# **RESOLVENT OF LARGE RANDOM GRAPHS**

**Charles Bordenave** 

**CNRS & University of Toulouse** 

Joint work with Marc Lelarge (ENS & INRIA)

#### **TWO CLASSICAL OPERATORS ON GRAPHS**

Let  $G_n = (V_n, E_n)$  be a simple graph on  $V_n = \{1, \dots, n\}$ . We define  $A(G_n) = \text{Adjacency matrix of } G_n = (\mathbbm{I}((i, j) \in E_n))_{1 \le i, j \le n}$   $D(G_n) = \text{Degree diagonal matrix of } G_n = \text{diag}(\text{deg}(G_n, 1), \dots, \text{deg}(G_n, n))$ and, with  $\alpha \in \{0, 1\}$ ,

$$\Delta(G_n) = A(G_n) - \alpha D(G_n).$$

 $\Longrightarrow \Delta$  is either the adjacency operator or minus the Laplacian operator.

#### SPECTRAL MEASURE OF FINITE GRAPHS

Let

# $\lambda_n(G_n) \leq \cdots \leq \lambda_1(G_n)$

denote the real eigenvalues of the symmetric matrix  $\Delta(G_n)$ .

The spectral measure of  $\Delta(G_n)$  is

$$\mu_{G_n} = \frac{1}{n} \sum_{i=1}^n \delta_{\lambda_i(G_n)}.$$

 $\implies \mu_{G_n}$  is the distribution of a uniformly drawn eigenvalue of  $\Delta(G_n)$ .

## OUTLINE OF THE TALK

Let  $(G_n), n \in \mathbb{N}$ , be a sequence of graphs on  $V_n = \{1, \dots, n\}$  such that  $G_n$  "converges" to a limit graph G.

1. Does  $\mu_{G_n}$  converge to a measure  $\mu_G$  for the usual weak convergence topology ?

2. Do we have a formula for  $\mu_G$  in some cases ?

# MOTIVATING EXAMPLE

Let  $d \ge 3$  and  $G_n$  is a random graph drawn uniformly on the set of d-regular graphs on n vertices (where dn is even).

**Theorem 1** (McKay 1981). The spectral measure  $\mu_{G_n}$  converges weakly as n goes to infinity to the deterministic measure  $\mu_{KM}$  supported on  $\left[-2\sqrt{d-1}, 2\sqrt{d-1}\right]$ 

$$\mu_{KM}(dx) = \frac{d}{2\pi} \frac{\sqrt{4(d-1) - x^2}}{d^2 - x^2} dx.$$

 $\implies \mu_{KM}$  is the Kesten-McKay measure, it first appeared in (Kesten 1959) in the context of simple random walks on groups.

## THE METRIC SPACE OF ROOTED GRAPHS

#### (Benjamini & Schramm 2001, Aldous & Steele 2004)

A rooted graph (G, o) is a graph G = (V, E) with a distinguished vertex  $o \in V$ . Two rooted graphs are rooted isomorphic if there exists an isomorphism between the two graphs that takes the root of one to the root of the other.

We define (G, o)[n] as the subgraph (G, o) spanned by the vertices within (graph)-distance at most n from the root o.

distance $((G_1, o_1), (G_2, o_2))$ 

 $= 1/ \sup\{n \in \mathbb{N} : (G_1, o_1)[n] \text{ and } (G_2, o_2)[n] \text{ are rooted isomorphic}\}.$ 

 $\implies$  The space  $\mathcal{G}^*$  of rooted isomorphic classes of rooted locally finite graphs is a complete metric separable space.

# LOCAL WEAK CONVERGENCE OF GRAPHS

For a finite graph G, let U(G) denote the distribution on  $\mathcal{G}^*$  obtained by choosing a uniform random vertex as root.

For a sequence of graphs  $(G_n), n \in \mathbb{N}$ , on n vertices, we say that the local weak limit of  $G_n$  is [G, o] with measure  $\rho$  on  $\mathcal{G}^*$  if  $U(G_n) \Rightarrow \rho$ .

