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TWO CLASSICAL OPERATORS ON GRAPHS

Let Gn = (Vn, En) be a simple graph on Vn = {1, · · · , n}. We define

A(Gn) = Adjacency matrix of Gn = (1I((i, j) ∈ En))1≤i,j≤n

D(Gn) = Degree diagonal matrix of Gn = diag (deg(Gn, 1), · · · ,deg(Gn, n))

and, with α ∈ {0, 1},

∆(Gn) = A(Gn) − αD(Gn).

=⇒∆ is either the adjacency operator or minus the Laplacian operator.



SPECTRAL MEASURE OF FINITE GRAPHS

Let

λn(Gn) ≤ · · · ≤ λ1(Gn)

denote the real eigenvalues of the symmetric matrix ∆(Gn).

The spectral measure of ∆(Gn) is

µGn
=

1

n

n∑

i=1

δλi(Gn).

=⇒ µGn
is the distribution of a uniformly drawn eigenvalue of ∆(Gn).



OUTLINE OF THE TALK

Let (Gn), n ∈ N, be a sequence of graphs on Vn = {1, · · · , n} such that Gn

”converges” to a limit graph G.

1. Does µGn
converge to a measure µG for the usual weak convergence topology ?

2. Do we have a formula for µG in some cases ?



MOTIVATING EXAMPLE

Let d ≥ 3 and Gn is a random graph drawn uniformly on the set of d-regular graphs on n

vertices (where dn is even). .

Theorem 1 (McKay 1981). The spectral measure µGn
converges weakly as n goes to

infinity to the deterministic measure µKM supported on [−2
√

d − 1, 2
√

d − 1]

µKM (dx) =
d

2π

√
4(d − 1) − x2

d2 − x2
dx.

=⇒ µKM is the Kesten-McKay measure, it first appeared in (Kesten 1959) in the context

of simple random walks on groups.



THE METRIC SPACE OF ROOTED GRAPHS

(Benjamini & Schramm 2001, Aldous & Steele 2004)

A rooted graph (G, o) is a graph G = (V,E) with a distinguished vertex o ∈ V . Two

rooted graphs are rooted isomorphic if there exists an isomorphism between the two

graphs that takes the root of one to the root of the other.

We define (G, o)[n] as the subgraph (G, o) spanned by the vertices within

(graph)-distance at most n from the root o.

distance((G1, o1), (G2, o2))

= 1/ sup{n ∈ N : (G1, o1)[n] and (G2, o2)[n] are rooted isomorphic}.

=⇒ The space G∗ of rooted isomorphic classes of rooted locally finite graphs is a

complete metric separable space.



LOCAL WEAK CONVERGENCE OF GRAPHS

For a finite graph G, let U(G) denote the distribution on G∗ obtained by choosing a

uniform random vertex as root.

For a sequence of graphs (Gn), n ∈ N, on n vertices, we say that the local weak limit of

Gn is [G, o] with measure ρ on G∗ if U(Gn) ⇒ ρ.

=⇒ This convergence is ”local”, it formalizes the convergence of the local structure of a

graph around a typical vertex.



CONVERGENCE OF THE SPECTRAL MEASURE

Let (Gn), n ∈ N, be a sequence of finite graphs and

∆(Gn) = A(Gn) − αD(Gn).

Assume that deg(Gn, o)1+2α is uniformly integrable.

Theorem 2. If U(Gn) converges to [G, o] with measure ρ then there exists a measure

µ such that

lim
n→∞

µGn
= µ.



IDEA OF PROOF

(i) Assume first that the degree at the root is bounded by a constant.

=⇒ The operator ∆ = A − αD of the limit graph (G, o) is self-adjoint on L2(N)

and its spectral measure is properly defined via its resolvent

R(z) = (∆ − zI)−1

−→ We may apply classical results on the convergence of bounded self-adjoint

operators.



