DYNAMIC PROGRAMMING OPTIMIZATION OVER RANDOM DATA: THE SCALING EXPONENT FOR NEAR-OPTIMAL SOLUTIONS

Marc Lelarge

INRIA-ENS
Joint work with David Aldous (UC Berkeley) and Charles Bordenave (Toulouse)
YEP - EURANDOM

"REGULAR" NEAR-MINIMAL PROBLEM

- Cost function $F: \mathbb{R}^{n} \rightarrow \mathbb{R}$ reaching its minimum at x^{*}.
- Relation between the distance $\delta=\left|x-x^{*}\right|$ and the difference $\varepsilon=F(x)-F\left(x^{*}\right):$ if F is "smooth",

$$
\varepsilon(\delta)=\inf \left\{F(x)-F\left(x^{*}\right),\left|x-x^{*}\right| \geq \delta\right\} \sim C \delta^{2}
$$

\Longrightarrow the scaling exponent corresponding to this problem is 2.

NEAR-MINIMAL SOLUTIONS IN COMBINATORIAL OPTIMIZATION

[Aldous-Percus (2003)]
Consider a combinatorial optimization problem with n constituents under a suitable probability model.

As n goes to infinity, how cost increases when the optimal solution undergoes a small perturbation δ ?

Statistical physics suggests that there exists a scaling exponent such that the cost increases as

$$
\delta^{\alpha}
$$

New classification of algorithms, intuition suggests that

- Iow value of $\alpha \Rightarrow$ near-optimal solutions obtained via 'local changes' \Rightarrow algorithmically easy.
- high value of $\alpha \Rightarrow$ near-optimal solutions obtained via long range chages (?) \Rightarrow algorithmically hard.

A TRIVIAL EXAMPLE

Let $\left(\xi_{i}, i \geq 1\right)$ be i.i.d. copies of a strictly positive random variable ξ, and

$$
M_{n}=\max _{A \subseteq\{1,2, \ldots, n\}} \sum_{i \in A}\left(\xi_{i}-1\right)=\max _{A \subseteq\{1,2, \ldots, n\}} f(A) .
$$

with $f(A)=\sum_{i} 1(i \in A)\left(\xi_{i}-1\right)$.

The maximum is attained by choosing

$$
A_{n}^{\text {opt }}=\left\{i \in[n]: \xi_{i}>1\right\} .
$$

PERTURBATION OF THE OPTIMAL SET

$\Longrightarrow A_{n}^{\text {opt }} \triangle B=4$. Note that a.s.

$$
f\left(A_{n}^{\text {opt }}\right)-f(B)>0 .
$$

SCALING EXPONENT

We define the random variable:

$$
\varepsilon_{n}(\delta)=\min _{B \subseteq[n]}\left\{\frac{f(B)-f\left(A_{n}^{\text {opt }}\right)}{n}:\left|B \Delta A_{n}^{\text {opt }}\right| \geq \delta n\right\}
$$

Do we have, a.s.

$$
\varepsilon(\delta):=\lim _{n} \varepsilon_{n}(\delta) \sim C \delta^{\alpha} ?
$$

What is the value of α ?
Universality paradigm: α should not depend on the details of the model.

A TRIVIAL EXAMPLE

Now, fix $0<\delta<1$ and

$$
\begin{aligned}
& \quad M_{n}^{\prime}=\max _{A^{\prime} \subseteq[n]} \sum_{i \in A^{\prime}}\left(\xi_{i}-1\right) \\
& \text { subject to }\left|A^{\prime} \triangle A_{n}^{\text {opt }}\right| \geq \delta n
\end{aligned}
$$

The maximum is attained by $B_{n}^{\text {oot }}=A_{n}^{\text {opt }} \triangle D$ where D is the set of indices of the $\lceil\delta n\rceil$ smallest values of $\left|\xi_{i}-1\right|$.

$$
\varepsilon_{n}(\delta)=n^{-1}\left(M_{n}-M_{n}^{\prime}\right) .
$$

A TRIVIAL EXAMPLE

Assume that ξ has a continuous density h. So as $n \rightarrow \infty$

$$
\varepsilon_{n}(\delta) \rightarrow_{L_{1}} \varepsilon(\delta):=\int_{1-a(\delta)}^{1+a(\delta)}|x-1| h(x) d x
$$

where $a(\delta)$ is defined by

$$
\delta=\int_{1-a(\delta)}^{1+a(\delta)} h(x) d x
$$

So by continuity of $h(x)$, and assuming $0<h(1)<\infty$, as $\delta \downarrow 0$ we have

$$
a(\delta) \sim \frac{\delta}{2 h(1)} ; \quad \varepsilon(\delta) \sim a^{2}(\delta) h(1) \sim \frac{\delta^{2}}{4 h(1)}
$$

\Rightarrow This is the desired "scaling exponent $=2$ " result !

