RESOLVENT OF LARGE RANDOM GRAPHS

Charles Bordenave

CNRS \& University of Toulouse

Joint work with Marc Lelarge (ENS \& INRIA)

TWO CLASSICAL OPERATORS ON GRAPHS

Let $G_{n}=\left(V_{n}, E_{n}\right)$ be a simple graph on $V_{n}=\{1, \cdots, n\}$. We define

$$
A\left(G_{n}\right)=\text { Adjacency matrix of } G_{n}=\left(\mathbb{I}\left((i, j) \in E_{n}\right)\right)_{1 \leq i, j \leq n}
$$

$$
D\left(G_{n}\right)=\text { Degree diagonal matrix of } G_{n}=\operatorname{diag}\left(\operatorname{deg}\left(G_{n}, 1\right), \cdots, \operatorname{deg}\left(G_{n}, n\right)\right)
$$

and, with $\alpha \in\{0,1\}$,

$$
\Delta\left(G_{n}\right)=A\left(G_{n}\right)-\alpha D\left(G_{n}\right)
$$

$\Longrightarrow \Delta$ is either the adjacency operator or minus the Laplacian operator.

SPECTRAL MEASURE OF FINITE GRAPHS

Let

$$
\lambda_{n}\left(G_{n}\right) \leq \cdots \leq \lambda_{1}\left(G_{n}\right)
$$

denote the real eigenvalues of the symmetric matrix $\Delta\left(G_{n}\right)$.
The spectral measure of $\Delta\left(G_{n}\right)$ is

$$
\mu_{G_{n}}=\frac{1}{n} \sum_{i=1}^{n} \delta_{\lambda_{i}\left(G_{n}\right)}
$$

$\Longrightarrow \mu_{G_{n}}$ is the distribution of a uniformly drawn eigenvalue of $\Delta\left(G_{n}\right)$.

OUTLINE OF THE TALK

Let $\left(G_{n}\right), n \in \mathbb{N}$, be a sequence of graphs on $V_{n}=\{1, \cdots, n\}$ such that G_{n} "converges" to a limit graph G.

1. Does $\mu_{G_{n}}$ converge to a measure μ_{G} for the usual weak convergence topology?
2. Do we have a formula for μ_{G} in some cases ?

MOTIVATING EXAMPLE

Let $d \geq 3$ and G_{n} is a random graph drawn uniformly on the set of d-regular graphs on n vertices (where $d n$ is even). .

Theorem 1 (McKay 1981). The spectral measure $\mu_{G_{n}}$ converges weakly as n goes to infinity to the deterministic measure $\mu_{K M}$ supported on $[-2 \sqrt{d-1}, 2 \sqrt{d-1}]$

$$
\mu_{K M}(d x)=\frac{d}{2 \pi} \frac{\sqrt{4(d-1)-x^{2}}}{d^{2}-x^{2}} d x
$$

$\Longrightarrow \mu_{K M}$ is the Kesten-McKay measure, it first appeared in (Kesten 1959) in the context of simple random walks on groups.

THE METRIC SPACE OF ROOTED GRAPHS

(Benjamini \& Schramm 2001, Aldous \& Steele 2004)
A rooted graph (G, o) is a graph $G=(V, E)$ with a distinguished vertex $o \in V$. Two rooted graphs are rooted isomorphic if there exists an isomorphism between the two graphs that takes the root of one to the root of the other.

We define $(G, o)[n]$ as the subgraph (G, o) spanned by the vertices within (graph)-distance at most n from the root o.

```
distance((G1,o, ),(G2,oo))
    =1/ sup{n\in\mathbb{N:(G1,os)[n] and (G}\mp@subsup{G}{2}{},\mp@subsup{o}{2}{})[n] are rooted isomorphic }}\mathrm{ .
```

\Longrightarrow The space \mathcal{G}^{*} of rooted isomorphic classes of rooted locally finite graphs is a complete metric separable space.

LOCAL WEAK CONVERGENCE OF GRAPHS

For a finite graph G, let $U(G)$ denote the distribution on \mathcal{G}^{*} obtained by choosing a uniform random vertex as root.