IDEA OF PROOF

(ii) If the degree is not necessarily bounded. We use a truncation argument and set

∆K(Gn)ij =





0 if max(deg(Gn, i),deg(Gn, j)) > K

∆(Gn)ij otherwise

−→ We apply the inequality

L3(µGn
, µK

Gn
) ≤ 1

n
tr(∆(Gn) − ∆K(Gn))2

where L is the Lévy distance for probability measures on R.

=⇒ As K goes to infinity, the spectral measure of ∆K(Gn) converges to the

spectrum of ∆(Gn) uniformly in n.



RANDOM GRAPHS

Often, we do not consider a sequence of graphs Gn but a sequence of distributions on

graphs, i.e. a sequence of random graphs. For a finite random graph G, let U2(G) denote

the distribution on G∗ × G∗ obtained by choosing two uniform random vertices as roots.

Assume again that deg(Gn, o)1+2α is uniformly integrable.

Theorem 3. If U2(Gn) converges to a measure ρ ⊗ ρ then there exists a measure µ

such that

lim
n→∞

EL(µGn
, µ) = 0.



ROOTED RANDOM TREES

- A Galton-Watson tree (GWT) with offspring distribution F is the rooted random tree

obtained by a Galton-Watson branching process with offspring distribution F .

- A GWT with degree distribution F∗ is the rooted random tree obtained by a

Galton-Watson branching process where the root has offspring distribution F∗ and all

other genitors have offspring distribution F with

F (k − 1) =
kF∗(k)∑

` `F (`)
.



EXAMPLE OF REGULAR TREES
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Left: the 3-ary tree is a GWT with offspring distribution δ3.

Right: the 3-regular tree is a GWT with degree distribution δ3.



RANDOM GRAPHS WITH TREES AS LOCAL WEAK LIMIT

Three important examples of random graph on {1, · · · , n},

- the uniform k-regular graph converges to the GWT with degree distribution δk.

- the Erdös-Reny graph with an edge between two vertices with probability p/n

independently of everything else converges to the GWT with degree and offspring

distribution Poi(p).

- the random graphs with asymptotic prescribed degree distribution F∗ converges to

the GWT with degree distribution F∗ (Molloy and Reed 1995).



RESOLVENT AND STIELJES TRANSFORM

Recall that µGn
is the spectral measure of ∆(Gn) = A(Gn) − αD(Gn). On

C+ = {z ∈ C : =(z) > 0}, its Stieljes transform is defined by

sGn
(z) =

∫

R

µn(dx)

x − z
=

1

n

n∑

i=1

1

λi − z
=

1

n
trRGn

(z) = E〈RGn
(z)o, o〉,

where the expectation is with respect to the uniformly chosen root, and

RGn
(z) = (∆(Gn) − zI)−1.

−→ 〈RGn
(z)v, v〉 is the Green’s function of the graph Gn at vertex v.



CONVERGENCE OF THE STIELJES TRANSFORM

Let Gn be a sequence of random graphs converging to a GWT with degree distribution

F∗ such that deg(Gn, o)2+α is uniformly integrable. Let H be the set of bounded

analytic functions on C+.

Theorem 4. (i) There exists a unique probability distribution on H such that

Y (z)
d
= −

(
z + α(N + 1) +

N∑

i=1

Yi(z)

)−1

,

where N has distribution F and Yi are iid copies of Y independent of N .

(ii) For all z ∈ C+, sGn
(z) converges in L1 to EX(z) where

X(z)
d
= −

(
z + αN∗ +

N∗∑

i=1

Yi(z)

)−1

,

where N∗ has distribution F∗ and is independent of Yi.



EXAMPLES FOR THE ADJACENCY OPERATOR : α = 0

- If Gn is the uniform k-regular graph on n vertices, then

Y (z) = Stieljes transform of the semi-circle law with radius 2
√

k − 1.

X(z) = Stieljes transform of Kesten-McKay measure.