NEAR-MINIMAL SOLUTION IN COMBINATORIAL OPTIMIZATION

Under a suitable probabilistic model, heuristic / simulation suggest that
(i) For the NK-model, near minimal spanning tree, the scaling exponent is 2.
(ii) For the travelling salesman problem, minimal pair matching, the scaling exponent is 3 .
\Longrightarrow scaling exponent 2 : algorithmically easy problem
\Longrightarrow scaling exponent 3 : algorithmically hard problem

For (i) we have rigorous proofs. For $(i i)$ open question.

ILLUSTRATIVE EXAMPLE

Let $\left(\xi_{i}, i \geq 1\right)$ be i.i.d. copies of a strictly positive random variable ξ, and

$$
M_{n}=\max _{A \subseteq[n]}\left(|A|-\sum_{i=1}^{n-1} \xi_{i} 1(i \in A, i+1 \in A)\right)=\max _{A \subseteq[n]} f(A) .
$$

$\Longrightarrow M_{n} / n \in[1 / 2,1]$.
We may prove that if $\xi_{i}+\xi_{i+1}<1$ for some $1 \leq i \leq n-2$ then a.s. $A_{n}^{\text {oot }}$ is unique.

We will assume for simplicity that ξ is an $\exp (\lambda)$ variable.
\Longrightarrow A.s., for n large enough, we may define $A_{n}^{\text {opt }}$ as the unique optimal set.

SCALING EXPONENT

Now, fix $0<\delta<1$ and

$$
\begin{gathered}
M_{n}^{\prime}=\max _{A^{\prime} \subseteq[n]} f\left(A^{\prime}\right) \\
\text { subject to }\left|A^{\prime} \triangle A_{n}^{\text {op }}\right| \geq \delta n
\end{gathered}
$$

and then set

$$
\varepsilon_{n}(\delta)=n^{-1}\left(M_{n}-M_{n}^{\prime}\right) .
$$

Do we have:

$$
\lim _{n} \varepsilon_{n}(\delta)=\varepsilon(\delta) \sim C \delta^{2} \quad ?
$$

ANALYSIS OF THE OPTIMUM

Recall $M_{n}=\max _{A \subseteq\{1,2, \ldots, n\}}\left(|A|-\sum_{i=1}^{n-1} \xi_{i} 1(i \in A, i+1 \in A)\right)$.
We assume for simplicity that ξ is an exponential variable with intensity λ.

Theorem 1. Almost surely and in L^{1},

$$
\lim _{n \rightarrow \infty} \frac{M_{n}}{n}=c(\lambda)=\left(1-e^{-\lambda}\right)^{-1}-\lambda^{-1}
$$

$\longrightarrow \lim _{\lambda \rightarrow \infty} c(\lambda)=1, \lim _{\lambda \rightarrow 0} c(\lambda)=1 / 2$.
\Longrightarrow proof based on a simple instance of Aldous' formulation of the cavity method.

IDEA OF PROOF: LEFT SIDED RECURSION

Define $V_{1}^{L}=1, W_{1}^{L}=0$, and

$$
\begin{aligned}
V_{i}^{L} & =\max _{i \in A \subseteq\{1, \ldots, i-1, i\}}\left(|A|-\sum_{j=1}^{i-1} \xi_{j} 1(j \in A, j+1 \in A)\right) \\
W_{i}^{L} & =\max _{i \notin A \subseteq\{1, \ldots, i-1, i\}}\left(|A|-\sum_{j=1}^{i-1} \xi_{j} 1(j \in A, j+1 \in A)\right) \\
X_{i}^{L} & =V_{i}^{L}-W_{i}^{L} .
\end{aligned}
$$

Then $M_{n}=\max \left(V_{n}^{L}, W_{n}^{L}\right)$, and by induction $0 \leq X_{i}^{L} \leq 1$,

$$
X_{i+1}^{L}=1-\min \left(X_{i}^{L}, \xi_{i}\right) .
$$

IDEA OF PROOF: RIGHT SIDED RECURSION

Define similarly, $V_{n, n}^{R}=1, W_{n, n}^{R}=0$ and

$$
\begin{aligned}
V_{n, i}^{R} & =\max _{i \in A \subseteq\{i, i+1, \ldots, n\}}\left(|A|-\sum_{j=i}^{n-1} \xi_{j} 1(j \in A, j+1 \in A)\right) \\
W_{n, i}^{R} & =\max _{i \notin A \subseteq\{i, i+1, \ldots, n\}}\left(|A|-\sum_{j=i}^{n-1} \xi_{j} 1(j \in A, j+1 \in A)\right), \\
X_{n, i}^{R} & =V_{n, i}^{R}-W_{n, i}^{R} .
\end{aligned}
$$

