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"REGULAR” NEAR-MINIMAL PROBLEM

- Cost function /' : R" — IR reaching its minimum at z*.

- Relation between the distance 6 = |x — 2*| and the difference
e = F(x) — F(z*):

if ' is "smooth”,

e(0) = inf{F(x) — F(z%), |v — 2| > §} ~ C5*.

—> the scaling exponent corresponding to this problem is 2.



NEAR-MINIMAL SOLUTIONS IN COMBINATORIAL OPTIMIZATION

[Aldous-Percus (2003)]

Consider a combinatorial optimization problem with n constituents under a

suitable probability model.

As n goes to infinity, how cost increases when the optimal solution undergoes a

small perturbation 0 ?

Statistical physics suggests that there exists a scaling exponent such that the cost

Increases as
50&
New classification of algorithms, intuition suggests that

- low value of & = near-optimal solutions obtained via 'local changes’ =

algorithmically easy.

- high value of & = near-optimal solutions obtained via long range chages (?)
—> algorithmically hard.



A TRIVIAL EXAMPLE

Let (fz,@ > 1) be i.i.d. copies of a strictly positive random variable &, and

M, = max n}Z(fz —1)= max f(A).

AC{1,2,....n} 4
€A

with f(A) = >, 1(1 € A)(& — 1).

The maximum is attained by choosing

AP ={ien]:& > 1}



PERTURBATION OF THE OPTIMAL SET

—> A®/AB = 4. Note that a.s.

fAY) = f(B) > 0.



SCALING EXPONENT

We define the random variable:

£,(0) = min {f(B) _nf(A;St) : |[BAAY| > 5n}

BC|n]

Do we have, a.s.

2(8) = lime,(8) ~ C'5*?

n

What is the value of o ?

Universality paradigm: « should not depend on the details of the model.



A TRIVIAL EXAMPLE

Now, fix 0 < 0 < 1 and

subjectto |[A" A A™| > on

The maximum is attained by B> = A®™ A D where D is the set of indices of the

| on| smallest values of |£; — 1].

en(0) =n" (M, — M).

n



A TRIVIAL EXAMPLE

Assume that £ has a continuous density h. So as n — 00
14a(6)
e (0) =1, 2(6) = / 2 — 1|h(x) da
1—a(9)
where a(0) is defined by
14a(6)
0 = / h(x) dx.
1—a(6)
So by continuity of h(x), and assuming 0 < h(1) < co,asd | 0 we have

0 o

a(d) ~ (1) £(0) ~ a*(6)h(1) ~ 1)

—> This is the desired “scaling exponent = 2” result !



NEAR-MINIMAL SOLUTION IN COMBINATORIAL OPTIMIZATION

Under a suitable probabilistic model, heuristic / simulation suggest that
(i) For the NK-model, near minimal spanning tree, the scaling exponent is 2.

(i) For the travelling salesman problem, minimal pair matching, the scaling

exponent is 3.

—> scaling exponent 2 : algorithmically easy problem

—> scaling exponent 3 : algorithmically hard problem

For (i) we have rigorous proofs. For (%) open question.



ILLUSTRATIVE EXAMPLE

Let (fz,z > 1) be i.i.d. copies of a strictly positive random variable &, and

n—1
M, = max | |A| — d(1e A +1€ A) | = max f(A).
ma ( -3 e )) ma f(4)
— M, /n € [1/2,1].

We may prove thatif §; + &1 < 1forsome 1 <7 < n —2thena.s. A™is

unique.
We will assume for simplicity that £ is an exp(\) variable.

—> A.s., for n large enough, we may define A;’;’t as the unique optimal set.



SCALING EXPONENT

Now, fix 0 < 0 < 1 and
M = max f(A"

" ACn

subjectto | A" A A?| > dn

and then set
en(8) =n" (M, — M).

Do we have:

lime,(d) = &(6) ~ C6* ?



ANALYSIS OF THE OPTIMUM

Recall M,, = maxsc{12..n} (\A\ — Z?:_f 1(ie A+ 1 € A))

We assume for simplicity that £ is an exponential variable with intensity .

