniformly integrable. Combined with our earlier assumptions, it implies that $\mathbb{E} D_{n}^{2} \rightarrow \mathbb{E} D^{2}$ and $\mathbb{E} D_{n}^{3} \rightarrow \mathbb{E} D^{3}$. In particular, we have

$$
\begin{equation*}
\alpha_{n}:=\mathbb{E} D_{n}\left(D_{n}-2\right) \rightarrow \mathbb{E} D(D-2)=0 \tag{9}
\end{equation*}
$$

and

$$
\begin{equation*}
\beta_{n}:=\mathbb{E} D_{n}\left(D_{n}-1\right)\left(D_{n}-2\right) \rightarrow \mathbb{E} D(D-1)(D-2)=\beta . \tag{10}
\end{equation*}
$$

We do not think that this is best possible; we conjecture that it is enough to assume that D_{n}^{3} are uniformly integrable, i.e. $\mathbb{E} D^{3} \rightarrow \mathbb{E} D^{3}$

Remarks

Our assumption that $\sum_{i} d_{i}^{2}=O(n)$ and $n^{-1} \sum d_{i} \rightarrow \lambda$ implies that

$$
\begin{equation*}
\liminf \mathbb{P}\left(G^{*}\left(n,\left(d_{i}\right)_{1}^{n}\right) \text { is a simple graph }\right)>0, \tag{11}
\end{equation*}
$$

see for instance Bollobás (2001), McKay (1985) or McKay and Wormald (1991) under some extra condition on $\max d_{i}$ and Janson (2007+) for the general case.

Remarks

Our assumption that $\sum_{i} d_{i}^{2}=O(n)$ and $n^{-1} \sum d_{i} \rightarrow \lambda$ implies that

$$
\begin{equation*}
\liminf \mathbb{P}\left(G^{*}\left(n,\left(d_{i}\right)_{1}^{n}\right) \text { is a simple graph }\right)>0, \tag{11}
\end{equation*}
$$

see for instance Bollobás (2001), McKay (1985) or McKay and Wormald (1991) under some extra condition on $\max d_{i}$ and Janson (2007+) for the general case.
Since we obtain $G\left(n,\left(d_{i}\right)_{1}^{n}\right)$ by conditioning $G^{*}\left(n,\left(d_{i}\right)_{1}^{n}\right)$ on being a simple graph, and all results in our Theorems are (or can be) stated in terms of convergence in probability, the results for $G\left(n,\left(d_{i}\right)_{1}^{n}\right)$ follow from the results for $G^{*}\left(n,\left(d_{i}\right)_{1}^{n}\right)$ by this conditioning.

Remarks

Remark

The assumption $\sum_{i=1}^{n} d_{i}^{2}=O(n)$ is used in our proof mainly for the reduction to $G^{*}\left(n,\left(d_{i}\right)_{1}^{n}\right)$.
\qquad
\qquad
\qquad
\qquad
\qquad

Remarks

Remark

The assumption $\sum_{i=1}^{n} d_{i}^{2}=O(n)$ is used in our proof mainly for the reduction to $G^{*}\left(n,\left(d_{i}\right)_{1}^{n}\right)$.

In fact, the proof of our 'non-critical' theorem for $G^{*}\left(n,\left(d_{i}\right)_{1}^{n}\right)$ holds with simple modifications also if it is replaced by the weaker condition that D_{n} are uniformly integrable, or equivalently, $\mathbb{E} D_{n} \rightarrow \mathbb{E} D$.

It might also be possible to extend the theorem for $G\left(n,\left(d_{i}\right)_{1}^{n}\right)$ too under some weaker assumntion than our condition hy combining estimates of
\qquad
\qquad

Remarks

Remark

The assumption $\sum_{i=1}^{n} d_{i}^{2}=O(n)$ is used in our proof mainly for the reduction to $G^{*}\left(n,\left(d_{i}\right)_{1}^{n}\right)$.

In fact, the proof of our 'non-critical' theorem for $G^{*}\left(n,\left(d_{i}\right)_{1}^{n}\right)$ holds with simple modifications also if it is replaced by the weaker condition that D_{n} are uniformly integrable, or equivalently, $\mathbb{E} D_{n} \rightarrow \mathbb{E} D$.

It might also be possible to extend the theorem for $G\left(n,\left(d_{i}\right)_{1}^{n}\right)$ too, under some weaker assumption than our condition, by combining estimates of $\mathbb{P}\left(G^{*}\left(n,\left(d_{i}\right)_{1}^{n}\right)\right.$ is simple) from McKay and Wormald (1991) with more precise estimates of the error probabilities in our proof, but we have not pursued this.

Remarks

- Note that our condition excludes the case $p_{1}=0$.

of behaviour can occur

Remarks

- Note that our condition excludes the case $p_{1}=0$.
- In this case, $\mathbb{E} D(D-2)=\sum_{k=3}^{\infty} k(k-2) p_{k} \geq 0$, with strict inequality as soon as $p_{k}>0$ for some $k \geq 3$. Different kinds of behaviour can occur.

Remarks

- Note that our condition excludes the case $p_{1}=0$.
- In this case, $\mathbb{E} D(D-2)=\sum_{k=3}^{\infty} k(k-2) p_{k} \geq 0$, with strict inequality as soon as $p_{k}>0$ for some $k \geq 3$. Different kinds of behaviour can occur.
- First, if $p_{1}=0$ and $\mathbb{E} D(D-2)>0$, i.e. if $p_{1}=0$ and $\sum_{k \geq 3} p_{k}>0$, then all but $o_{p}(n)$ vertices and edges belong to a single giant component. Hence, the conclusions of the first theorem hold with $\xi=0$. (In this case, $H(x)>0$ for every $x \in(0,1)$.)

Remarks

- Note that our condition excludes the case $p_{1}=0$.
- In this case, $\mathbb{E} D(D-2)=\sum_{k=3}^{\infty} k(k-2) p_{k} \geq 0$, with strict inequality as soon as $p_{k}>0$ for some $k \geq 3$. Different kinds of behaviour can occur.
- First, if $p_{1}=0$ and $\mathbb{E} D(D-2)>0$, i.e. if $p_{1}=0$ and $\sum_{k \geq 3} p_{k}>0$, then all but $o_{p}(n)$ vertices and edges belong to a single giant component. Hence, the conclusions of the first theorem hold with $\xi=0$. (In this case, $H(x)>0$ for every $x \in(0,1)$.)
- The case $p_{1}=0$ and $\mathbb{E} D(D-2)=0$, i.e. $p_{k}=0$ for all $k \neq 0,2$, is much more exceptional. (In this case, $H(x)=0$ for all x.)

: examples

- Since isolated vertices do not matter, let us assume $p_{0}=0$ too and consider thus the case $p_{2}=1$.