Recursion as i decreases

$$
X_{n, i-1}^{R}=1-\min \left(X_{n, i}^{R}, \xi_{i-1}\right) .
$$

IDEA OF PROOF: CONSTRUCTION OF $A_{n}^{\text {on }}$

$-i-(i+1)-$ absolute benefit relative benefit when used

$-\bullet--\bullet-$	$V^{L}+V^{R}-\xi$	$X^{L}+X^{R}-\xi$	if $\xi<\min \left(X^{L}, X^{R}\right)$
$-\bullet--\circ-$	$V^{L}+W^{R}$	X^{L}	if $X^{R}<\min \left(X^{L}, \xi\right)$
$-\circ--\bullet-$	$W^{L}+V^{R}$	X^{R}	if $X^{L}<\min \left(X^{R}, \xi\right)$
$-\circ--\circ-$	$W^{L}+W^{R}$	0	never.

IDEA OF PROOF: STATIONARY INFINITE PROCESS

The recursion rule satisfied by X_{i}^{L} and $X_{n, i}^{R}$ does not depend on n. We may define a stationary process $\left(\left(X_{i}^{L}, \xi_{i}, X_{i+1}^{R}\right),-\infty<i<\infty\right)$ satisfying the same recursion rule:

$$
\begin{array}{r}
X_{i}^{L}=1-\min \left(X_{i-1}^{L}, \xi_{i-1}\right) \\
X_{i}^{R}=1-\min \left(X_{i+1}^{R}, \xi_{i}\right) .
\end{array}
$$

This type of recursion equation is called a Recursive Distribution Equation (RDE).
\Longrightarrow For each $i \in \mathbb{Z}, X_{i}^{L}, \xi_{i}$ and X_{i+1}^{R} are independent variables.
\Longrightarrow It is possible to compute the stationary distribution of this process.
\Longrightarrow We define an infinite set $A^{\text {opt }}$ using the construction table.

IDEA OF PROOF: LOCAL WEAK CONVERGENCE

Lemma 1. Let U_{n} be uniform on $\{1, \ldots, n\}$. As $n \rightarrow \infty$

$$
\begin{gathered}
\left(\left(X_{U_{n}+i}^{L}, \xi_{U_{n}+i}, X_{n, U_{n}+i+1}^{R}, 1\left(U_{n}+i \in A_{n}^{o p t}\right)\right),-\infty<i<\infty\right) \\
\quad \xrightarrow{d}\left(\left(X_{i}^{L}, \xi_{i}, X_{i+1}^{R}, 1\left(i \in A^{\text {ott }}\right)\right),-\infty<i<\infty\right)
\end{gathered}
$$

where the left side is defined arbitrarily for $U_{n}+i \notin\{1, \ldots, n\}$ and where convergence in distribution is with respect to the usual product topology on infinite sequence space.

IDEA OF PROOF: IDENTIFICATION OF THE LIMIT

Recall that $M_{n}=\max _{A \subseteq\{1,2, \ldots, n\}}\left(|A|-\sum_{i=1}^{n-1} \xi_{i} 1(i \in A, i+1 \in A)\right)$.
The local weak convergence lemma implies that

$$
c(\lambda)=\lim _{n \rightarrow \infty} \mathbb{E} \frac{M_{n}}{n}=\mathbb{P}\left(0 \in A^{\text {opt }}\right)-\mathbb{E} \xi 1\left(0 \in A^{\text {opt }}, 1 \in A^{\text {opt }}\right) .
$$

NEAR MINIMAL SOLUTION

Recall that $f(A)=|A|-\sum_{i} \xi_{i} 1(i \in A, i+1 \in A)$ and

$$
\varepsilon_{n}(\delta)=\min _{B \subseteq\{1, \cdots, n\}}\left\{\frac{f(B)-f\left(A_{n}^{\text {opt }}\right)}{n}:\left|B \Delta A_{n}^{\text {opt }}\right| \geq \delta n\right\} .
$$

Theorem 2. $\varepsilon(\delta)=\lim _{n} \mathbb{E} \varepsilon_{n}(\delta)$ exists for all $0<\delta<1$, and

$$
\limsup _{\delta \downarrow 0} \delta^{-2} \varepsilon(\delta)<\infty
$$

and

$$
\liminf _{\delta \downarrow 0} \delta^{-2} \varepsilon(\delta)>0
$$

\Longrightarrow Scaling exponent is 2 .