Theorem 1. Almost surely and in L,

M,
im — =cA\)=(1—-e )t =21

n—oo N

— lim,\_m C()\) — 1, lim,\_>0 C()\) — 1/2

—> proof based on a simple instance of Aldous’ formulation of the cavity method.



IDEA OF PROOF: LEFT SIDED RECURSION

Define V' = 1, W = 0, and

1—1
Vi = Al — 1(jeAdj+1eA
b, (M- Eeieasien)
1—1
Wl = Al — 1(jeAj+1eA
F = (- Saue i)

<
~
|

Vi _wk,

Then M,, = max (V" W), and by induction 0 < X;* < 1,

X5, =1-—min(X/, &).



IDEA OF PROOF: RIGHT SIDED RECURSION

Define similarly, V,*, = 1, W, = 0 and

n—1
| Al A— Al — 1(icAi+tlc A
8- a1 Souueasiie )
n—1
wh = Al — 1(icAj+l1eA
b T n}< | ;& (jeAj+le )>,

R R R
Xn,z' — Vn,z' o Wn,i'
Recursion as ¢ decreases

XR

n,1—1

=1 — Hlil’l(X,eri,fi_l).



IDEA OF PROOF: CONSTRUCTION OF A‘;;t

—i — (i + 1)— absolute benefit

e — e
e — — o—
0 — — e—
— 00— —Oo—

VE+VE—¢ XP4+ X —¢

Vi wh
wh 4 vt
Wk 4wt

relative benefit

XL
XR
0

when used

if £ < min(X¥, X*)
if X% < min(X*, ¢)
if X* < min(X%,¢§)

never.



IDEA OF PROOF: STATIONARY INFINITE PROCESS

The recursion rule satisfied by XL and XR does not depend on n. We may

define a stationary process (( X/, &;, XZ+1) —00 < 1 < 00) satisfying the

same recursion rule:

XF=1—-min(X;", & 1)

i
X'=1- mm(XHl,fZ-).
This type of recursion equation is called a Recursive Distribution Equation (RDE).
— Foreach i € Z, X}, { and X! are independent variables.
—> It is possible to compute the stationary distribution of this process.

—> We define an infinite set A*" using the construction table.



IDEA OF PROOF: LOCAL WEAK CONVERGENCE

Lemmal. Let U, be uniformon {1,... n}. Asn — oo

((X(%n—l—z'van—HaXPtUn—l—i—l—h 1(Un +1 € A??))? —00 <1 < OO)

n

L ((XE &, XE 130 € A™)), —o0 < i < 00)

where the left side is defined arbitrarily for U, + ¢ &€ {1, ..., n} and where
convergence in distribution is with respect to the usual product topology on infinite

seguence space.



IDEA OF PROOF: IDENTIFICATION OF THE LIMIT

Recall that M,, = maxacia. .y (|A] — S0 &1(i € Ai+1 € A)).

The local weak convergence lemma implies that

M,
c(\) = lim B2 = P(0 € A™) — EE1(0 € A™, 1 € A™).

n—00 n



NEAR MINIMAL SOLUTION

Recallthat f(A) = |A| =) . &l(te A1+ 1€ A) and

en(0) = min {f(B) _nf(A;St) . | BAAT| > 5n}.

BC{1,-- ,n}

Theorem 2. £(9) = lim,, B¢, () exists forall 0 < ¢ < 1, and

lim sup 6 %¢(d) < oo,
510

and

liminf 6 2¢(6) > 0.
510

—> Scaling exponent is 2.



IDEA OF PROOF: LAGRANGE MULTIPLIER

We introduce the Lagrange multiplier ¢ > 0, and

max <B — Z (1t e Bi+1 € B) +QBAA;’,§"> :

BC{1,...,n}

and define B (0) as the corresponding optimizing set.
We extend our previous analysis to this new optimization problem.

We define a new pair of random variables (Z(0), Z*#(0)) playing the role of
(X, X7

— X R = Z5E(0) and A™ = B*(0).



IDEA OF PROOF: QUINTUPLE PROCESS

We define a stationary quintuple process

(ZH0), X, €, XR,, 28, (8)). —00 < i < ).

