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Main issues and ideas.

• Disordered and complex systems

• Spin glasses

• Analytic techniques and replica theory

• A very unusual landscape

• Numerical techniques: the example of

Parallel Tempering.

• Finite size effects in the mean field theory

of spin glasses
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The physics of disordered and complex systems.

1. A small amount of (relevant) disorder can

completely change the behavior of a

(physical) system.

2. A “complex” deterministic Hamiltonian

can produce exactly the same behavior of a

disordered system. (Derrida REM vs.

Bernasconi autocorrelation).

Mézard-Parisi approach.

3. Large and very different classes of problems

are of this kind.

Optimization, for example. Use the same

approach for understanding, improving,

solving...
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Deriving the properties of such a system is

difficult (still, crucial analytic frame derived by

Parisi with RSB).

Both analytic studies and numerical studies are

not an easy task (for similar reasons).

“Best solution” (T = 0, ground states, energy)

can be complex,

“good solutions” (T > 0 landscape, typical

configurations, free energy)

can be complex.

Materials, optimization problems, social

systems.
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Spin glasses have been, in the last years, lucky

materials.

They are not very interesting from any technological

point of view. Still, some people care a lot about them.

But: very interesting and new phenomena. And a very

interesting theory. From material physics to structural

glasses, and a paradigmatic role leading to

optimization, games, disorder in biological systems.

Look at this experiment.
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These features are natural in a hierarchical valley

approach (but very possibly are not explained by

models, see later...).
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The paradigm

• Financial markets

Players with pools of (random) strategies

They minimize a cost function

(Hamiltonian)

• Satisfiability

K-SAT

N Boolean variables {xi}i=1,N , xi ∈ {0, 1}

M clauses (constraints) C1, . . . CM

consisting of the OR of 3 distinct variables

(or of their negations)

Example: x3 ∨ x12 ∨ x24

For a given assignment of the xi, a clause

is TRUE or FALSE

∃ assignment {xi}i=1,N such that F ({xi})

is TRUE?

• Biophysics

Heterogeneity

Stoichiometry
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The standard model (maybe not really correct...):

HEA ≡ −
∑

i nn j

σiJijσj ,

Edwards-Anderson spin glass. σi = ±1 (or

Heisenberg), sum is over first nearest neighboring

sites, in D spatial dimensions.

P (J) ∼ e−J2

or J = ±1 with probability 1
2
.

Random couplings are quenched: that gives the

huge complexity.

One cannot solve this model (one cannot even

more or less understand it...). So define mean field

theory:

HSK ≡ −
∑

all couples i j

σiJijσj ,

where the sum runs now over all spin couples

(Sherrington and Kirkpatrick).

The mean field theory can be solved, and it shows a

really peculiar behavior. Recently a mathematical

proof of the correctness of the solution has been

obtained (Talagrand building on Guerra work).
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Which kind of random disorder?

Couplings {J}.

“Fixed disorder” (that does not change on the

time scales we are considering). Compute ZJ

and average the free energy:

log ZJ

Very different from

ZJ

(annealed case), and far more interesting.

But more difficult.

How can we compute log ZJ?
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Parisi mean field solution. Use replicas.

log Z = lim
n−→0

Zn − 1

n
,

and defining with the over-line · the (quenched)

disorder average:

log Z = lim
n−→0

Zn − 1

n
,

So compute Z(n) from Z, Z2, Z3, ...,

Z(1) · Z(2) · Z(2) · ..., and define limn−→0 from

analytic continuation of Z(n).

Natural guess: in Z(1) · Z(2) · Z(3) · ... all

replicas are symmetric.

Parisi: replica Symmetry undergoes

spontaneous symmetry breaking.

A complex phase space emerges.
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Replicas

Disorder makes things far more difficult,

already at mean field level.

After some work one finds that Zn (and lim for

n → 0) can be obtained as a solution of a

saddle point problem with a function (for

h = 0, E(J) = 0)

∑

(αβ)

1

2
y2
(αβ) − log Tr e

βJ
∑

(αβ)
y(αβ)σασβ

with

α = 1, · · · , n , β = 1, · · · , n , α 6= β , n → 0

and y(αβ) is a 0 × 0 matrix.

Replica Symmetry.

Assume y(αβ) = y for each (αβ) (looks natural,

since replicas are a mathematical artifact to

start with).