: examples

- Since isolated vertices do not matter, let us assume $p_{0}=0$ too and consider thus the case $p_{2}=1$.
- If all $d_{i}=2$ (random 2-regular graph), the components are cycles. In the multigraph the distribution of cycle lengths is given by the Ewens's sampling formula $\operatorname{ESF}(1 / 2)$, and thus $v\left(\mathcal{C}_{1}\right) / n$ converges to a non-degenerate distribution on $[0,1]$. The same is true for $v\left(\mathcal{C}_{2}\right) / n$ (and for $v\left(\mathcal{C}_{3}\right) / n, \ldots$), so there are several large components.

: examples

- Since isolated vertices do not matter, let us assume $p_{0}=0$ too and consider thus the case $p_{2}=1$.
- If all $d_{i}=2$ (random 2-regular graph), the components are cycles. In the multigraph the distribution of cycle lengths is given by the Ewens's sampling formula $\operatorname{ESF}(1 / 2)$, and thus $v\left(\mathcal{C}_{1}\right) / n$ converges to a non-degenerate distribution on $[0,1]$. The same is true for $v\left(\mathcal{C}_{2}\right) / n$ (and for $v\left(\mathcal{C}_{3}\right) / n, \ldots$), so there are several large components.
- Second case with $p_{2}=1$: add a small number of vertices of degree 1: i.e. let $n_{1} \rightarrow \infty, n_{1} / n \rightarrow 0$, and $n_{2}=n-n_{1}$.) Then $v\left(\mathcal{C}_{1}\right)=o_{\mathrm{P}}(n)$.

: examples

- Since isolated vertices do not matter, let us assume $p_{0}=0$ too and consider thus the case $p_{2}=1$.
- If all $d_{i}=2$ (random 2-regular graph), the components are cycles. In the multigraph the distribution of cycle lengths is given by the Ewens's sampling formula $\operatorname{ESF}(1 / 2)$, and thus $v\left(\mathcal{C}_{1}\right) / n$ converges to a non-degenerate distribution on $[0,1]$. The same is true for $v\left(\mathcal{C}_{2}\right) / n$ (and for $v\left(\mathcal{C}_{3}\right) / n, \ldots$), so there are several large components.
- Second case with $p_{2}=1$: add a small number of vertices of degree 1: i.e. let $n_{1} \rightarrow \infty, n_{1} / n \rightarrow 0$, and $n_{2}=n-n_{1}$.) Then $v\left(\mathcal{C}_{1}\right)=o_{\mathrm{P}}(n)$.
- A third case with $p_{2}=1$: add a small number of vertices of degree 4 (i.e., $n_{4} \rightarrow \infty, n_{4} / n \rightarrow 0$, and $n_{2}=n-n_{4}$). Then $v\left(\mathcal{C}_{1}\right)=n-o_{\mathrm{P}}(n)$, so there is a giant component containing almost everything. (The case $\xi=0$ again.)

Potential extensions

- Quantitative results, e.g a central limit theorem for the size of the giant component, as for the k-core in JL (2007+).

Potential extensions

- Quantitative results, e.g a central limit theorem for the size of the giant component, as for the k-core in JL (2007+).
- Large deviation estimates.
appropriate scaling seems to lead to convergence to Gaussian processes. like in Aldous (1997): similar results on the distribution of the sizes of the largest components could be obtained.

Potential extensions

- Quantitative results, e.g a central limit theorem for the size of the giant component, as for the k-core in JL (2007+).
- Large deviation estimates.
- Inside the transition window, where $\alpha_{n}=O\left(n^{1 / 3}\right)$, an appropriate scaling seems to lead to convergence to Gaussian processes, like in Aldous (1997); similar results on the distribution of the sizes of the largest components could be obtained.

Potential extensions

- Quantitative results, e.g a central limit theorem for the size of the giant component, as for the k-core in JL (2007+).
- Large deviation estimates.
- Inside the transition window, where $\alpha_{n}=O\left(n^{1 / 3}\right)$, an appropriate scaling seems to lead to convergence to Gaussian processes, like in Aldous (1997); similar results on the distribution of the sizes of the largest components could be obtained.
- We have not given more precise bounds on \mathcal{C}_{2}. \qquad

Potential extensions

- Quantitative results, e.g a central limit theorem for the size of the giant component, as for the k-core in JL (2007+).
- Large deviation estimates.
- Inside the transition window, where $\alpha_{n}=O\left(n^{1 / 3}\right)$, an appropriate scaling seems to lead to convergence to Gaussian processes, like in Aldous (1997); similar results on the distribution of the sizes of the largest components could be obtained.
- We have not given more precise bounds on \mathcal{C}_{2}. Direct analysis of the Markov process $\left(A(t), V_{0}(t), V_{1}(t), \ldots\right)$ can show that the largest component has size $O(\log n)$ in the subcritical phase, and that so does the supercritical second largest component, but we have not pursued this.

Potential extensions

- Quantitative results, e.g a central limit theorem for the size of the giant component, as for the k-core in JL (2007+).
- Large deviation estimates.
- Inside the transition window, where $\alpha_{n}=O\left(n^{1 / 3}\right)$, an appropriate scaling seems to lead to convergence to Gaussian processes, like in Aldous (1997); similar results on the distribution of the sizes of the largest components could be obtained.
- We have not given more precise bounds on \mathcal{C}_{2}. Direct analysis of the Markov process $\left(A(t), V_{0}(t), V_{1}(t), \ldots\right)$ can show that the largest component has size $O(\log n)$ in the subcritical phase, and that so does the supercritical second largest component, but we have not pursued this.
- Finally, it seems possible to adapt the methods of this paper to random hypergraphs.

and other random graphs

- Can apply our results to some other random graphs by conditioning on vertex degrees, whenever the random graph conditioned on the degree sequence is uniformly distributed. Examples: $G(n, p)$ and $G(n, m)$; also $B r$

and other random graphs

- Can apply our results to some other random graphs by conditioning on vertex degrees, whenever the random graph conditioned on the degree sequence is uniformly distributed.
- Examples: $G(n, p)$ and $G(n, m)$; also Britton, Janson and Martin-Löf (2007+), Britton, Deijfen and Martin-Löf (2007+), Grimmett and Janson (2007+).

If, furthermore, our conditions hold in probability (where now
 d_{i} are the random vertex degrees), then both Theorems hold
 In the latter, we define a

random.

and other random graphs

- Can apply our results to some other random graphs by conditioning on vertex degrees, whenever the random graph conditioned on the degree sequence is uniformly distributed.
- Examples: $G(n, p)$ and $G(n, m)$; also Britton, Janson and Martin-Löf (2007+), Britton, Deijfen and Martin-Löf (2007+), Grimmett and Janson (2007+).
- If, furthermore, our conditions hold in probability (where now d_{i} are the random vertex degrees), then both Theorems hold.