IDEA OF PROOF: LAGRANGE MULTIPLIER

We introduce the Lagrange multiplier $\theta>0$, and

$$
\max _{B \subseteq\{1, \ldots, n\}}\left(|B|-\sum_{i=-\infty}^{\infty} \xi_{i} 1(i \in B, i+1 \in B)+\theta\left|B \triangle A_{n}^{\text {opt }}\right|\right),
$$

and define $B_{n}^{\text {opt }}(\theta)$ as the corresponding optimizing set.
We extend our previous analysis to this new optimization problem.
We define a new pair of random variables $\left(Z^{L}(\theta), Z^{R}(\theta)\right)$ playing the role of $\left(X^{L}, X^{R}\right)$.
$\longrightarrow X^{L, R}=Z^{L, R}(0)$ and $A_{n}^{\text {opt }}=B_{n}^{\text {opt }}(0)$.

IDEA OF PROOF: QUINTUPLE PROCESS

We define a stationary quintuple process $\left(\left(Z_{i}^{L}(\theta), X_{i}^{L}, \xi_{i}, X_{i+1}^{R}, Z_{i+1}^{R}(\theta)\right),-\infty<i<\infty\right)$.
\longrightarrow The infinite sets $A^{\text {opt }}$ and $B^{\text {opt }}(\theta)$ are built thanks to the quintuple process according to a construction table, and

$$
\left\{i \in B^{\text {opt }}(\theta)\right\} \text { is } \sigma\left(\left(Z_{i}^{L}(\theta), X_{i}^{L}, \xi_{i}, X_{i+1}^{R}, Z_{i+1}^{R}(\theta)\right)\right. \text {-measurable. }
$$

Let $J_{i}=1\left(i \notin A^{\text {opt }}\right)-1\left(i \in A^{\text {opt }}\right)$, we find

$$
\begin{aligned}
Z_{i}^{L} & =1-\min \left(Z_{i-1}^{L}, \xi_{i-1}\right) 1\left(Z_{i-1}^{L} \geq 0\right)+\theta J_{i} \\
Z_{i}^{R} & =1-\min \left(Z_{i+1}^{L}, \xi_{i}\right) 1\left(Z_{i+1}^{L} \geq 0\right)+\theta J_{i}
\end{aligned}
$$

$\longrightarrow \mathrm{A}$ new RDE for $\left(Z^{L}, Z^{R}\right)$ that we cannot solve analytically.

IDEA OF PROOF: NEAR-MINIMAL SOLUTIONS

The proportion of items at which $A^{\text {opt }}$ and $B^{\text {oot }}$ differ is

$$
\begin{aligned}
\delta(\theta) & =\mathbb{P}\left(\left\{0 \in A^{\text {opt }}\right\} \triangle\left\{0 \in B^{\text {opt }}\right\}\right) \\
& =\mathbb{P}\left(\left\{X^{L}>\min \left(X^{R}, \xi\right)\right\} \triangle\left\{Z^{L}-\theta J_{0}>\min \left(\left(Z^{R}-\theta J_{1}\right)^{+}, \xi\right)\right\}\right)
\end{aligned}
$$

and the difference in mean benefit per item between $A^{\text {opt }}$ and $B^{\text {opt }}$ is

$$
\begin{aligned}
\bar{\epsilon}(\theta)= & \mathbb{E}\left[1\left(0 \in A^{\text {opt }}\right)-\xi 1\left(0 \in A^{\text {opt }}, 1 \in A^{\text {opt }}\right)\right] \\
& \quad-\mathbb{E}\left[1\left(0 \in B^{\text {opt }}\right)-\mathbb{E} \xi 1\left(0 \in B^{\text {opt }}, 1 \in B^{\text {opt }}\right)\right] \\
= & \mathbb{E}[\text { complicated expression }] .
\end{aligned}
$$

We have

$$
\lim _{n \rightarrow \infty} \mathbb{E} \varepsilon_{n}(\delta(\theta))=\bar{\epsilon}(\theta)
$$

IDEA OF PROOF: VARIATIONAL ANALYSIS

We write

$$
Z^{L, R}-\theta J_{0}=X^{L, R}+\theta D^{L, R}(\theta)
$$

Define $X=\left(X^{L}, \xi, X^{R}\right)$ and $D(\theta)=\left(D^{L}(\theta), 0, D^{R}(\theta)\right)$, then

$$
\begin{aligned}
& \delta(\theta)=\mathbb{P}(X \in \Sigma, X+\theta D(\theta) \notin \Sigma) \\
&+\mathbb{P}(X+\theta D(\theta) \in \Sigma, X \notin \Sigma)
\end{aligned}
$$

with

$$
\Sigma=\left\{\left(x^{L}, t, x^{R}\right) \in \mathbb{R}^{3}: x^{L}>\min \left(t, \max \left(0, x^{R}\right)\right)\right\}
$$