Solution is correct for T > Tc, but wrong for

T < Tc.

Replica Symmetry is broken!
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Parisi solution is needed. Parisi solution by iteration.

Replica symmetry: n × n matrix.

y =



















0 y0 y0 y0 y0 y0

y0 0 y0 y0 y0 y0

y0 y0 0 y0 y0 y0

y0 y0 y0 0 y0 y0

y0 y0 y0 y0 0 y0

y0 y0 y0 y0 y0 0



















Variational problem in one parameter y0.

We need something less trivial.

First step. Break the n × n matrix into n/m1 × n/m1

blocks of size m1 × m1. Change y0 in y1 on diagonal

blocks and leave the off-diagonal blocks unchanged.

y =



















0 y1 y1 y0 y0 y0

y1 0 y1 y0 y0 y0

y1 y1 0 y0 y0 y0

y0 y0 y0 0 y1 y1

y0 y0 y0 y1 0 y1

y0 y0 y0 y1 y1 0



















Now: three parameters (y0,y1 andm1). One step.

Stable for “glassy models”.

Do it again, two steps. Three, four,....

∞ number of steps is stable and correct solution for

spin glasses.
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Main features of Sherrington-Kirkpatrick, Mean

Field Spin Glasses phase space.

1. Complex phase space:

T<T T<T
c SG

2. This situation implies the phase transition also

exists for h > 0.

3. Two microscopic configurations of the system at

equilibrium can be very similar or very different.

Measure the overlap

q ≡
1

N

∑

i

σ
(α)
i σ

(β)
i .

P (q) has measurable support when N −→ ∞ for

T < Tc.

P(q)

q
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4. States that characterize the system at

equilibrium obey an ultrametric inequality for the

distance:

δαβ ≃ 1 − qαβ ≡ 1 −
1

N

∑

i

σ
(α)
i σ

(β)
i .

So, not only triangular inequality: (obvious

since δ is a distance) but also UM inequality. All

triangles are isosceles with two equal sides longer

than the shortest side. They can be equilateral

(same state). States turn out to be organized

on a ultrametric tree. How

much of this is shared from 3D spin glass? This is

not clear (I would say much) but maybe it is not

too relevant (very relevant systems in many

contexts are mean field like in nature).

A theoretical “very complex” structure is nowadays

well understood.
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Optimized Monte Carlo Methods: Parallel
Tempering
For Tempering and Parallel Tempering see: EM and Parisi

1992, Tesi et al. 1995; Geuer and Thompson 1994;

Hukushima et al. 1995.

Free Energy Barriers

ComplexThis is a Free Energy landscape

Normal Monte Carlo cannot and does not work.

Difficult to cross. Crucial to cross.

If we change T free energy barriers change. When T

increases barriers become smoother and smoother.

When T reaches Tc the landscape has been flattened.

Idea: let the system walk in temperature space, going

down to the low, interesting T value, and up all the

way, through a chain of intermediate T values up to

some T ≫ Tc.

(A bit like annealing, but needs to be always at thermal

equilibrium: tempering is annealing for free energy).
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Generic class of methods where you modify the

probability distribution π:
∫

πO ∼

∫

νO′ , where ν =
π

ρ
, O′ = ρO

density scaling or umbrella sampling

Here the method is very simple since you have

exactly the Boltzmann distribution at each T

value (no reconstruction is needed: just select

data at the correct T value). The method:

• select a discrete set of T values, T(α) :

α = 0, 1, 2, . . ., M . Here T0 = Tmin
(typically smaller than Tc) and

TM = Tmax (typically larger than Tc).

• Clone your system M times, i.e. consider

M configurations Cα of your system.

• start by assigning T (C0) = T0, T (C1) = T1,

. . ., T (CM ) = TM .

• go ahead with Monte Carlo sweeps.
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Two parts of Monte Carlo sweep:

• Usual MC sweeps on all copies of the system at

fixed temperature.

• Swap two values of T . Consider C(T0) and C(T1).

Propose them to swap T values.

����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������

����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������

P(E)

T’ T’’

Selection of T values range and spreading is the

freedom of the method. If equidistributed T values

and Tmin is fixed from physics parameters are NT

and ∆T .

Use Metropolis to swap

∆S ≡ S′
− S =

(

β′E + βE
)

−
(

βE + β′E′
)

• do previous point for all configuration couples

C(T1) and C(T2), C(T2) and C(T3) etc.
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Choice of

• Tmin: interesting physics + reasonable

CPU time.