[^1]
and other random graphs

- Can apply our results to some other random graphs by conditioning on vertex degrees, whenever the random graph conditioned on the degree sequence is uniformly distributed.
- Examples: $G(n, p)$ and $G(n, m)$; also Britton, Janson and Martin-Löf (2007+), Britton, Deijfen and Martin-Löf (2007+), Grimmett and Janson (2007+).
- If, furthermore, our conditions hold in probability (where now d_{i} are the random vertex degrees), then both Theorems hold.
- In the latter, we define $\alpha_{n}:=\sum_{i=1}^{n} d_{i}\left(d_{i}-2\right) / n$, which now is random.

For the proof, it is convenient to use the Skorohod coupling theorem, and assume that the conditions hold a.s.

and other random graphs

- Can apply our results to some other random graphs by conditioning on vertex degrees, whenever the random graph conditioned on the degree sequence is uniformly distributed.
- Examples: $G(n, p)$ and $G(n, m)$; also Britton, Janson and Martin-Löf (2007+), Britton, Deijfen and Martin-Löf (2007+), Grimmett and Janson (2007+).
- If, furthermore, our conditions hold in probability (where now d_{i} are the random vertex degrees), then both Theorems hold.
- In the latter, we define $\alpha_{n}:=\sum_{i=1}^{n} d_{i}\left(d_{i}-2\right) / n$, which now is random.
- For the proof, it is convenient to use the Skorohod coupling theorem, and assume that the conditions hold a.s.
- For $G(n, p)$ with $n p \rightarrow \lambda$ or $G(n, m)$ with $2 m / n \rightarrow \lambda$, where $0<\lambda<\infty$, the assumptions hold with $D \sim \operatorname{Po}(\lambda)$.
- For $G(n, p)$ with $n p \rightarrow \lambda$ or $G(n, m)$ with $2 m / n \rightarrow \lambda$, where $0<\lambda<\infty$, the assumptions hold with $D \sim \operatorname{Po}(\lambda)$.
- Thus $g(x)=e^{\lambda(x-1)}, h(x)=\lambda x e^{\lambda(x-1)}$, $H(x)=\lambda x\left(x-e^{\lambda(x-1)}\right)$, and we recover the both the classical threshold $\lambda=1$ and the standard equation $\xi=e^{\lambda(\xi-1)}$ for the size of the giant component when $\lambda>1$.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
- For $G(n, p)$ with $n p \rightarrow \lambda$ or $G(n, m)$ with $2 m / n \rightarrow \lambda$, where $0<\lambda<\infty$, the assumptions hold with $D \sim \operatorname{Po}(\lambda)$.
- Thus $g(x)=e^{\lambda(x-1)}, h(x)=\lambda x e^{\lambda(x-1)}$, $H(x)=\lambda x\left(x-e^{\lambda(x-1)}\right)$, and we recover the both the classical threshold $\lambda=1$ and the standard equation $\xi=e^{\lambda(\xi-1)}$ for the size of the giant component when $\lambda>1$.
- In $G(n, p)$ with $p=\left(1+\epsilon_{n}\right) / n$ where $\epsilon_{n} \rightarrow 0$ in the critical case, we have $\alpha_{n} / \epsilon_{n} \xrightarrow{\mathrm{p}} 1$ by the second moment method as soon as $n \epsilon_{n} \rightarrow \infty$. So we need $n^{1 / 3} \epsilon_{n} \rightarrow \infty$ in order to apply the theorem.
- For $G(n, p)$ with $n p \rightarrow \lambda$ or $G(n, m)$ with $2 m / n \rightarrow \lambda$, where $0<\lambda<\infty$, the assumptions hold with $D \sim \operatorname{Po}(\lambda)$.
- Thus $g(x)=e^{\lambda(x-1)}, h(x)=\lambda x e^{\lambda(x-1)}$, $H(x)=\lambda x\left(x-e^{\lambda(x-1)}\right)$, and we recover the both the classical threshold $\lambda=1$ and the standard equation $\xi=e^{\lambda(\xi-1)}$ for the size of the giant component when $\lambda>1$.
- In $G(n, p)$ with $p=\left(1+\epsilon_{n}\right) / n$ where $\epsilon_{n} \rightarrow 0$ in the critical case, we have $\alpha_{n} / \epsilon_{n} \xrightarrow{\mathrm{p}} 1$ by the second moment method as soon as $n \epsilon_{n} \rightarrow \infty$. So we need $n^{1 / 3} \epsilon_{n} \rightarrow \infty$ in order to apply the theorem.
- It is also well known that if $n^{1 / 3} \epsilon_{n}=O(1)$, then $v\left(\mathcal{C}_{1}\right)$ and $v\left(\mathcal{C}_{2}\right)$ are both of the same order $n^{2 / 3}$ and Theorem 3 fails, which shows that the condition $n^{1 / 3} \alpha_{n} \rightarrow \infty$ in the critical case is best possible.

Finding the components: standard procedure

- Pick an arbitrary vertex v and determine the component of v as follows: include all the neighbours of v in an arbitrary order; then add in the neighbours of neighbours, and so on, until no more vertices can be added.
f there are still vertices left in the graph, pick any such vertex

Finding the components: standard procedure

- Pick an arbitrary vertex v and determine the component of v as follows: include all the neighbours of v in an arbitrary order; then add in the neighbours of neighbours, and so on, until no more vertices can be added.
- The vertices included until this moment form the component of v.

Finding the components: standard procedure

- Pick an arbitrary vertex v and determine the component of v as follows: include all the neighbours of v in an arbitrary order; then add in the neighbours of neighbours, and so on, until no more vertices can be added.
- The vertices included until this moment form the component of v.
- If there are still vertices left in the graph, pick any such vertex w, and repeat the above to determine the second component (the component of vertex w).

Carry on in this manner until all the components have been
found

Finding the components: standard procedure

- Pick an arbitrary vertex v and determine the component of v as follows: include all the neighbours of v in an arbitrary order; then add in the neighbours of neighbours, and so on, until no more vertices can be added.
- The vertices included until this moment form the component of v.
- If there are still vertices left in the graph, pick any such vertex w, and repeat the above to determine the second component (the component of vertex w).
- Carry on in this manner until all the components have been found.

Finding components - equivalent procedure

- Regard each edge as consisting of two half-edges, each half-edge having one endpoint.

Finding components - equivalent procedure

- Regard each edge as consisting of two half-edges, each half-edge having one endpoint.
- Label the vertices as sleeping or awake (= used) and the half-edges as sleeping, active or dead; the sleeping and active half-edges are also called living.