 $\implies$  This convergence is "local", it formalizes the convergence of the local structure of a graph around a typical vertex.

#### **CONVERGENCE OF THE SPECTRAL MEASURE**

Let  $(G_n), n \in \mathbb{N}$ , be a sequence of finite graphs and

 $\Delta(G_n) = A(G_n) - \alpha D(G_n).$ 

Assume that  $\deg(G_n, o)^{1+2\alpha}$  is uniformly integrable.

**Theorem 2.** If  $U(G_n)$  converges to [G, o] with measure  $\rho$  then there exists a measure  $\mu$  such that

$$\lim_{n \to \infty} \mu_{G_n} = \mu.$$

# **IDEA OF PROOF**

(i) Assume first that the degree at the root is bounded by a constant.

 $\implies$  The operator  $\Delta = A - \alpha D$  of the limit graph (G, o) is self-adjoint on  $L^2(\mathbb{N})$ and its spectral measure is properly defined via its resolvent

$$R(z) = (\Delta - zI)^{-1}$$

 $\longrightarrow$  We may apply classical results on the convergence of bounded self-adjoint operators.

# **IDEA OF PROOF**

(ii) If the degree is not necessarily bounded. We use a truncation argument and set

$$\Delta^{K}(G_{n})_{ij} = \begin{cases} 0 & \text{if } \max(\deg(G_{n}, i), \deg(G_{n}, j)) > K \\ \Delta(G_{n})_{ij} & \text{otherwise} \end{cases}$$

 $\longrightarrow$  We apply the inequality

$$L^3(\mu_{G_n}, \mu_{G_n}^K) \le \frac{1}{n} \operatorname{tr}(\Delta(G_n) - \Delta^K(G_n))^2$$

where L is the Lévy distance for probability measures on  $\mathbb R.$ 

 $\implies$  As K goes to infinity, the spectral measure of  $\Delta^{K}(G_{n})$  converges to the spectrum of  $\Delta(G_{n})$  uniformly in n.

## **RANDOM GRAPHS**

Often, we do not consider a sequence of graphs  $G_n$  but a sequence of distributions on graphs, i.e. a sequence of random graphs. For a finite random graph G, let  $U_2(G)$  denote the distribution on  $\mathcal{G}^* \times \mathcal{G}^*$  obtained by choosing two uniform random vertices as roots. Assume again that  $\deg(G_n, o)^{1+2\alpha}$  is uniformly integrable.

**Theorem 3.** If  $U_2(G_n)$  converges to a measure  $\rho \otimes \rho$  then there exists a measure  $\mu$  such that

 $\lim_{n \to \infty} \mathbb{E}L(\mu_{G_n}, \mu) = 0.$ 

## **ROOTED RANDOM TREES**

- A Galton-Watson tree (GWT) with *offspring distribution* F is the rooted random tree obtained by a Galton-Watson branching process with offspring distribution F.
- A GWT with *degree distribution*  $F_*$  is the rooted random tree obtained by a Galton-Watson branching process where the root has offspring distribution  $F_*$  and all other genitors have offspring distribution F with

$$F(k-1) = \frac{kF_*(k)}{\sum_{\ell} \ell F(\ell)}.$$

# EXAMPLE OF REGULAR TREES



*Left:* the 3-ary tree is a GWT with offspring distribution  $\delta_3$ .

*Right:* the 3-regular tree is a GWT with degree distribution  $\delta_3$ .

# RANDOM GRAPHS WITH TREES AS LOCAL WEAK LIMIT

Three important examples of random graph on  $\{1, \cdots, n\}$ ,

- the uniform k-regular graph converges to the GWT with degree distribution  $\delta_k$ .
- the Erdös-Reny graph with an edge between two vertices with probability p/n independently of everything else converges to the GWT with degree and offspring distribution Poi(p).
- the random graphs with asymptotic prescribed degree distribution  $F_*$  converges to the GWT with degree distribution  $F_*$  (Molloy and Reed 1995).