• Tmax: “≫” Tc.

• NT : keep high acceptance factor for

tempering swap.

Check thermalization

• Symmetry of PJ(q) (here this is not as a

strong check as in normal Monte Carlo:

spin flip is not the slowest mode anymore).

• Check convergence of observables on

logarithmic time scale.

• Check that acceptance rate for tempering

has been kept high (see earlier).

• Each of the NT copies of the system must

have covered the T(α) space with “many

visits”.
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Multicanonical methods (B. Berg et al.) can

deal with a number of general situations, since

you can change in a complex way the a priori

probability distribution (control for example

first order phase transitions).

For spin glasses multicanonical methods have

probably a slightly lesser performance than

parallel tempering.

Replica MC algorithm by Swendsen and Wang:

very effective in 2D (better than PT),

comparable to PT in 3D.

Open problem: find an effective “clustering

method”, like Swendsen-Wang for Ising model.
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Finite size corrections in the

Sherrington-Kirkpatrick model, T. Aspelmeier,

A. Billoire, M. Moore and E.M.,

arXiv:0711.3445.

An example of results that can be obtained by

joined analytic and numerical advances.

1. Finite size effects.

2. Sample to sample fluctuations.

3. Number of peaks and number of states.

PJ(q)

for a given disorder sample.
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PJ (q) for eight different disorder realizations: here

N = 4096 and T = 0.4000. The symmetry of the plots

around q = 0 is a good test of thermalization.
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Even at finite N the function PJ(q) (many

peaks) is very different from the disorder

average PJ(q) (one plateau and one peak close

to the maximum of the support).

We study numerically the average number of

peaks of PJ(q) as a function of the system size

N :

RN ∼ Nµ

and find that the numerical results are

compatible with the value µ ∼ 1
6 that we

expect from an analytic argument.

From this result we are able to derive a number

of physical properties of the system.

March 2008 Eindhoven Page 21



Analytical and Numerical Studies of Spin Glasses

We argue that:

finite N is equivalent to K steps (finite) in

Parisi scheme.

We use this fact to connect µ to finite size

effects, and to deduce their scaling behavior.

Use (accurate) numerical simulations to check

these ideas, and to find that they do indeed

work.

For example for the internal energy density:

e = eK=∞,N=∞ + deN = eK=∞,N=∞ + O(K−4)

and since we find that K ∼ N
1
6 we expect that

deN ∼ N−η ∼ N− 2
3 .

Numerical simulations and Monte Carlo

methods are crucial when working on

arguments that are very suggestive but not a

theorem.

Numerical data support that η = 2
3 .
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A sketch of the analytic argument.

Correlation function:

GR(x, y) = 〈σxσy〉
2
c

single valley replicon correlation function.

Fourier space. At Gaussian order:

GR(k) ∼ k−2

for T < Tc and T = Tc.

Divergence at k = 0, ξ −→ ∞

(m ∼ ξ−1, and for T > Tc we have that

G(k) ∼ (k2 + m2)−1).

At finite N no zero mass (no phase transition

in finite volume, no infinite correlation length),

and

m2
(N) ∼ N− 1

3

At finite K and infinite volume you also have

a finite mass

m2
(K) ∼ K−2

This implies

K ∼ N
1
6
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When K, level of Parisi breaking, is large

enough in finite volume stability does not

demand to increase it further.

Now: since K ∼ N
1
6 we can use finite K

expansions to compute finite size corrections.

For example:

∆u =

(

1

2
t2 +

5

6
t3 +

1

3
t4

)

−
1

72
t4

(

1

K

)4

+ · · ·

and the Edwards-Anderson order parameter is

to order K

qEA = t + t2 −
2

3(2K + 1)2
t2 .

March 2008 Eindhoven Page 24



Analytical and Numerical Studies of Spin Glasses

Numerically:

• Parallel tempering.

• N up to 4096.

• T down to less than Tc

2 .

• NT up to 100.

• Thermalize and check thermalization.

Detailed checks.

• J = ±1, binary couplings.

• Multi-spin coding.
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Counting peaks is technically not easy.

The same figures we have seen before:
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What is a “peak” if data are noisy?

Local maximum (after smoothing), with care of

additional details.

Top figure on the left: two or four peaks?

