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”REGULAR” NEAR-MINIMAL PROBLEM

- Cost function F : R
n → R reaching its minimum at x∗.

- Relation between the distance δ = |x − x∗| and the difference

ε = F (x) − F (x∗):

if F is ”smooth”,

ε(δ) = inf{F (x) − F (x∗), |x − x∗| ≥ δ} ∼ Cδ2.

=⇒ the scaling exponent corresponding to this problem is 2.



NEAR-MINIMAL SOLUTIONS IN COMBINATORIAL OPTIMIZATION

[Aldous-Percus (2003)]

Consider a combinatorial optimization problem with n constituents under a

suitable probability model.

As n goes to infinity, how cost increases when the optimal solution undergoes a

small perturbation δ ?

Statistical physics suggests that there exists a scaling exponent such that the cost

increases as

δα.

New classification of algorithms, intuition suggests that

- low value of α ⇒ near-optimal solutions obtained via ’local changes’ ⇒

algorithmically easy.

- high value of α ⇒ near-optimal solutions obtained via long range chages (?)

⇒ algorithmically hard.



A TRIVIAL EXAMPLE

Let (ξi, i ≥ 1) be i.i.d. copies of a strictly positive random variable ξ, and

Mn = max
A⊆{1,2,...,n}

∑

i∈A

(ξi − 1) = max
A⊆{1,2,...,n}

f(A).

with f(A) =
∑

i 1(i ∈ A)(ξi − 1).

The maximum is attained by choosing

Aopt

n = {i ∈ [n] : ξi > 1}.



PERTURBATION OF THE OPTIMAL SET

Aopt

n • − • − ◦ − • − ◦ − • − • − ◦ − • − ◦ − •

B • − • − ◦ − • − • − ◦ − ◦ − • − • − ◦ − •

=⇒ Aopt

n4B = 4. Note that a.s.

f(Aopt

n ) − f(B) > 0.



SCALING EXPONENT

We define the random variable:

εn(δ) = min
B⊆[n]

{

f(B) − f(Aopt

n )

n
: |B∆Aopt

n | ≥ δn

}

Do we have, a.s.

ε(δ) := lim
n

εn(δ) ∼ Cδα?

What is the value of α ?

Universality paradigm: α should not depend on the details of the model.



A TRIVIAL EXAMPLE

Now, fix 0 < δ < 1 and

M ′
n = max

A′⊆[n]

∑

i∈A′

(ξi − 1)

subject to |A′ 4 Aopt

n | ≥ δn

The maximum is attained by Bopt

n = Aopt

n 4 D where D is the set of indices of the

dδne smallest values of |ξi − 1|.

εn(δ) = n−1(Mn − M ′
n).



A TRIVIAL EXAMPLE

Assume that ξ has a continuous density h. So as n → ∞

εn(δ) →L1
ε(δ) :=

∫ 1+a(δ)

1−a(δ)

|x − 1|h(x) dx

where a(δ) is defined by

δ =

∫ 1+a(δ)

1−a(δ)

h(x) dx.

So by continuity of h(x), and assuming 0 < h(1) < ∞, as δ ↓ 0 we have

a(δ) ∼
δ

2h(1)
; ε(δ) ∼ a2(δ)h(1) ∼

δ2

4h(1)

⇒ This is the desired “scaling exponent = 2” result !



NEAR-MINIMAL SOLUTION IN COMBINATORIAL OPTIMIZATION

Under a suitable probabilistic model, heuristic / simulation suggest that

(i) For the NK-model, near minimal spanning tree, the scaling exponent is 2.

(ii) For the travelling salesman problem, minimal pair matching, the scaling

exponent is 3.

=⇒ scaling exponent 2 : algorithmically easy problem

=⇒ scaling exponent 3 : algorithmically hard problem

For (i) we have rigorous proofs. For (ii) open question.



ILLUSTRATIVE EXAMPLE

Let (ξi, i ≥ 1) be i.i.d. copies of a strictly positive random variable ξ, and

Mn = max
A⊆[n]

(

|A| −
n−1
∑

i=1

ξi1(i ∈ A, i + 1 ∈ A)

)

= max
A⊆[n]

f(A).

=⇒ Mn/n ∈ [1/2, 1].

We may prove that if ξi + ξi+1 < 1 for some 1 ≤ i ≤ n − 2 then a.s. Aopt

n is

unique.

We will assume for simplicity that ξ is an exp(λ) variable.

=⇒ A.s., for n large enough, we may define Aopt

n as the unique optimal set.



SCALING EXPONENT

Now, fix 0 < δ < 1 and

M ′
n = max

A′⊆[n]
f(A′)

subject to |A′ 4 Aopt

n | ≥ δn

and then set

εn(δ) = n−1(Mn − M ′
n).

Do we have:

lim
n

εn(δ) = ε(δ) ∼ Cδ2 ?



ANALYSIS OF THE OPTIMUM

Recall Mn = maxA⊆{1,2,...,n}

(

|A| −
∑n−1

i=1 ξi1(i ∈ A, i + 1 ∈ A)
)

.

We assume for simplicity that ξ is an exponential variable with intensity λ.