—— The infinite sets A° and B°pt(€) are built thanks to the quintuple process

according to a construction table, and

{i e B0)}iso((ZF(0), X}, &, XLy, Z[E(6))-measurable.

Let J; = 1(i ¢ A™) — 1(z € A™), we find

Zb = 1 —min(ZF,, & 0)1(ZF, > 0)+ 0
Zl' = 1—min(Z},,&)1(Z5, > 0) + 6J;

—— A new RDE for (ZL. Z*) that we cannot solve analytically.



IDEA OF PROOF: NEAR-MINIMAL SOLUTIONS

The proportion of items at which A® and B differ is
60(0) = P({0e A™}A{0 € B™})
= P({X* > min(X" }A{Z" — 0]y > min((Z" — 0.11)",¢)})
and the difference in mean benefit per item between A* and B™ is
e@) = E[1(0e A™) —£1(0 € A™ 1 € A™)]
—E[1(0 € B™) — E£1(0 € B™,1 € B™)]

E|complicated expression|.

We have

lim Ee,(6(0)) = &0).

n—aoeo



IDEA OF PROOF: VARIATIONAL ANALYSIS

We write

ZER 0.y = X5 4 0D5().
Define X = (X1, £, X*) and D(0) = (D*(0),0, D%(0)), then
60(0) = P(XeX, X+60D(0)¢)
+P(X +0D(0) € X, X ¢ )

with
Y = {(z" t,2") € R® : " > min(¢, max(0,z")) } .



IDEA OF PROOF: VARIATIONAL ANALYSIS

= Let '(0) =P(X € X, X +60D(0) ¢ %), we prove that
6(6) ~ 2F'(0)0

and there is an integral expression for F(0).

— Similarly, we could try to check that €(6) ~ G”(0)6-.

However computation is hard...

We using a totally different probabilistic argument, we prove a weaker

Ch0° < &) < Cy0°.



IDEA OF PROOF: UPPER AND LOWER BOUND

- UPPER BOUND:

limsup d?e(d) < oo: we identify a local configuration @ o @ 0 ® 0 @ on

{i,--- , i+ K }which can be replaced by @ @ 0 @ o @ @ at a low extra cost
1 =& — &k

- LOWER BOUND:
liminf 6 ~?¢(d) > 0: we prove that C';0* < €(f) by expressing €(f) as a
mean cost increase over a block of finite random length. We then lower bound
the mean increase cost if B and A differ over a block by a combinatorial

argument.



SCALING OF THE LAGRANGE PARAMETER

For the NK-model / minimal spanning tree of a Poisson point process on R?:
6(0) <60 and €(0) = 6%

—— scaling exponent 2.

Under a suitable probabilistic model, for the traveling salesman problem / minimal

pair matching, simulation suggests [Aldous and Percus (2003)]
6(0) < 0% and €(0) < 632

—— scaling exponent 3.

There exists a related RDE for these optimization problems [Aldous (2001)] but no

mathematical explanation of this phenomenon.



THE KAUFFMAN-LEVIN NK-MODEL

The Kauffman-Levin NK model of random fitness landscape has attracted

extensive literature in statistical physics.

Let /X' > 2 and
M, = max —W;(A
AC|n] 4 (Apirr))
1€EA
where A[i,HK] denotes the set A restricted on the interval {@', N K} and

(Wi(B),i >1,B C [K +1])
are independent exp(1l) random variables.
— This is algorithmically easy via dynamic programming.

—> By Kingman’s Subadditive Theorem there is an a.s. limit n_an — CK.



THE KAUFFMAN-LEVIN NK-MODEL: NEAR MINIMAL SOLUTION

Now, fix ) < 0 < 1 and

subjectto |[A" A A™| > dn

and then set
en(0) = n_l(Mn — Mfr,z,)

We expect the existence of the a.s. limit

e(0) = lim &,(9)

n—aoeo

and simulation and heuristics suggest that, as 0 | 0
e(0) ~ C6°.

= Again “Scaling exponent = 2" !