Details become maybe irrelevant when N and

R are very large, but we can only go up to

N = O(104) where R is small.
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Figure 1: Scaling plot of E(R) (the average num-

ber of peaks/features determined by visual in-

spection of the individual PJ(q)) as a function

of N , for T = 0.4. The curve is the best fit to

the form E(R) = a + bN c with c = 0.17 ± 0.14.

Very large error, but the exponent is

compatible with the value 1/6.
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Finite size shift in physical observables

The energy
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Figure 2: The internal energy as a function of

N−2/3 for T = 0.4. The line is a linear fit (using

data for N ≥ 256) as a function of N−2/3 to the

data.
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qEA

(see also work by Billoire, Franz and EM, J.

Phys. A 36, 15 (2003)).
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Figure 3: The Edwards–Anderson order param-

eter qEA(N), as defined in the text; here T =

0.5. The line is for the best fit to the data as a

linear function of N−1/3 (for N ≥ 256).

Complex procedure for reconstructing qEA.

Here as our analytic argument suggests finite

size effects are of order N− 1
3 .
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Sample to sample fluctuations of the free

energy and of the internal energy.

We are interested in:

δF 2 = N2
(

E(〈f〉2J) − E(〈f〉J )2
)

∼ N2Υ .

Our theoretical approach suggests that Υ

should be equal to 1
6 . We are also interested in:

δU2 = N2
(

E(〈e〉2J) − E(〈e〉J )2
)

.
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Figure 4: The energy fluctuation δU2/N =

N∆2(T ) as a function of T , for different values

of N .
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Effective exponent. Difficult analysis, large

finite size effects, but important evidence.
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Figure 5: Exponent 1 − ζ as a function of T .

We show with the continuous lines the results of

two best fits, one including all vales of N and

the other including only values N ≥ 128.
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The end.
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Computing Ground States.

Here ground states are (very) interesting.

• Optimization: solution.

• Statistical Mechanics: interesting physics,

connected to low T physics.

Different approaches to ground state

computation:

• Exact. Very effective in 2D with at least

one open boundary. Very limited in 3D.

• Heuristics: typically population dynamics,

genetic algorithms, many scales and

renormalization.
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The exact algorithm.

Mainly useful in 2D (but now maybe also in

3D).

Map the problem of finding the ground state of

a spin glass in a max-cut problem (generically

hard, i.e. difficult, i.e. complete, i.e. you do not

have an algorithm for solving it in polynomial

time in N).

Cut of a graph G = (V, E) (vertexes, edges) is

a partition of its vertexes into two disjoint

subsets V1, V2 ⊂ V and the implied set of edges

between the two parts (each edge can carry a

weight we, and the total weight of the cut is

w(C)).

Max Cut (min Cut): divide vertexes in two

parts so that total weight of edges between the

two parts is max (min).

Generating function of cuts: polynomial
∑

over all cuts

xw(C) .
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From Ising to Cuts

Assign spins to +1 or −1.

V+ = {i ∈ V |σi = +1} V− = {i ∈ V |σi = −1}.

Let C(V+, V−) be the cut of spins +1 and −1.

W ≡
∑

{i,j}∈E Jij is the sum of all edge

weights in G.

H =
∑

{i,j}∈C

Jij −
∑

{i,j}∈(E−C)

Jij = 2w(C) − W

Let the generating function of cuts be

C(G, x) =
∑

cuts in G

ckxw(C) ,

where ck is the number of cuts with weight k.

Z(β) =
∑

{σ}

e−βH

≃
∑

cuts

e−2βw(C)+βW ≃ eβW C(G, e−2β)

Finding the best cut you find the SG ground

state.
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Heuristic approach to GS computation

For example Pal, Houdayer-Martin, EM-Parisi,

Palassini-Young, building on Kernighan-Lin,

Kawashima-Suzuki.

• Local Search.

• Families =⇒ genetic selection.

• Renormalization.

Local Search Flip if “gain”. Single spin flip, double

spin flip...

Renormalization

H ≡ −
∑

σiJijσj −
∑

hiσi .

Consider K such spin configurations (tentative

ground states...): σ
(α)
i . Compare these

configurations, use block spins, and use their

similarities/differences to update them.

Population Dynamics A genetic algorithm allows to

select/improve/variate the K configurations.