Theorem 1. Almost surely and in L1,

lim
n→∞

Mn

n
= c(λ) = (1 − e−λ)−1 − λ−1.

−→ limλ→∞ c(λ) = 1, limλ→0 c(λ) = 1/2.

=⇒ proof based on a simple instance of Aldous’ formulation of the cavity method.



IDEA OF PROOF: LEFT SIDED RECURSION

Define V L
1 = 1, WL

1 = 0, and

V L
i = max

i∈A⊆{1,...,i−1,i}

(

|A| −
i−1
∑

j=1

ξj1(j ∈ A, j + 1 ∈ A)

)

WL
i = max

i 6∈A⊆{1,...,i−1,i}

(

|A| −
i−1
∑

j=1

ξj1(j ∈ A, j + 1 ∈ A)

)

XL
i = V L

i − WL
i .

Then Mn = max(V L
n ,WL

n ), and by induction 0 ≤ XL
i ≤ 1,

XL
i+1 = 1 − min(XL

i , ξi).



IDEA OF PROOF: RIGHT SIDED RECURSION

Define similarly, V R
n,n = 1, WR

n,n = 0 and

V R
n,i = max

i∈A⊆{i,i+1,...,n}

(

|A| −
n−1
∑

j=i

ξj1(j ∈ A, j + 1 ∈ A)

)

WR
n,i = max

i 6∈A⊆{i,i+1,...,n}

(

|A| −
n−1
∑

j=i

ξj1(j ∈ A, j + 1 ∈ A)

)

,

XR
n,i = V R

n,i − WR
n,i.

Recursion as i decreases

XR
n,i−1 = 1 − min(XR

n,i, ξi−1).



IDEA OF PROOF: CONSTRUCTION OF Aopt

n

−i − (i + 1)− absolute benefit relative benefit when used

− • −− •− V L + V R − ξ XL + XR − ξ if ξ < min(XL, XR)

− • −− ◦− V L + WR XL if XR < min(XL, ξ)

− ◦ −− •− WL + V R XR if XL < min(XR, ξ)

− ◦ −− ◦− WL + WR 0 never.



IDEA OF PROOF: STATIONARY INFINITE PROCESS

The recursion rule satisfied by XL
i and XR

n,i does not depend on n. We may

define a stationary process ((XL
i , ξi, X

R
i+1),−∞ < i < ∞) satisfying the

same recursion rule:

XL
i = 1 − min(XL

i−1, ξi−1)

XR
i = 1 − min(XR

i+1, ξi).

This type of recursion equation is called a Recursive Distribution Equation (RDE).

=⇒ For each i ∈ Z, XL
i , ξi and XR

i+1 are independent variables.

=⇒ It is possible to compute the stationary distribution of this process.

=⇒ We define an infinite set Aopt using the construction table.



IDEA OF PROOF: LOCAL WEAK CONVERGENCE

Lemma 1. Let Un be uniform on {1, . . . , n}. As n → ∞

((XL
Un+i, ξUn+i, X

R
n,Un+i+1, 1(Un + i ∈ Aopt

n )), −∞ < i < ∞)

d
→ ((XL

i , ξi, X
R
i+1, 1(i ∈ Aopt)), −∞ < i < ∞)

where the left side is defined arbitrarily for Un + i 6∈ {1, . . . , n} and where

convergence in distribution is with respect to the usual product topology on infinite

sequence space.



IDEA OF PROOF: IDENTIFICATION OF THE LIMIT

Recall that Mn = maxA⊆{1,2,...,n}

(

|A| −
∑n−1

i=1 ξi1(i ∈ A, i + 1 ∈ A)
)

.

The local weak convergence lemma implies that

c(λ) = lim
n→∞

E
Mn

n
= P(0 ∈ Aopt) − Eξ1(0 ∈ Aopt, 1 ∈ Aopt).



NEAR MINIMAL SOLUTION

Recall that f(A) = |A| −
∑

i ξi1(i ∈ A, i + 1 ∈ A) and

εn(δ) = min
B⊆{1,··· ,n}

{

f(B) − f(Aopt

n )

n
: |B∆Aopt

n | ≥ δn

}

.

Theorem 2. ε(δ) = limn Eεn(δ) exists for all 0 < δ < 1, and

lim sup
δ↓0

δ−2ε(δ) < ∞,

and

lim inf
δ↓0

δ−2ε(δ) > 0.

=⇒ Scaling exponent is 2.



IDEA OF PROOF: LAGRANGE MULTIPLIER

We introduce the Lagrange multiplier θ > 0, and

max
B⊆{1,...,n}

(

|B| −
∞
∑

i=−∞

ξi1(i ∈ B, i + 1 ∈ B) + θ|B4Aopt

n |

)

,

and define Bopt

n (θ) as the corresponding optimizing set.

We extend our previous analysis to this new optimization problem.

We define a new pair of random variables (ZL(θ), ZR(θ)) playing the role of

(XL, XR).

−→ XL,R = ZL,R(0) and Aopt

n = Bopt

n (0).