Finding components - equivalent procedure

- Regard each edge as consisting of two half-edges, each half-edge having one endpoint.
- Label the vertices as sleeping or awake (= used) and the half-edges as sleeping, active or dead; the sleeping and active half-edges are also called living.
- We start with all vertices and half-edges sleeping.
\qquad label these two half-edges as dead; further, if the endpoint of y is sleeping, label it as awake and all other half-edges there as active. Repeat as long as there is any active half-edge. When there is no active half-edge left, we have obtained the first component. Then start again with another vertex until all

[^2]
Finding components - equivalent procedure

- Regard each edge as consisting of two half-edges, each half-edge having one endpoint.
- Label the vertices as sleeping or awake ($=$ used) and the half-edges as sleeping, active or dead; the sleeping and active half-edges are also called living.
- We start with all vertices and half-edges sleeping.
- Pick a vertex and label its half-edges as active. Then take any active half-edge, say x and find its partner y in the graph; label these two half-edges as dead; further, if the endpoint of y is sleeping, label it as awake and all other half-edges there as active. Repeat as long as there is any active half-edge.
first component. Then start again with another vertex until all

Finding components - equivalent procedure

- Regard each edge as consisting of two half-edges, each half-edge having one endpoint.
- Label the vertices as sleeping or awake ($=$ used) and the half-edges as sleeping, active or dead; the sleeping and active half-edges are also called living.
- We start with all vertices and half-edges sleeping.
- Pick a vertex and label its half-edges as active. Then take any active half-edge, say x and find its partner y in the graph; label these two half-edges as dead; further, if the endpoint of y is sleeping, label it as awake and all other half-edges there as active. Repeat as long as there is any active half-edge.
- When there is no active half-edge left, we have obtained the first component. Then start again with another vertex until all components are found.

Finding components in a random multigraph

- Apply this to a random multigraph $G^{*}\left(n,\left(d_{i}\right)_{1}^{n}\right)$ with a given degree sequence, revealing its edges during the process.

Finding components in a random multigraph

- Apply this to a random multigraph $G^{*}\left(n,\left(d_{i}\right)_{1}^{n}\right)$ with a given degree sequence, revealing its edges during the process.
- Thus observe initially only the vertex degrees and the half-edges, but not how they are joined to form edges. Hence, each time we need a partner of an half-edge, it is uniformly distributed over all other living half-edges. (The dead half-edges are the ones that already are paired into edges.)

Finding components in a random multigraph

- Apply this to a random multigraph $G^{*}\left(n,\left(d_{i}\right)_{1}^{n}\right)$ with a given degree sequence, revealing its edges during the process.
- Thus observe initially only the vertex degrees and the half-edges, but not how they are joined to form edges. Hence, each time we need a partner of an half-edge, it is uniformly distributed over all other living half-edges. (The dead half-edges are the ones that already are paired into edges.)
- These random choices are made by giving the half-edges i.i.d. random maximal lifetimes τ_{x} with the distribution $\operatorname{Exp}(1)$; i.e. each half-edge dies spontaneously with rate 1 (unless killed earlier).

Finding components in a random multigraph

- Apply this to a random multigraph $G^{*}\left(n,\left(d_{i}\right)_{1}^{n}\right)$ with a given degree sequence, revealing its edges during the process.
- Thus observe initially only the vertex degrees and the half-edges, but not how they are joined to form edges. Hence, each time we need a partner of an half-edge, it is uniformly distributed over all other living half-edges. (The dead half-edges are the ones that already are paired into edges.)
- These random choices are made by giving the half-edges i.i.d. random maximal lifetimes τ_{x} with the distribution $\operatorname{Exp}(1)$; i.e. each half-edge dies spontaneously with rate 1 (unless killed earlier).
- Each time we need the partner of a half-edge x, we wait until the next living half-edge $\neq x$ dies and take that one.

Algorithm constructing components simultaneously

and exploring its

- Start with all vertices and half-edges sleeping.

Algorithm constructing components simultaneously

and exploring its

- Start with all vertices and half-edges sleeping.
- C1: If there is no active half-edge, select a sleeping vertex (by choosing a half-edge uniformly at random among all sleeping half-edges), declare it awake and its half-edges active. If no sleeping half-edge left, stop; the remaining sleeping vertices are all isolated and we have explored all components.

Algorithm constructing components simultaneously

and exploring its

- Start with all vertices and half-edges sleeping.
- C1: If there is no active half-edge, select a sleeping vertex (by choosing a half-edge uniformly at random among all sleeping half-edges), declare it awake and its half-edges active. If no sleeping half-edge left, stop; the remaining sleeping vertices are all isolated and we have explored all components.
- C2: Pick an active half-edge (which one does not matter) and kill it, i.e., change its status to dead.
half-edge is joined to the one killed in the previous step C2 to
form an edge of the graph. If the vertex it belongs to is
sleeping, we change this vertex to awake and all other

Algorithm constructing

 components simultaneously- Start with all vertices and half-edges sleeping.
- C1: If there is no active half-edge, select a sleeping vertex (by choosing a half-edge uniformly at random among all sleeping half-edges), declare it awake and its half-edges active. If no sleeping half-edge left, stop; the remaining sleeping vertices are all isolated and we have explored all components.
- C2: Pick an active half-edge (which one does not matter) and kill it, i.e., change its status to dead.
- C3: Wait until the next half-edge dies (spontaneously). This half-edge is joined to the one killed in the previous step C2 to form an edge of the graph. If the vertex it belongs to is sleeping, we change this vertex to awake and all other half-edges there to active. Repeat from C1.

The components are created between the successive times C 1 is performed; the vertices in the component created during one of these intervals are the vertices that are awakened during the interval.

Note also that a component is completed and C1 is performed exactly when the number of active half-edoes is \cap and a half-edge dies at a vertex where all other half-edges (if any) are dead

The components are created between the successive times C1 is performed; the vertices in the component created during one of these intervals are the vertices that are awakened during the interval.

Note also that a component is completed and C1 is performed exactly when the number of active half-edges is 0 and a half-edge dies at a vertex where all other half-edges (if any) are dead.

Analysis of the algorithm for

- Let $S(t)$ and $A(t)$ be the numbers of sleeping and active half-edges at time t. Let $L(t)=S(t)+A(t)$ be the number of living half-edges (all assumed right-continuous).

Analysis of the algorithm for

- Let $S(t)$ and $A(t)$ be the numbers of sleeping and active half-edges at time t. Let $L(t)=S(t)+A(t)$ be the number of living half-edges (all assumed right-continuous).
- Consider $L(t)$ first.