Children tend to be better than parents (but keep

variability!).
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3-Sat

Here one (very important!) example among

many: K-SAT (much more, all very connected:

matching problems, traveling salesman, ...).

N Boolean variables {xi}i=1,N xi ∈ {0, 1}

M clauses (constraints) C1, . . .CM consisting

of the OR of 3 distinct variables (or of their

negations).

Example: x3 ∨ x12 ∨ x24

For a given assignment of the xi, a clause is

TRUE or FALSE

Decision problem (SAT)

∃ assignment {xi}i=1,N such that F ({xi}) is

TRUE?

Optimization problem (MAX-SAT)

Find an assignment {xi}i=1,N which minimizes

EGS = the number of FALSE clauses

The problem can be written in terms of a

Statistical Mechanical Hamiltonian, making it

very similar to a Spin Glass.
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Random 3-Max-Sat

Each clause is chosen at random with the flat distribution

among the 23N(N − 1)(N − 2)/3! possibilities.

SAT-UNSAT phase transition

0.0

0.2

0.4

0.6

0.8

1.0

3.6 3.8 4.0 4.2 4.4 4.6 4.8 5 5.2 5.4

Probability that a random sample is satisfiable versus the control

parameter α = M/N

SAT UNSAT

e

α
c

α= 4.267

Ground state energy density e = EGS/N versus α
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Statistical description of the clustering

SAT (E = 0 ) UNSAT (E   >0)
0 0

1 state

E=0 E>0

Many states Many states

E>0

αα   = 4.267α   = 3.921d c  = M/N

Mézard, Parisi, Zecchina and coworkers.

• Order parameters

• Organization of the ground states (para,

spin glass,...)

• Energy landscape (E > EGS , barriers, . . . )

• Thermodynamics (T > 0)
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Computational approaches

Checking for Sat or UNSAT:

Davis-Putnam-Loveland-Logemann algorithm

NO

NO NO

NO

NO

NO NO

NO

NO

NO

SAT

TIME

• Start with all xi unassigned.

• BRANCHING: select one index i and branch (xi = 0

and xi = 1) and treat each sub-problem separately.

• PRUNING: if a node leads to one or more clauses

being FALSE, label the node “NO” and backtrack. If

no backtracking is possible, go to END.

• EXIT at a node if all clauses are TRUE (SAT sample).

END: If all leaves have been examined or pruned and are

all labeled “NO”, the sample is UNSAT.
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Tool for solution of 3-SAT: belief propagation.

Can be improved dramatically, by

understanding details of Replica Symmetry

Breaking: survey propagation (by Mézard,

Parisi and Zecchina, Science 2002).

Thousand-fold increase in the size of practical

problems that can be solve (Mézard, Parisi and

Zecchina, Mézard and Zecchina, PRE 2002,

Brauenstein, Mézard and Zecchina,

cs.cc/0212002).

Very interesting: use all what you know about

the solution to derive an algorithm (see

Swendsen and Wang with cluster algorithm

based on properties of the Fortuin-Kasteleyn

representation of the Ising model partition

function).
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Let ti→a be the probability that variable xi

satisfies clause a in a solution.

Let ia→i be the probability that clause a is

satisfied by another variable than xi.

Belief propagation gives in one direction the

following iterative update equation:

i
(l)
a→i = t

(l)
j→a + t

(l)
k→a − t

(l)
j→at

(l)
k→a .

For the belief propagation equations in the

other direction define

A0
i =

∏

b∈Vi, yi,b=¬xi

ib→i ,

A1
i =

∏

b∈Vi, yi,b=xi

ib→i .

Update equations are

t
(l)
i→a =























i
(l−1)
a→i A1

i

i
(l−1)
a→i A1

i +A0
i

if yi,b = ¬xi

i
(l−1)
a→i

A0
i

i
(l−1)
a→i A0

i +A1
i

if yi,b = xi
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Probabilistic interpretation:

Prob(xi) =
A0

i

A0
i + A1

i

Prob(¬xi) =
A1

i

A0
i + A1

i

A BP-based decimation scheme consists in

iteratively setting the variables with largest

probability to be either true or false.

(This was probabilistic derivation as discussed

and explained by Aurell, Gordon and

Kirkpatrick in cond-mat/0406217).

To arrive at SP one introduces a modified

system of beliefs, where every variable falls into

one of three classes: TRUE in all solutions (1);

FALSE in all solution (0); and TRUE in some

and FALSE in other solutions (free).
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A technique for exact computation of the

partition function of 2D spin glasses.