#### **RESOLVENT AND STIELJES TRANSFORM**

Recall that  $\mu_{G_n}$  is the spectral measure of  $\Delta(G_n) = A(G_n) - \alpha D(G_n)$ . On  $\mathbb{C}_+ = \{z \in \mathbb{C} : \Im(z) > 0\}$ , its Stieljes transform is defined by

$$s_{G_n}(z) = \int_{\mathbb{R}} \frac{\mu_n(dx)}{x - z} = \frac{1}{n} \sum_{i=1}^n \frac{1}{\lambda_i - z} = \frac{1}{n} \operatorname{tr} R_{G_n}(z) = \mathrm{E} \langle R_{G_n}(z) o, o \rangle,$$

where the expectation is with respect to the uniformly chosen root, and

$$R_{G_n}(z) = (\Delta(G_n) - zI)^{-1}.$$

 $\longrightarrow \langle R_{G_n}(z)v, v \rangle$  is the Green's function of the graph  $G_n$  at vertex v.

# **CONVERGENCE OF THE STIELJES TRANSFORM**

Let  $G_n$  be a sequence of random graphs converging to a GWT with degree distribution  $F_*$  such that  $\deg(G_n, o)^{2+\alpha}$  is uniformly integrable. Let  $\mathcal{H}$  be the set of *bounded* analytic functions on  $\mathbb{C}_+$ .

**Theorem 4.** (i) There exists a unique probability distribution on  $\mathcal{H}$  such that

$$Y(z) \stackrel{d}{=} -\left(z + \alpha(N+1) + \sum_{i=1}^{N} Y_i(z)\right)^{-1},$$

where N has distribution F and  $Y_i$  are iid copies of Y independent of N.

(ii) For all  $z \in \mathbb{C}_+$ ,  $s_{G_n}(z)$  converges in  $L^1$  to  $\mathbb{E} X(z)$  where

$$X(z) \stackrel{d}{=} -\left(z + \alpha N_* + \sum_{i=1}^{N_*} Y_i(z)\right)^{-1},$$

where  $N_*$  has distribution  $F_*$  and is independent of  $Y_i$ .

# EXAMPLES FOR THE ADJACENCY OPERATOR : $\alpha = 0$

- If  $G_n$  is the uniform k-regular graph on n vertices, then

Y(z) = Stieljes transform of the semi-circle law with radius  $2\sqrt{k-1}$ . X(z) = Stieljes transform of Kesten-McKay measure.

- If  $G_n$  is the Erdös Rényi graph on n vertices with parameter p/n, then

$$Y(z) \stackrel{d}{=} X(z) \stackrel{d}{=} -\left(z + \sum_{i=1}^{N} X_i(z)\right)^{-1},$$

where N is a Poi(p) variable. It gives a new characterization of the spectral measure, see also (Khorunzhy, Scherbina and Vengerovsky 2004).

Recall that  $R_G(z) = (\Delta(G) - zI)^{-1}$ . If  $\alpha = 0$ , we prove that  $Y(z) = \langle R_T(z)o, o \rangle$  where T is a GWT with offspring distribution F and root o.  $X(z) = \langle R_{T'}(z)o, o \rangle$  where T' is a GWT with degree distribution  $F_*$  and root o. Indeed, we use the decomposition formula

$$\langle R_G(z)o, o \rangle = -\left(z + \alpha \deg(G, o) + \sum_{v, w \sim o} \langle R_{G \setminus o}(z)v, w \rangle\right)^{-1}.$$

If G is a tree and  $v \neq w$  then,

$$\mathbb{1}(v \stackrel{G}{\sim} o)\mathbb{1}(w \stackrel{G}{\sim} o)\langle R_{G\setminus o}(z)v, w\rangle = 0.$$

Indeed two neighbors of o are not in the same connected component of  $G \setminus o$ .