Analysis of the algorithm for

- Let $S(t)$ and $A(t)$ be the numbers of sleeping and active half-edges at time t. Let $L(t)=S(t)+A(t)$ be the number of living half-edges (all assumed right-continuous).
- Consider $L(t)$ first.
- We start with $2 m$ half-edges, all sleeping and thus living, but we immediately perform C1 and C2 and kill one of them; thus $L(0)=2 m-1$.
Afterwards, as soon as a living half-edge dies, perform C3 and
then (instantly) either C2 or both C1 and C2.
Since C1 does not change the number of living half-edges
while C2 and C3 each decrease it by $1, L(t)$ is decreased by 2

Analysis of the algorithm for

- Let $S(t)$ and $A(t)$ be the numbers of sleeping and active half-edges at time t. Let $L(t)=S(t)+A(t)$ be the number of living half-edges (all assumed right-continuous).
- Consider $L(t)$ first.
- We start with $2 m$ half-edges, all sleeping and thus living, but we immediately perform C1 and C2 and kill one of them; thus $L(0)=2 m-1$.
- Afterwards, as soon as a living half-edge dies, perform C3 and then (instantly) either C2 or both C1 and C2.

Analysis of the algorithm for

- Let $S(t)$ and $A(t)$ be the numbers of sleeping and active half-edges at time t. Let $L(t)=S(t)+A(t)$ be the number of living half-edges (all assumed right-continuous).
- Consider $L(t)$ first.
- We start with $2 m$ half-edges, all sleeping and thus living, but we immediately perform C1 and C2 and kill one of them; thus $L(0)=2 m-1$.
- Afterwards, as soon as a living half-edge dies, perform C3 and then (instantly) either C2 or both C1 and C2.
- Since C1 does not change the number of living half-edges while C2 and C3 each decrease it by $1, L(t)$ is decreased by 2 each time one of the living half-edges dies, except when the last living one dies and the process terminates.

Hence we have:
Lemma
As $n \rightarrow \infty$,

$$
\sup _{t \geq 0}\left|n^{-1} L(t)-\lambda e^{-2 t}\right| \xrightarrow{\mathrm{p}} 0 .
$$

Proof.

This (or rather an equivalent statement in a slightly different situation) was proved in JL (2006) as a consequence of the Glivenko-Cantelli theorem on convergence of empirical distribution functions.

Analysis continued

- Next consider the sleeping half-edges. Let $V_{k}(t)$ be the number of sleeping vertices of degree k at time t; thus

$$
S(t)=\sum_{k=1}^{\infty} k V_{k}(t)
$$

Note that C2 does not affect sleeping half-edges, and that C3 implies that each sleeping vertex of degree k is eliminated (i.e., awakened) with intensity k, independently of all other vertices. There are also some sleeping vertices eliminated by C1.
vertices of degree k such that all their half-edges have
mavimal lifetimes $\tau>+$ (I e none of their L halfedres
would have died spontaneously up to time t, assuming they all

Analysis continued

- Next consider the sleeping half-edges. Let $V_{k}(t)$ be the number of sleeping vertices of degree k at time t; thus

$$
S(t)=\sum_{k=1}^{\infty} k V_{k}(t)
$$

Note that C2 does not affect sleeping half-edges, and that C3 implies that each sleeping vertex of degree k is eliminated (i.e., awakened) with intensity k, independently of all other vertices. There are also some sleeping vertices eliminated by C1.

- We first ignore the effect of C1: let $\tilde{V}_{k}(t)$ be the number of vertices of degree k such that all their half-edges have maximal lifetimes $\tau_{x}>t$. (l.e., none of their k half-edges would have died spontaneously up to time t, assuming they all escaped C1.)

Analysis continued

- Next consider the sleeping half-edges. Let $V_{k}(t)$ be the number of sleeping vertices of degree k at time t; thus

$$
S(t)=\sum_{k=1}^{\infty} k V_{k}(t)
$$

Note that C2 does not affect sleeping half-edges, and that C3 implies that each sleeping vertex of degree k is eliminated (i.e., awakened) with intensity k, independently of all other vertices. There are also some sleeping vertices eliminated by C1.

- We first ignore the effect of C1: let $\tilde{V}_{k}(t)$ be the number of vertices of degree k such that all their half-edges have maximal lifetimes $\tau_{x}>t$. (l.e., none of their k half-edges would have died spontaneously up to time t, assuming they all escaped C1.)

Analysis continued

Lemma

As $n \rightarrow \infty$,

$$
\begin{equation*}
\sup _{t \geq 0}\left|n^{-1} \tilde{V}_{k}(t)-p_{k} e^{-k t}\right| \xrightarrow{\mathrm{p}} 0 \tag{12}
\end{equation*}
$$

for every $k \geq 0$ and

$$
\begin{gather*}
\sup _{t \geq 0}\left|n^{-1} \sum_{k=0}^{\infty} \tilde{V}_{k}(t)-g\left(e^{-t}\right)\right| \xrightarrow{\mathrm{p}} 0, \tag{13}\\
\sup _{t \geq 0}\left|n^{-1} \tilde{S}(t)-h\left(e^{-t}\right)\right| \xrightarrow{\mathrm{p}} 0 . \tag{14}
\end{gather*}
$$

Proof.

Once again, this follows from Glivenko-Cantelli, together with the uniform integrability of the D_{n}.

Difference between and

This is easily estimated.

Lemma

If $d_{\text {max }}:=\max _{i} d_{i}$ is the maximum degree of $G^{*}\left(n,\left(d_{i}\right)_{1}^{n}\right)$, then

$$
0 \leq \tilde{S}(t)-S(t)<\sup _{0 \leq s \leq t}(\tilde{S}(s)-L(s))+d_{\max }
$$

Difference between and

This is easily estimated.

Lemma

If $d_{\text {max }}:=\max _{i} d_{i}$ is the maximum degree of $G^{*}\left(n,\left(d_{i}\right)_{1}^{n}\right)$, then

$$
0 \leq \tilde{S}(t)-S(t)<\sup _{0 \leq s \leq t}(\tilde{S}(s)-L(s))+d_{\max }
$$

Let $\tilde{A}(t):=L(t)-\tilde{S}(t)=A(t)-(\tilde{S}(t)-S(t))$.

Difference between and

This is easily estimated.