IDEA OF PROOF: QUINTUPLE PROCESS

We define a stationary quintuple process

((ZL
i (θ), XL

i , ξi, X
R
i+1, Z

R
i+1(θ)),−∞ < i < ∞).

−→ The infinite sets Aopt and Bopt(θ) are built thanks to the quintuple process

according to a construction table, and

{i ∈ Bopt(θ)} is σ((ZL
i (θ), XL

i , ξi, X
R
i+1, Z

R
i+1(θ))-measurable.

Let Ji = 1(i /∈ Aopt) − 1(i ∈ Aopt), we find

ZL
i = 1 − min(ZL

i−1, ξi−1)1(ZL
i−1 ≥ 0) + θJi

ZR
i = 1 − min(ZL

i+1, ξi)1(ZL
i+1 ≥ 0) + θJi

−→ A new RDE for (ZL, ZR) that we cannot solve analytically.



IDEA OF PROOF: NEAR-MINIMAL SOLUTIONS

The proportion of items at which Aopt and Bopt differ is

δ(θ) = P({0 ∈ Aopt}4{0 ∈ Bopt})

= P
(

{XL > min(XR, ξ)}4{ZL − θJ0 > min((ZR − θJ1)
+, ξ)}

)

and the difference in mean benefit per item between Aopt and Bopt is

ε̄(θ) = E[1(0 ∈ Aopt) − ξ1(0 ∈ Aopt, 1 ∈ Aopt)]

−E[1(0 ∈ Bopt) − Eξ1(0 ∈ Bopt, 1 ∈ Bopt)]

= E[complicated expression].

We have

lim
n→∞

Eεn(δ(θ)) = ε̄(θ).



IDEA OF PROOF: VARIATIONAL ANALYSIS

We write

ZL,R − θJ0 = XL,R + θDL,R(θ).

Define X = (XL, ξ,XR) and D(θ) = (DL(θ), 0, DR(θ)), then

δ(θ) = P(X ∈ Σ, X + θD(θ) /∈ Σ)

+P(X + θD(θ) ∈ Σ, X /∈ Σ)

with

Σ =
{

(xL, t, xR) ∈ R
3 : xL > min(t,max(0, xR))

}

.



IDEA OF PROOF: VARIATIONAL ANALYSIS

⇒ Let F (θ) = P(X ∈ Σ, X + θD(θ) /∈ Σ), we prove that

δ(θ) ∼ 2F ′(0)θ

and there is an integral expression for F ′(0).

=⇒ Similarly, we could try to check that ε̄(θ) ∼ G′′(0)θ2.

However computation is hard...

We using a totally different probabilistic argument, we prove a weaker

C1θ
2 ≤ ε̄(θ) ≤ C2θ

2.



IDEA OF PROOF: UPPER AND LOWER BOUND

- UPPER BOUND:

lim sup δ−2ε(δ) < ∞: we identify a local configuration • ◦ • ◦ • ◦ • on

{i, · · · , i + K}which can be replaced by • • ◦ • ◦ • • at a low extra cost

1 − ξi − ξi+K−1.

- LOWER BOUND:

lim inf δ−2ε(δ) > 0: we prove that C1θ
2 ≤ ε̄(θ) by expressing ε̄(θ) as a

mean cost increase over a block of finite random length. We then lower bound

the mean increase cost if Bopt and Aopt differ over a block by a combinatorial

argument.



SCALING OF THE LAGRANGE PARAMETER

For the NK-model / minimal spanning tree of a Poisson point process on R
d:

δ(θ) � θ and ε̄(θ) � θ2.

−→ scaling exponent 2.

Under a suitable probabilistic model, for the traveling salesman problem / minimal

pair matching, simulation suggests [Aldous and Percus (2003)]

δ(θ) � θ1/2 and ε̄(θ) � θ3/2.

−→ scaling exponent 3.

There exists a related RDE for these optimization problems [Aldous (2001)] but no

mathematical explanation of this phenomenon.



THE KAUFFMAN-LEVIN NK-MODEL

The Kauffman-Levin NK model of random fitness landscape has attracted

extensive literature in statistical physics.

Let K ≥ 2 and

Mn = max
A⊆[n]

∑

i∈A

−Wi(A[i,i+K]),

where A[i,i+K] denotes the set A restricted on the interval {i, · · · , i + K} and

(Wi(B), i ≥ 1, B ⊆ [K + 1])

are independent exp(1) random variables.

⇒ This is algorithmically easy via dynamic programming.

⇒ By Kingman’s Subadditive Theorem there is an a.s. limit n−1Mn → cK .



THE KAUFFMAN-LEVIN NK-MODEL: NEAR MINIMAL SOLUTION

Now, fix 0 < δ < 1 and

M ′
n = max

A′⊆[n]

∑

i∈A′

−Wi(A[i,i+K])

subject to |A′ 4 Aopt

n | ≥ δn

and then set

εn(δ) = n−1(Mn − M ′
n)

We expect the existence of the a.s. limit

ε(δ) = lim
n→∞

εn(δ)

and simulation and heuristics suggest that, as δ ↓ 0

ε(δ) ∼ Cδ2.

⇒ Again “Scaling exponent = 2” !