#### **IDEA OF PROOF : RESOLVENT OF A GWT**

If *T* is a GWT with offspring distribution *F* then the subtrees of  $T \setminus o$  are also iid GWT with offspring distribution *F*. We deduce the Recursive Distributional Equation (RDE) for

$$\widetilde{R}_T = (\Delta(T) - \alpha e_o e_o^t - zI)^{-1}$$

$$Y(z) := \langle \widetilde{R}_T(z)o, o \rangle \stackrel{d}{=} - \left( z + \alpha(N+1) + \sum_{i=1}^N Y_i(z) \right)^{-1},$$

where N has distribution F and  $Y_i$  are iid copies of Y independent of N.

 $\longrightarrow$  It remains to check the unicity of the solution of this RDE...

## **IDEA OF PROOF : UNICITY OF THE RDE**

We consider the mapping  $\Psi$  on probability measures on  $\mathcal{H}$  (the bounded analytic functions on  $\mathbb{C}_+$ ) where  $\Psi(P)$  is the law of

$$z \mapsto -\left(z + \alpha(N+1) + \sum_{i=1}^{N} Y_i(z)\right)^{-1},$$

where  $Y_i$  are iid copies with law P, independent of N with law F.

We define the distance on probability measures on  ${\cal H}$ 

$$W(P,Q) = \inf \mathbb{E} \int_{\Omega} |X(z) - Y(z)| dz,$$

where  $\Omega$  is a bounded domain in  $\mathbb{C}_+$  and the infimum is over all possible couplings of P and Q: X and Y have laws P and Q respectively.

 $\longrightarrow$  A few lines of computation show that  $\Psi$  is a contraction if  $\Omega$  is at distance larger than  $\sqrt{\mathbb{E}N}$  from the straight line  $\Im(z) = 0$  of real numbers.

# COMMENTS AND EXTENSION

- The spectral measure is a local functional of the graph around a typical vertex.
- The same type of results holds for weighted graphs.
- It is also possible to prove a RDE for the limit Stieljes transform of a random bipartite graphs with given asymptotic degree distributions.
- For bi-regular uniform bipartite graphs we get an explicit solution, already found with different methods (Godsil and Mohar 1988, Mizuno and Sato 2003).
- We have assumed that  $\mathbb{E}N < \infty$  to prove the unicity of the RDE

$$Y(z) \stackrel{d}{=} -\left(z + \sum_{i=1}^{N} Y_i(z)\right)^{-1}.$$

What about the case  $\mathbb{E}N_* < \infty$  but  $\mathbb{E}N = \mathbb{E}N_*^2/\mathbb{E}N_* - 1 = \infty$  ?

#### EXTENDED STATES IN RANDOM GRAPHS

Absolutely continuous part of the limit spectral measure of an Erdös-Rényi graph with parameter p/n: a phase transition is expected for p = e at x = 0 (Bauer and Golinelli 2001). For all a < b continuity points of  $\mu$ 

$$\mu([a,b]) = \lim_{t \to 0+} \frac{1}{\pi} \int_{a}^{b} \Im s_{\mu}(x+it) dx \text{ and } \mu(\{x\}) = \lim_{t \to 0+} t \Im s_{\mu}(x+it).$$

Is it possible to use the RDE to look at this issue ?

Hint : recall that  $Y(z) \stackrel{d}{=} -\left(z + \sum_{i=1}^{N} Y_i(z)\right)^{-1}$ , set  $t = e^{-\beta}$  and  $\Im Y(0 + +it) = e^{\beta h(\beta)}$ , then we find

$$h(\beta) \stackrel{d}{=} -\frac{1}{\beta} \log \left( e^{-\beta} + \sum_{i=1}^{N} e^{\beta h_i(\beta)} \right).$$

This RDE was found by (Zdeborová and Mézard 2006) as the *cavity fields solution of the number of matchings* in random graphs...