A. Galluccio, J. Lukic, EM, O. C. Martin and G.

Rinaldi, PRL 2004. Method from Galluccio, Löbl

and Vondrák PRL 2000

Summary:

ZISG2D
β −→ generating function of cuts

Galluccio-Löbl: it is possible to solve the Max Cut problem

in polynomial time for any graph of genus bounded by a

constant. The method provides directly the generating

function of cuts.

−→ Eulerian subgraphs

−→ perfect matching

−→ (on graphs of bounded genus) Pfaffian

computation (square root of the determinant of an

antisymmetric matrix). Need 4g Pfaffians.

−→ compute Pfaffian by using modular arithmetics

(no need for infinite precision).

−→ use the Chinese Remainder Theorem to

reconstruct the exact partition function.
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• Kasteleyn for planar graphs

Galluccio-Löbl for graphs of bounded genus

Perfect matching can be translated to a Pfaffian

computation (of 4g Pfaffian).

• Modular arithmetics. Work modulo some given

prime number.

Theorem: Let P (x) be a polynomial of degree n

with integer coefficients, Φ(p) a finite field of size

p > n, and x0, x1, . . . xn distinct elements of Φ(p).

Then there exists a unique polynomial of degree n

over Φ(p) such that

Q(xi) = P (xi) mod p, i = 0, . . . , n .

The coefficients of Q(x) are equal to the

coefficients of P (x) mod p.

• The Chinese Remainder Theorem.

If we work in a number large enough of fields, i.e.

p1, p2, . . ., pk such that

k
∏

i=1

pi > 2n

we can reconstruct the exact polynomial, i.e. the

exact partition function. Great!
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Summary of the Algorithm

1. Find prime numbers pi such that

k
∏

i=1

pi > 2V .

For each of them repeat steps 2, 3, 4 performing all

operations in Φ(pi).

2. Select (m + 1) distinct elements xj of Φ(pi). For

each of them repeat step 3.

3. Write the 4g matrices encoding the relevant

orientations of the modified graph. This gives Zβ

(in the point eβ = xj).

4. From these values of Zβ( mod pi) in given points

interpolate in Φ(pi) and get the coefficients of the

polynomial.

5. Apply the Chinese Remainder Theorem: compose

the results from each Φ(pi) to get the full Zβ .

Complexity: O(V ) finite fields, O(V ) evaluations in

each field (for edge weights bounded by a constant),

O(V
3
2 ) operations for a single evaluation of a

polynomial =⇒ Total O(V
7
2 ).
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J. Lukic, A. Galluccio, EM, O. Martin, G. Rinaldi.

2D Ising Spin Glass, PBC, J = ±1.

For example:

L S

6 400000

10 100000

30 10000

40 1000

50 300

(and similar values for different L values).

FJ(β) = −
1

β
log ZJ(β) , UJ(β) = 〈HJ〉 ,

cV = L−2 dUJ

dT
,

and average over samples. We mainly look at

cV (irrelevant constants are already

subtracted).
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cV ∼ β2e−Aβ

(we have checked that p = 2 is the best available choice for

power corrections).

log
cV

β2
∼ −Aβ

y ≡

(

log
cV

β2
+ 4β

)

= (4 − A) β

So if we have naive scaling y ∼ constant in the scaling

regime. If not: slope is (4 − A).

0

2

4

6

8

10

12

2 3 4 5 6 7 8

ln
 (

T
2  c

v)
 +

 4
/T

1/T

L=10
L=12
L=14
L=20
L=30
L=40
L=50

Small T : saturation at constant value.

Intermediate T : A ∼ 2.

Straight line: best fit β ∈ [2.5, 5.5] gives A = 2.02 ± 0.03.
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Ultrametricity
I want to go back at last to ultrametricity, for sake

of discussing a further technique (clustering).

Ultrametricity (UM) needs lot of space to emerge:

it is really difficult to verify it on finite lattices.

Cacciuto, EM, Parisi 1996, Franz, Ricci-Tersenghi 1999.

Ultrametricity:

d13 ≤ d12 + d23 −→ d13 ≤ max (d12, d23) ,

from triangular to (stronger) ultrametrical.