For a sequence of graphs $\left(G_{n}\right), n \in \mathbb{N}$, on n vertices, we say that the local weak limit of G_{n} is $[G, o]$ with measure ρ on \mathcal{G}^{*} if $U\left(G_{n}\right) \Rightarrow \rho$.
\Longrightarrow This convergence is "local", it formalizes the convergence of the local structure of a graph around a typical vertex.

CONVERGENCE OF THE SPECTRAL MEASURE

Let $\left(G_{n}\right), n \in \mathbb{N}$, be a sequence of finite graphs and

$$
\Delta\left(G_{n}\right)=A\left(G_{n}\right)-\alpha D\left(G_{n}\right) .
$$

Assume that $\operatorname{deg}\left(G_{n}, o\right)^{1+2 \alpha}$ is uniformly integrable.

Theorem 2. If $U\left(G_{n}\right)$ converges to $[G, o]$ with measure ρ then there exists a measure μ such that

$$
\lim _{n \rightarrow \infty} \mu_{G_{n}}=\mu
$$

IDEA OF PROOF

(i) Assume first that the degree at the root is bounded by a constant.
\Longrightarrow The operator $\Delta=A-\alpha D$ of the limit graph (G, o) is self-adjoint on $L^{2}(\mathbb{N})$ and its spectral measure is properly defined via its resolvent

$$
R(z)=(\Delta-z I)^{-1}
$$

\longrightarrow We may apply classical results on the convergence of bounded self-adjoint operators.

IDEA OF PROOF

(ii) If the degree is not necessarily bounded. We use a truncation argument and set

$$
\Delta^{K}\left(G_{n}\right)_{i j}= \begin{cases}0 & \text { if } \max \left(\operatorname{deg}\left(G_{n}, i\right), \operatorname{deg}\left(G_{n}, j\right)\right)>K \\ \Delta\left(G_{n}\right)_{i j} & \text { otherwise }\end{cases}
$$

\longrightarrow We apply the inequality

$$
L^{3}\left(\mu_{G_{n}}, \mu_{G_{n}}^{K}\right) \leq \frac{1}{n} \operatorname{tr}\left(\Delta\left(G_{n}\right)-\Delta^{K}\left(G_{n}\right)\right)^{2}
$$

where L is the Lévy distance for probability measures on \mathbb{R}.
\Longrightarrow As K goes to infinity, the spectral measure of $\Delta^{K}\left(G_{n}\right)$ converges to the spectrum of $\Delta\left(G_{n}\right)$ uniformly in n.

RANDOM GRAPHS

Often, we do not consider a sequence of graphs G_{n} but a sequence of distributions on graphs, i.e. a sequence of random graphs. For a finite random graph G, let $U_{2}(G)$ denote the distribution on $\mathcal{G}^{*} \times \mathcal{G}^{*}$ obtained by choosing two uniform random vertices as roots.

Assume again that $\operatorname{deg}\left(G_{n}, o\right)^{1+2 \alpha}$ is uniformly integrable.

Theorem 3. If $U_{2}\left(G_{n}\right)$ converges to a measure $\rho \otimes \rho$ then there exists a measure μ such that

$$
\lim _{n \rightarrow \infty} \mathbb{E} L\left(\mu_{G_{n}}, \mu\right)=0
$$

ROOTED RANDOM TREES

- A Galton-Watson tree (GWT) with offspring distribution F is the rooted random tree obtained by a Galton-Watson branching process with offspring distribution F.
- A GWT with degree distribution F_{*} is the rooted random tree obtained by a Galton-Watson branching process where the root has offspring distribution F_{*} and all other genitors have offspring distribution F with

$$
F(k-1)=\frac{k F_{*}(k)}{\sum_{\ell} \ell F(\ell)}
$$

EXAMPLE OF REGULAR TREES

Left: the 3-ary tree is a GWT with offspring distribution δ_{3}.
Right: the 3-regular tree is a GWT with degree distribution δ_{3}.