Lemma

If $d_{\text {max }}:=\max _{i} d_{i}$ is the maximum degree of $G^{*}\left(n,\left(d_{i}\right)_{1}^{n}\right)$, then

$$
0 \leq \tilde{S}(t)-S(t)<\sup _{0 \leq s \leq t}(\tilde{S}(s)-L(s))+d_{\max }
$$

Let $\tilde{A}(t):=L(t)-\tilde{S}(t)=A(t)-(\tilde{S}(t)-S(t))$.
Then the Lemma can be written

$$
\begin{equation*}
0 \leq \tilde{S}(t)-S(t)<-\inf _{s \leq t} \tilde{A}(s)+d_{\max } \tag{15}
\end{equation*}
$$

Also, from the previous Lemmas

$$
\begin{equation*}
\sup _{t \geq 0}\left|n^{-1} \tilde{A}(t)-H\left(e^{-t}\right)\right| \xrightarrow{\mathrm{p}} 0 \tag{16}
\end{equation*}
$$

Also, from the previous Lemmas

$$
\begin{equation*}
\sup _{t \geq 0}\left|n^{-1} \tilde{A}(t)-H\left(e^{-t}\right)\right| \xrightarrow{\mathrm{p}} 0 . \tag{16}
\end{equation*}
$$

Remark

By the above, we obtain further the relation

$$
\tilde{A}(t) \leq A(t)<\tilde{A}(t)-\inf _{s \leq t} \tilde{A}(s)+d_{\max }
$$

Functional equation

We further need to study the behaviour of the function $H(x)$.

Lemma

Suppose that the Condition holds and let $H(x)$ be given as above, i.e. $H(x)=\lambda x^{2}-h(x)$, with $h(x)=x g^{\prime}(x)$.

1. If $\mathbb{E} D(D-2)=\sum_{k} k(k-2) p_{k}>0$, then there is a unique $\xi \in(0,1)$ such that $H(\xi)=0$; or equivalently $g^{\prime}(\xi)=\lambda \xi$; moreover, $H(x)<0$ for $x \in(0, \xi)$ and $H(x)>0$ for $x \in(\xi, 1)$. and $H^{\prime}(\xi)>0$.
2. If $\mathbb{E} D(D-2)=\sum_{k} k(k-2) p_{k} \leq 0$, then $H(x)<0$ for $x \in(0,1)$.

Connecting all the pieces together

- Let ξ be the zero of H given by the above and let $\tau:=-\ln \xi$. Then, by the lemma, $H\left(e^{-t}\right)>0$ for $0<t<\tau$, and thus $\inf _{t \leq \tau} H\left(e^{-t}\right)=0$.

Connecting all the pieces together

- Let ξ be the zero of H given by the above and let $\tau:=-\ln \xi$. Then, by the lemma, $H\left(e^{-t}\right)>0$ for $0<t<\tau$, and thus $\inf _{t \leq \tau} H\left(e^{-t}\right)=0$.
- Consequently,

$$
\begin{equation*}
n^{-1} \inf _{t \leq \tau} \tilde{A}(t)=\inf _{t \leq \tau} n^{-1} \tilde{A}(t)-\inf _{t \leq \tau} H\left(e^{-t}\right) \xrightarrow{\mathrm{p}} 0 . \tag{17}
\end{equation*}
$$

Connecting all the pieces together

- Let ξ be the zero of H given by the above and let $\tau:=-\ln \xi$. Then, by the lemma, $H\left(e^{-t}\right)>0$ for $0<t<\tau$, and thus $\inf _{t \leq \tau} H\left(e^{-t}\right)=0$.
- Consequently,

$$
\begin{equation*}
n^{-1} \inf _{t \leq \tau} \tilde{A}(t)=\inf _{t \leq \tau} n^{-1} \tilde{A}(t)-\inf _{t \leq \tau} H\left(e^{-t}\right) \xrightarrow{\mathrm{p}} 0 . \tag{17}
\end{equation*}
$$

- Further, by the Condition, $d_{\text {max }}=O(\sqrt{n})$, and thus $n^{-1} d_{\text {max }} \rightarrow 0$, which implies

$$
\begin{equation*}
\sup _{t<\tau} n^{-1}|A(t)-\tilde{A}(t)|=\sup _{t<\tau} n^{-1}|\tilde{S}(t)-S(t)| \xrightarrow{\mathrm{p}} 0 \tag{18}
\end{equation*}
$$

Connecting all the pieces together

- Let ξ be the zero of H given by the above and let $\tau:=-\ln \xi$. Then, by the lemma, $H\left(e^{-t}\right)>0$ for $0<t<\tau$, and thus $\inf _{t \leq \tau} H\left(e^{-t}\right)=0$.
- Consequently,

$$
\begin{equation*}
n^{-1} \inf _{t \leq \tau} \tilde{A}(t)=\inf _{t \leq \tau} n^{-1} \tilde{A}(t)-\inf _{t \leq \tau} H\left(e^{-t}\right) \xrightarrow{\mathrm{p}} 0 . \tag{17}
\end{equation*}
$$

- Further, by the Condition, $d_{\text {max }}=O(\sqrt{n})$, and thus $n^{-1} d_{\text {max }} \rightarrow 0$, which implies

$$
\begin{equation*}
\sup _{t<\tau} n^{-1}|A(t)-\tilde{A}(t)|=\sup _{t<\tau} n^{-1}|\tilde{S}(t)-S(t)| \xrightarrow{\mathrm{p}} 0 \tag{18}
\end{equation*}
$$

- Hence also

$$
\begin{equation*}
\sup _{t-\tau}\left|n^{-1} A(t)-H\left(e^{-t}\right)\right| \xrightarrow{\mathrm{p}} 0 . \tag{19}
\end{equation*}
$$

- Let $0<\varepsilon<\tau / 2$. Since $H\left(e^{-t}\right)>0$ on the compact interval $[\varepsilon, \tau-\varepsilon]$, whp $A(t)$ remains positive on $[\varepsilon, \tau-\varepsilon]$, and thus no new component is started during this interval.
- Let $0<\varepsilon<\tau / 2$. Since $H\left(e^{-t}\right)>0$ on the compact interval $[\varepsilon, \tau-\varepsilon]$, whp $A(t)$ remains positive on $[\varepsilon, \tau-\varepsilon]$, and thus no new component is started during this interval.
- Also, $H\left(e^{-\tau-\varepsilon}\right)<0$ and so $n^{-1} \tilde{A}(\tau+\varepsilon) \xrightarrow{\mathrm{p}} H\left(e^{-\tau-\varepsilon}\right)$, while $A(\tau+\varepsilon) \geq 0$.
- Let $0<\varepsilon<\tau / 2$. Since $H\left(e^{-t}\right)>0$ on the compact interval $[\varepsilon, \tau-\varepsilon]$, whp $A(t)$ remains positive on $[\varepsilon, \tau-\varepsilon]$, and thus no new component is started during this interval.
- Also, $H\left(e^{-\tau-\varepsilon}\right)<0$ and so $n^{-1} \tilde{A}(\tau+\varepsilon) \xrightarrow{\mathrm{p}} H\left(e^{-\tau-\varepsilon}\right)$, while $A(\tau+\varepsilon) \geq 0$.
- Thus, with $\delta:=\left|H\left(e^{-\tau-\varepsilon}\right)\right| / 2>0$, whp

$$
\begin{equation*}
\tilde{S}(\tau+\varepsilon)-S(\tau+\varepsilon)=A(\tau+\varepsilon)-\tilde{A}(\tau+\varepsilon) \geq-\tilde{A}(\tau+\varepsilon)>n \delta, \tag{20}
\end{equation*}
$$

while $\tilde{S}(\tau)-S(\tau)<n \delta$ whp.