- If Gn is the Erdös Rényi graph on n vertices with parameter p/n, then

Y (z)
d
= X(z)

d
= −

(
z +

N∑

i=1

Xi(z)

)−1

,

where N is a Poi(p) variable. It gives a new characterization of the spectral

measure, see also (Khorunzhy, Scherbina and Vengerovsky 2004).



IDEA OF PROOF : RESOLVENT OF A TREE

Recall that RG(z) = (∆(G) − zI)−1. If α = 0, we prove that

Y (z) = 〈RT (z)o, o〉 where T is a GWT with offspring distribution F and root o.

X(z) = 〈RT ′(z)o, o〉 where T ′ is a GWT with degree distribution F∗ and root o.

Indeed, we use the decomposition formula

〈RG(z)o, o〉 = −


z + αdeg(G, o) +

∑

v,w
G
∼o

〈RG\o(z)v,w〉




−1

.

If G is a tree and v 6= w then,

1I(v
G∼ o)1I(w

G∼ o)〈RG\o(z)v,w〉 = 0.

Indeed two neighbors of o are not in the same connected component of G\o.



IDEA OF PROOF : RESOLVENT OF A GWT

If T is a GWT with offspring distribution F then the subtrees of T\o are also iid GWT

with offspring distribution F . We deduce the Recursive Distributional Equation (RDE) for

R̃T = (∆(T ) − αeoe
t
o − zI)−1

Y (z) := 〈R̃T (z)o, o〉 d
= −

(
z + α(N + 1) +

N∑

i=1

Yi(z)

)−1

,

where N has distribution F and Yi are iid copies of Y independent of N .

−→ It remains to check the unicity of the solution of this RDE...



IDEA OF PROOF : UNICITY OF THE RDE

We consider the mapping Ψ on probability measures on H (the bounded analytic

functions on C+) where Ψ(P ) is the law of

z 7→ −
(

z + α(N + 1) +

N∑

i=1

Yi(z)

)−1

,

where Yi are iid copies with law P , independent of N with law F .

We define the distance on probability measures on H

W (P,Q) = inf E

∫

Ω
|X(z) − Y (z)|dz,

where Ω is a bounded domain in C+ and the infimum is over all possible couplings of P

and Q : X and Y have laws P and Q respectively.

−→ A few lines of computation show that Ψ is a contraction if Ω is at distance larger than√
EN from the straight line =(z) = 0 of real numbers.



COMMENTS AND EXTENSION

- The spectral measure is a local functional of the graph around a typical vertex.

- The same type of results holds for weighted graphs.

- It is also possible to prove a RDE for the limit Stieljes transform of a random bipartite

graphs with given asymptotic degree distributions.

- For bi-regular uniform bipartite graphs we get an explicit solution, already found with

different methods (Godsil and Mohar 1988, Mizuno and Sato 2003).

- We have assumed that EN < ∞ to prove the unicity of the RDE

Y (z)
d
= −

(
z +

N∑

i=1

Yi(z)

)−1

.

What about the case EN∗ < ∞ but EN = EN2
∗ /EN∗ − 1 = ∞ ?



EXTENDED STATES IN RANDOM GRAPHS

Absolutely continuous part of the limit spectral measure of an Erdös-Rényi graph with

parameter p/n : a phase transition is expected for p = e at x = 0 (Bauer and Golinelli

2001). For all a < b continuity points of µ

µ([a, b]) = lim
t→0+

1

π

∫ b

a

=sµ(x + it)dx and µ({x}) = lim
t→0+

t=sµ(x + it).

Is it possible to use the RDE to look at this issue ?

Hint : recall that Y (z)
d
= −

(
z +

∑N
i=1 Yi(z)

)−1
, set t = e−β and

=Y (0 + +it) = eβh(β), then we find

h(β)
d
= − 1

β
log

(
e−β +

N∑

i=1

eβhi(β)

)
.

This RDE was found by (Zdeborová and Mézard 2006) as the cavity fields solution of the

number of matchings in random graphs...