RANDOM GRAPHS WITH TREES AS LOCAL WEAK LIMIT

Three important examples of random graph on $\{1, \cdots, n\}$,

- the uniform k-regular graph converges to the GWT with degree distribution δ_{k}.
- the Erdös-Reny graph with an edge between two vertices with probability p / n independently of everything else converges to the GWT with degree and offspring distribution $\operatorname{Poi}(p)$.
- the random graphs with asymptotic prescribed degree distribution F_{*} converges to the GWT with degree distribution F_{*} (Molloy and Reed 1995).

RESOLVENT AND STIELJES TRANSFORM

Recall that $\mu_{G_{n}}$ is the spectral measure of $\Delta\left(G_{n}\right)=A\left(G_{n}\right)-\alpha D\left(G_{n}\right)$. On $\mathbb{C}_{+}=\{z \in \mathbb{C}: \Im(z)>0\}$, its Stieljes transform is defined by

$$
s_{G_{n}}(z)=\int_{\mathbb{R}} \frac{\mu_{n}(d x)}{x-z}=\frac{1}{n} \sum_{i=1}^{n} \frac{1}{\lambda_{i}-z}=\frac{1}{n} \operatorname{tr} R_{G_{n}}(z)=\mathrm{E}\left\langle R_{G_{n}}(z) o, o\right\rangle
$$

where the expectation is with respect to the uniformly chosen root, and

$$
R_{G_{n}}(z)=\left(\Delta\left(G_{n}\right)-z I\right)^{-1}
$$

$\longrightarrow\left\langle R_{G_{n}}(z) v, v\right\rangle$ is the Green's function of the graph G_{n} at vertex v.

CONVERGENCE OF THE STIELJES TRANSFORM

Let G_{n} be a sequence of random graphs converging to a GWT with degree distribution F_{*} such that $\operatorname{deg}\left(G_{n}, o\right)^{2+\alpha}$ is uniformly integrable. Let \mathcal{H} be the set of bounded analytic functions on \mathbb{C}_{+}.
Theorem 4. (i) There exists a unique probability distribution on \mathcal{H} such that

$$
Y(z) \stackrel{d}{=}-\left(z+\alpha(N+1)+\sum_{i=1}^{N} Y_{i}(z)\right)^{-1}
$$

where N has distribution F and Y_{i} are iid copies of Y independent of N.
(ii) For all $z \in \mathbb{C}_{+}, s_{G_{n}}(z)$ converges in L^{1} to $\mathbb{E} X(z)$ where

$$
X(z) \stackrel{d}{=}-\left(z+\alpha N_{*}+\sum_{i=1}^{N_{*}} Y_{i}(z)\right)^{-1}
$$

where N_{*} has distribution F_{*} and is independent of Y_{i}.

EXAMPLES FOR THE ADJACENCY OPERATOR : $\alpha=0$

- If G_{n} is the uniform k-regular graph on n vertices, then
$Y(z)=$ Stieljes transform of the semi-circle law with radius $2 \sqrt{k-1}$.
$X(z)=$ Stieljes transform of Kesten-McKay measure.
- If G_{n} is the Erdös Rényi graph on n vertices with parameter p / n, then

$$
Y(z) \stackrel{d}{=} X(z) \stackrel{d}{=}-\left(z+\sum_{i=1}^{N} X_{i}(z)\right)^{-1}
$$

where N is a $\operatorname{Poi}(p)$ variable. It gives a new characterization of the spectral measure, see also (Khorunzhy, Scherbina and Vengerovsky 2004).

IDEA OF PROOF : RESOLVENT OF A TREE

Recall that $R_{G}(z)=(\Delta(G)-z I)^{-1}$. If $\alpha=0$, we prove that
$Y(z)=\left\langle R_{T}(z) o, o\right\rangle$ where T is a GWT with offspring distribution F and root o. $X(z)=\left\langle R_{T^{\prime}}(z) o, o\right\rangle$ where T^{\prime} is a GWT with degree distribution F_{*} and root o. Indeed, we use the decomposition formula

$$
\left\langle R_{G}(z) o, o\right\rangle=-\left(z+\alpha \operatorname{deg}(G, o)+\sum_{v, w^{G} o}\left\langle R_{G \backslash o}(z) v, w\right\rangle\right)^{-1}
$$

If G is a tree and $v \neq w$ then,

$$
\mathbb{I}(v \stackrel{G}{\sim} o) \mathbb{I}(w \stackrel{G}{\sim} o)\left\langle R_{G \backslash o}(z) v, w\right\rangle=0
$$

Indeed two neighbors of o are not in the same connected component of $G \backslash o$.