- Let $0<\varepsilon<\tau / 2$. Since $H\left(e^{-t}\right)>0$ on the compact interval $[\varepsilon, \tau-\varepsilon]$, whp $A(t)$ remains positive on $[\varepsilon, \tau-\varepsilon]$, and thus no new component is started during this interval.
- Also, $H\left(e^{-\tau-\varepsilon}\right)<0$ and so $n^{-1} \tilde{A}(\tau+\varepsilon) \xrightarrow{\mathrm{p}} H\left(e^{-\tau-\varepsilon}\right)$, while $A(\tau+\varepsilon) \geq 0$.
- Thus, with $\delta:=\left|H\left(e^{-\tau-\varepsilon}\right)\right| / 2>0$, whp

$$
\begin{equation*}
\tilde{S}(\tau+\varepsilon)-S(\tau+\varepsilon)=A(\tau+\varepsilon)-\tilde{A}(\tau+\varepsilon) \geq-\tilde{A}(\tau+\varepsilon)>n \delta, \tag{20}
\end{equation*}
$$

while $\tilde{S}(\tau)-S(\tau)<n \delta$ whp.

- Consequently, whp $\tilde{S}(\tau+\varepsilon)-S(\tau+\varepsilon)>\tilde{S}(\tau)-S(\tau)$, so C1 is performed between τ and $\tau+\varepsilon$.
- Let $0<\varepsilon<\tau / 2$. Since $H\left(e^{-t}\right)>0$ on the compact interval $[\varepsilon, \tau-\varepsilon]$, whp $A(t)$ remains positive on $[\varepsilon, \tau-\varepsilon]$, and thus no new component is started during this interval.
- Also, $H\left(e^{-\tau-\varepsilon}\right)<0$ and so $n^{-1} \tilde{A}(\tau+\varepsilon) \xrightarrow{\mathrm{p}} H\left(e^{-\tau-\varepsilon}\right)$, while $A(\tau+\varepsilon) \geq 0$.
- Thus, with $\delta:=\left|H\left(e^{-\tau-\varepsilon}\right)\right| / 2>0$, whp

$$
\begin{equation*}
\tilde{S}(\tau+\varepsilon)-S(\tau+\varepsilon)=A(\tau+\varepsilon)-\tilde{A}(\tau+\varepsilon) \geq-\tilde{A}(\tau+\varepsilon)>n \delta, \tag{20}
\end{equation*}
$$

while $\tilde{S}(\tau)-S(\tau)<n \delta$ whp.

- Consequently, whp $\tilde{S}(\tau+\varepsilon)-S(\tau+\varepsilon)>\tilde{S}(\tau)-S(\tau)$, so C1 is performed between τ and $\tau+\varepsilon$.
- Let T_{1} be the last time C1 was performed before $\tau / 2$ and let T_{2} be the next time it is performed. Then whp $0 \leq T_{1} \leq \varepsilon$ and $\tau-\varepsilon \leq T_{2} \leq \tau+\varepsilon$, so $T_{1} \xrightarrow{\mathrm{p}} 0$ and $T_{2} \xrightarrow{\mathrm{p}} \tau$.

One more lemma

Lemma

Let T_{1}^{*} and T_{2}^{*} be two (random) times when C1 are performed, with $T_{1}^{*} \leq T_{2}^{*}$, and assume that $T_{1}^{*} \xrightarrow{\mathrm{p}} t_{1}$ and $T_{2}^{*} \xrightarrow{\mathrm{p}} t_{2}$ where $0 \leq t_{1} \leq t_{2} \leq \tau$. Let C^{*} be the union of all components explored between T_{1}^{*} and T_{2}^{*}. Then

$$
\begin{align*}
& v_{k}\left(C^{*}\right) / n \xrightarrow{\mathrm{p}} p_{k}\left(e^{-k t_{1}}-e^{-k t_{2}}\right), \quad k \geq 0, \tag{21}\\
& v\left(C^{*}\right) / n \xrightarrow{\mathrm{p}} g\left(e^{-t_{1}}\right)-g\left(e^{-t_{2}}\right), \tag{22}\\
& e\left(C^{*}\right) / n \xrightarrow{\mathrm{p}} \frac{1}{2} h\left(e^{-t_{1}}\right)-\frac{1}{2} h\left(e^{-t_{2}}\right) . \tag{23}
\end{align*}
$$

In particular, if $t_{1}=t_{2}$, then $v\left(C^{*}\right) / n \xrightarrow{\mathrm{p}} 0$ and $e\left(C^{*}\right) / n \xrightarrow{\mathrm{p}} 0$.

- Let \mathcal{C}^{\prime} be the component created at T_{1} and explored until T_{2}.
using the fact that $H(1)=H(\xi)=0$. M/e have found ane large commonent C^{\prime} with the claimed numbers of vertices and edges. It remains to show that there is whp no other large component
- Let \mathcal{C}^{\prime} be the component created at T_{1} and explored until T_{2}.
- By the above lemma, with $t_{1}=0$ and $t_{2}=\tau$,

$$
\begin{align*}
& v_{k}\left(\mathcal{C}^{\prime}\right) / n \xrightarrow{\mathrm{p}} p_{k}\left(1-e^{-k \tau}\right), \\
& v\left(\mathcal{C}^{\prime}\right) / n \xrightarrow{\mathrm{p}} g(1)-g\left(e^{-\tau}\right)=1-g(\xi), \\
& e\left(\mathcal{C}^{\prime}\right) / n \xrightarrow{\mathrm{p}} \frac{1}{2}\left(h(1)-h\left(e^{-\tau}\right)\right)=\frac{1}{2}(h(1)-h(\xi))=\frac{\lambda}{2}\left(1-\xi^{2}\right), \tag{26}
\end{align*}
$$

using the fact that $H(1)=H(\xi)=0$.

- Let \mathcal{C}^{\prime} be the component created at T_{1} and explored until T_{2}.
- By the above lemma, with $t_{1}=0$ and $t_{2}=\tau$,

$$
\begin{align*}
& v_{k}\left(\mathcal{C}^{\prime}\right) / n \xrightarrow{\mathrm{p}} p_{k}\left(1-e^{-k \tau}\right), \\
& v\left(\mathcal{C}^{\prime}\right) / n \xrightarrow{\mathrm{p}} g(1)-g\left(e^{-\tau}\right)=1-g(\xi), \\
& e\left(\mathcal{C}^{\prime}\right) / n \xrightarrow{\mathrm{p}} \frac{1}{2}\left(h(1)-h\left(e^{-\tau}\right)\right)=\frac{1}{2}(h(1)-h(\xi))=\frac{\lambda}{2}\left(1-\xi^{2}\right), \tag{26}
\end{align*}
$$

using the fact that $H(1)=H(\xi)=0$.