IDEA OF PROOF: VARIATIONAL ANALYSIS

\Rightarrow Let $F(\theta)=\mathbb{P}(X \in \Sigma, X+\theta D(\theta) \notin \Sigma)$, we prove that

$$
\delta(\theta) \sim 2 F^{\prime}(0) \theta
$$

and there is an integral expression for $F^{\prime}(0)$.
\Longrightarrow Similarly, we could try to check that $\bar{\epsilon}(\theta) \sim G^{\prime \prime}(0) \theta^{2}$.
However computation is hard...

We using a totally different probabilistic argument, we prove a weaker

$$
C_{1} \theta^{2} \leq \bar{\epsilon}(\theta) \leq C_{2} \theta^{2}
$$

IDEA OF PROOF: UPPER AND LOWER BOUND

- UPPER BOUND:
$\lim \sup \delta^{-2} \varepsilon(\delta)<\infty$: we identify a local configuration $\bullet \circ \bullet \bullet \circ \bullet$ on $\{i, \cdots, i+K\}$ which can be replaced by $\bullet \bullet \bullet \bullet \bullet \bullet$ at a low extra cost $1-\xi_{i}-\xi_{i+K-1}$.

- LOWER BOUND:

$\lim \inf \delta^{-2} \varepsilon(\delta)>0$: we prove that $C_{1} \theta^{2} \leq \bar{\epsilon}(\theta)$ by expressing $\bar{\epsilon}(\theta)$ as a mean cost increase over a block of finite random length. We then lower bound the mean increase cost if $B^{\text {opt }}$ and $A^{\text {opt }}$ differ over a block by a combinatorial argument.

SCALING OF THE LAGRANGE PARAMETER

For the NK-model / minimal spanning tree of a Poisson point process on \mathbb{R}^{d} :

$$
\delta(\theta) \asymp \theta \quad \text { and } \quad \bar{\epsilon}(\theta) \asymp \theta^{2}
$$

\longrightarrow scaling exponent 2 .

Under a suitable probabilistic model, for the traveling salesman problem / minimal pair matching, simulation suggests [Aldous and Percus (2003)]

$$
\delta(\theta) \asymp \theta^{1 / 2} \quad \text { and } \quad \bar{\epsilon}(\theta) \asymp \theta^{3 / 2}
$$

\longrightarrow scaling exponent 3 .
There exists a related RDE for these optimization problems [Aldous (2001)] but no mathematical explanation of this phenomenon.

THE KAUFFMAN-LEVIN NK-MODEL

The Kauffman-Levin NK model of random fitness landscape has attracted extensive literature in statistical physics.

Let $K \geq 2$ and

$$
M_{n}=\max _{A \subseteq[n]} \sum_{i \in A}-W_{i}\left(A_{[i, i+K]}\right),
$$

where $A_{[i, i+K]}$ denotes the set A restricted on the interval $\{i, \cdots, i+K\}$ and

$$
\left(W_{i}(B), i \geq 1, B \subseteq[K+1]\right)
$$

are independent $\exp (1)$ random variables.
\Rightarrow This is algorithmically easy via dynamic programming.
\Rightarrow By Kingman's Subadditive Theorem there is an a.s. limit $n^{-1} M_{n} \rightarrow c_{K}$.

THE KAUFFMAN-LEVIN NK-MODEL: NEAR MINIMAL SOLUTION

Now, fix $0<\delta<1$ and

$$
\begin{gathered}
M_{n}^{\prime}=\max _{A^{\prime} \subseteq[n]} \sum_{i \in A^{\prime}}-W_{i}\left(A_{[i, i+K]}\right) \\
\text { subject to }\left|A^{\prime} \triangle A_{n}^{\text {opt }}\right| \geq \delta n
\end{gathered}
$$

and then set

$$
\varepsilon_{n}(\delta)=n^{-1}\left(M_{n}-M_{n}^{\prime}\right)
$$

We expect the existence of the a.s. limit

$$
\varepsilon(\delta)=\lim _{n \rightarrow \infty} \varepsilon_{n}(\delta)
$$

and simulation and heuristics suggest that, as $\delta \downarrow 0$

$$
\varepsilon(\delta) \sim C \delta^{2}
$$

\Rightarrow Again "Scaling exponent $=2$ " !