IDEA OF PROOF : RESOLVENT OF A GWT

If T is a GWT with offspring distribution F then the subtrees of $T \backslash o$ are also iid GWT with offspring distribution F. We deduce the Recursive Distributional Equation (RDE) for

$$
\begin{gathered}
\widetilde{R}_{T}=\left(\Delta(T)-\alpha e_{o} e_{o}^{t}-z I\right)^{-1} \\
Y(z):=\left\langle\widetilde{R}_{T}(z) o, o\right\rangle \stackrel{d}{=}-\left(z+\alpha(N+1)+\sum_{i=1}^{N} Y_{i}(z)\right)^{-1},
\end{gathered}
$$

where N has distribution F and Y_{i} are iid copies of Y independent of N.
\longrightarrow It remains to check the unicity of the solution of this RDE...

IDEA OF PROOF : UNICITY OF THE RDE

We consider the mapping Ψ on probability measures on \mathcal{H} (the bounded analytic functions on \mathbb{C}_{+}) where $\Psi(P)$ is the law of

$$
z \mapsto-\left(z+\alpha(N+1)+\sum_{i=1}^{N} Y_{i}(z)\right)^{-1}
$$

where Y_{i} are iid copies with law P, independent of N with law F.
We define the distance on probability measures on \mathcal{H}

$$
W(P, Q)=\inf \mathbb{E} \int_{\Omega}|X(z)-Y(z)| d z
$$

where Ω is a bounded domain in \mathbb{C}_{+}and the infimum is over all possible couplings of P and $Q: X$ and Y have laws P and Q respectively.
\longrightarrow A few lines of computation show that Ψ is a contraction if Ω is at distance larger than $\sqrt{\mathbb{E} N}$ from the straight line $\Im(z)=0$ of real numbers.

COMMENTS AND EXTENSION

- The spectral measure is a local functional of the graph around a typical vertex.
- The same type of results holds for weighted graphs.
- It is also possible to prove a RDE for the limit Stieljes transform of a random bipartite graphs with given asymptotic degree distributions.
- For bi-regular uniform bipartite graphs we get an explicit solution, already found with different methods (Godsil and Mohar 1988, Mizuno and Sato 2003).
- We have assumed that $\mathbb{E} N<\infty$ to prove the unicity of the RDE

$$
Y(z) \stackrel{d}{=}-\left(z+\sum_{i=1}^{N} Y_{i}(z)\right)^{-1}
$$

What about the case $\mathbb{E} N_{*}<\infty$ but $\mathbb{E} N=\mathbb{E} N_{*}^{2} / \mathbb{E} N_{*}-1=\infty$?

EXTENDED STATES IN RANDOM GRAPHS

Absolutely continuous part of the limit spectral measure of an Erdös-Rényi graph with parameter p / n : a phase transition is expected for $p=e$ at $x=0$ (Bauer and Golinelli 2001). For all $a<b$ continuity points of μ

$$
\mu([a, b])=\lim _{t \rightarrow 0+} \frac{1}{\pi} \int_{a}^{b} \Im s_{\mu}(x+i t) d x \text { and } \mu(\{x\})=\lim _{t \rightarrow 0+} t \Im s_{\mu}(x+i t)
$$

Is it possible to use the RDE to look at this issue ?
Hint : recall that $Y(z) \stackrel{d}{=}-\left(z+\sum_{i=1}^{N} Y_{i}(z)\right)^{-1}$, set $t=e^{-\beta}$ and
$\Im Y(0++i t)=e^{\beta h(\beta)}$, then we find

$$
h(\beta) \stackrel{d}{=}-\frac{1}{\beta} \log \left(e^{-\beta}+\sum_{i=1}^{N} e^{\beta h_{i}(\beta)}\right)
$$

This RDE was found by (Zdeborová and Mézard 2006) as the cavity fields solution of the number of matchings in random graphs...