- We have found one large component \mathcal{C}^{\prime} with the claimed numbers of vertices and edges. It remains to show that there is whp no other large component.
- However, let T_{3} be the first time after T_{2} that C 1 is performed. One can show that $T_{3} \xrightarrow{\mathrm{p}} \tau$.
- However, let T_{3} be the first time after T_{2} that C 1 is performed. One can show that $T_{3} \xrightarrow{\mathrm{p}} \tau$.
- Thus if $\mathcal{C}^{\prime \prime}$ is the component created between T_{2} and T_{3}, then $v\left(\mathcal{C}^{\prime \prime}\right) / n \xrightarrow{\mathrm{p}} 0$ and $e\left(\mathcal{C}^{\prime \prime}\right) / n \xrightarrow{\mathrm{p}} 0$.
- However, let T_{3} be the first time after T_{2} that C 1 is performed. One can show that $T_{3} \xrightarrow{\mathrm{p}} \tau$.
- Thus if $\mathcal{C}^{\prime \prime}$ is the component created between T_{2} and T_{3}, then $v\left(\mathcal{C}^{\prime \prime}\right) / n \xrightarrow{\mathrm{p}} 0$ and $e\left(\mathcal{C}^{\prime \prime}\right) / n \xrightarrow{\mathrm{p}} 0$.
- Also, if $\eta>0$, then the total number of vertices and edges in all components found before \mathcal{C}^{\prime}, i.e, before T_{1}, is $o_{P}(n)$, because $T_{1} \xrightarrow{\mathrm{p}} 0$; hence
$\mathbb{P}\left(\right.$ a component \mathcal{C} with $e(\mathcal{C}) \geq \eta m$ is found before $\left.\mathcal{C}^{\prime}\right) \rightarrow 0$.
- However, let T_{3} be the first time after T_{2} that C 1 is performed. One can show that $T_{3} \xrightarrow{\mathrm{p}} \tau$.
- Thus if $\mathcal{C}^{\prime \prime}$ is the component created between T_{2} and T_{3}, then $v\left(\mathcal{C}^{\prime \prime}\right) / n \xrightarrow{\mathrm{p}} 0$ and $e\left(\mathcal{C}^{\prime \prime}\right) / n \xrightarrow{\mathrm{p}} 0$.
- Also, if $\eta>0$, then the total number of vertices and edges in all components found before \mathcal{C}^{\prime}, i.e, before T_{1}, is $o_{P}(n)$, because $T_{1} \xrightarrow{\mathrm{p}} 0$; hence
$\mathbb{P}\left(\right.$ a component \mathcal{C} with $e(\mathcal{C}) \geq \eta m$ is found before $\left.\mathcal{C}^{\prime}\right) \rightarrow 0$.
- On the other hand, conditioning on the final graph $G^{*}\left(n,\left(d_{i}\right)_{1}^{n}\right)$ that is constructed by the algorithm, if there exists a component $\mathcal{C} \neq \mathcal{C}^{\prime}$ in $G^{*}\left(n,\left(d_{i}\right)_{1}^{n}\right)$ with at least ηm edges that has not been found before \mathcal{C}^{\prime}, then with probability at least η, the vertex chosen at random by C 1 at T_{2} starting the component $\mathcal{C}^{\prime \prime}$ belongs to \mathcal{C}, and thus $\mathcal{C}=\mathcal{C}^{\prime \prime}$.

- Consequently,

$\mathbb{P}\left(\right.$ a component \mathcal{C} with $e(\mathcal{C}) \geq \eta m$ is found after $\left.\mathcal{C}^{\prime}\right)$

$$
\leq \eta^{-1} \mathbb{P}\left(e\left(\mathcal{C}^{\prime \prime}\right) \geq \eta m\right) \rightarrow 0
$$

- Consequently,

$$
\begin{align*}
\mathbb{P}(\text { a component } \mathcal{C} \text { with } e(\mathcal{C}) & \left.\geq \eta m \text { is found after } \mathcal{C}^{\prime}\right) \\
\leq & \eta^{-1} \mathbb{P}\left(e\left(\mathcal{C}^{\prime \prime}\right) \geq \eta m\right) \rightarrow 0 \tag{28}
\end{align*}
$$

- Hence whp there is no component except \mathcal{C}^{\prime} with at least ηm edges.
Take η small to deduce that whp $C^{\prime}=C_{1}$, the largest component, and further $e\left(\mathcal{C}_{2}\right)<\eta m$.
- Consequently,

$$
\begin{align*}
\mathbb{P}(\text { a component } \mathcal{C} \text { with } e(\mathcal{C}) & \left.\geq \eta m \text { is found after } \mathcal{C}^{\prime}\right) \\
\leq & \eta^{-1} \mathbb{P}\left(e\left(\mathcal{C}^{\prime \prime}\right) \geq \eta m\right) \rightarrow 0 \tag{28}
\end{align*}
$$

- Hence whp there is no component except \mathcal{C}^{\prime} with at least ηm edges.
- Take η small to deduce that whp $\mathcal{C}^{\prime}=\mathcal{C}_{1}$, the largest component, and further $e\left(\mathcal{C}_{2}\right)<\eta m$.
- Consequently,

$$
\begin{align*}
\mathbb{P}(\text { a component } \mathcal{C} \text { with } e(\mathcal{C}) & \left.\geq \eta m \text { is found after } \mathcal{C}^{\prime}\right) \\
\leq & \eta^{-1} \mathbb{P}\left(e\left(\mathcal{C}^{\prime \prime}\right) \geq \eta m\right) \rightarrow 0 \tag{28}
\end{align*}
$$

- Hence whp there is no component except \mathcal{C}^{\prime} with at least ηm edges.
- Take η small to deduce that whp $\mathcal{C}^{\prime}=\mathcal{C}_{1}$, the largest component, and further $e\left(\mathcal{C}_{2}\right)<\eta m$.
- Hence also $v\left(\mathcal{C}_{2}\right) / n \xrightarrow{\mathrm{p}} 0$ because $m=O(n)$ and $v\left(\mathcal{C}_{2}\right) \leq e\left(\mathcal{C}_{2}\right)+1$.

[^0]: Also, how big is the second largest component, C_{2} ? Under
 what conditions is there a giant component, dominating all
 the others in size?
 Further, what is the shape of the degree sequence of the

[^1]: In the latter, we define
 random.
 For the proof, it is convenient to use the Skorohod coupling
 theorem, and assume that the conditions hold a.s.

[^2]: components are found.