UM is an absolutely crucial feature of Parisi

continuous RSB scheme. Consider two spin

configurations α and β. Define a distance d from:

d2
α,β =

1

2

(

1 −
qα,β

qEA

)

equal to zero if q = qEA, equal to 1 if q = −qEA.

Overlap:

qα,β =
1

V

V
∑

i=1

σα
i σβ

i .
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Testing UM with Clustering

Clustering results of numerical simulations.

Domany, Hed, Hartmann, Stauffer 2001, Domany, Hed,

Palassini, Young 2001.

We try to apply quantitative testing techniques

Ciliberti, Marinari. We test MF: we know

detecting UM is very difficult.

We find that the Z2 symmetry has to be

removed before any quantitative testing. This

is very important: the ±1 degeneracy

completely obfuscates the results of the UM

tests (see later).
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Clustering (here for SK model with Gaussian

couplings).

First you produce independent configurations (save

∀1000 full MC plus tempering sweeps)

configurations at different (low) T values. N up to

512. T down to 0.2 (very low).

Set of configurations {CT̃
t }. Compute overlaps at

T = T̃ from σT̃
t′ (i)σ

T̃
t′′(j), and since we are at

equilibrium and configurations are uncorrelated

this is a stationary sequence.

Clustering: partition data in “natural classes”’:

• impose an ultrametric structure;

• check it it is natural.

Partition N objects into K clusters so that two

points that belong to the same group are more

similar than objects belonging to different groups.

Here we use, for the case q ∈ (−1,+1) the

definition d ∼ 1−q

2
∈ (0, 1).
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Hierarchical cluster algorithm −→

dendogram. 0
1

2
3

4
5

There are many

clustering algorithms one could use. Ward

algorithm looks very suitable.

Fuse two clusters (individual objects are initial

clusters).

Initial partition: one object per cluster.

Compute Dα,β among all “clusters”. Fuse the

two closer clusters:

γ = “α ∪ β′′

Now define effective distance from this cluster

to other clusters. For the process α + β −→ γ,

let nα be the number of objects in cluster α.

For all other cluster η we define

N ≡ nα + nβ + nη. and

dγη =
nα + nη

N
dαη +

nβ + nη

N
dβη −

nη

N
dαβ
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φ(γ) ≡ dα,β (φinitial configuration (α) = 0)

3

2

1

φ=ρ
1,2

φ=ρ
11,3

11

δ(γ) =
∑

α,β∈γ

D2
α,β

distance of all couples of configurations in a cluster.

Clusters formed earlier have lower φ and δ.

Output of the procedure is a dendogram. Leaves

are configurations. Ascending the tree you coarsen.

UM is built in.

Testing: are we detecting a real UM? A valid

clustering is equivalent to the presence of an

ultrametric structure. So, we have to check validity

of the clustering.
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Visual observation does not help much... (but scale is

different).

T=0.2 0
1

2
3

4

T=0.5 0
1

2
3

4
5

T=0.8 0
1

2
3

T=1.5 0.
0

0.
5

1.
0

1.
5
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A different disorder sample.

T=0.2 0
1

2
3

4
5

T=0.5 0
1

2
3

T=0.8 0
2

4
6

8

T=1.5 0.
0

0.
5

1.
0

1.
5
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We summarize:

dα,β =
1 − qα,β

2

by application of a cluster algorithm we obtain

a

DENDOGRAM

i.e. an ordering of the configurations enriched

by a (cophenetic) distance

C  , C
1 2

d

ordered C

ordered C

And now we can look at some figures.
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SK, N=512, T = Tc/2

0
5

10

There is something good here.
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SK, N=512, T = Tc/2

0
2

4
6

8

But much less here.
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We discuss an important indicator, that tells us about

the validity of the hierarchical structure.

dC
α,β

cophenetic distance (UM by definition), i.e. the

distance on the dendogram. dα,β is the true distance.

K ≡

1
M2

∑

α,β
dC

α,β
dα,β − dC d

σdσc

It must be close to one to support the presence of a

hierarchical structure (here there is not arbitrary

threshold in the definition).

K is very used in numerical taxonomy. Empirically 0.9

is not enough (can establish accurately levels with MC

as before).

Again, in presence of the Z2 symmetry, K is very high

and misleading. After removing it:

low, large errors, not very N dependent.

Detection on UM on “medium” size lattices is, even for

MF models, very difficult or, better, impossible.
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