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Classical Preferential Attachment Model

Model specification via attachment rule f : Z+ → (0,∞)

1

linear regime,
f (k) = α(k + 1)

• model introduced in Barabási, Albert ’99
(Bollobás, Riordan, Spencer, Tusnady ’01)
• most studied regime
• maximal degree grows polynomially
• degree distribution converges to

a power law

superlinear regime,
f (k) = (k+1)α � k

• in the limit only one vertex has
degree ∞ (Oliveira, Spencer ’05)

sublinear regime,
f (k) = (k+1)α � k

• degree distribution has typically
stretched exponential tails
(Krapivski, Redner ’01)
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Modified Preferential Attachment Model

Model specification via attachment rule f : Z+ → (0,∞)
(f concave, f (k) ≤ k + 1).

Model evolution: (Gn)n∈N sequence of growing random graphs such
that at time n = 1, we start with a single vertex (labeled 1), and in each
time step n→ n + 1

I a new vertex (labeled n + 1) is added and

I for each m ≤ n a new edge n + 1→ m is added independently with
probability

f (indegree of m at time n)

n
.

Ex.: f (m) =
√

m + 1

1
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Objects of interest

(Empirical) Degree distribution

Outdegree of new vertices

Typical behaviour of degree evolutions (of single vertices)

Exceptional behaviour of degree evolutions

Vertex with maximal degree (hub)



Indegree evolutions
√
·-attachment, f (k) = (k + 1)1/2
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Result: The indegree evolution Z s(·) of a vertex s in the artificial scaling
can be represented as

Z s(t) = t − s + Ms
t−s .

Moreover, limt→∞ Z s(t)/t = 1, a.s.
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Indegree evolutions
linear attachment, f (k) = (k + 1)/2
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The scaling
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Time Scaling (logarithmic)

natural time n  artificial time t = Ψ(n) =
∑n−1

m=1 1/m ∼ log n

(In-)degree Scaling

natural indegree k  artificial indegree u = Φ(k) =
∑k−1

l=0 1/f (k)

Typical indegree evolutions behave like Φ−1(Ψ(n))

f (k) ∼ c kα, α ∈ [0, 1)  Φ−1(Ψ(n)) ∼ (c(1− α) log n)1/(1−α)

f (k) = α k + o(1), α ∈ [0, 1)  Φ−1(Ψ(n)) ∼ const nα
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The indegree distribution

Not.: Xk(n) = rel. number of vertices in Gn with indegree k

Result: Xk(n) converges a.s. to µk , where

µk =
1

1 + f (0)

k∏
l=1

f (l − 1)

1 + f (l)

(µk) is the invariant distribution of the Markov chain described by:

1 1 1 1

f (k)
k-1 k0 1 k+1

f (0) f (k-1)· · ·

Asymptotic behaviour:

f (k) = (k + 1)α  logµk ∼ − 1
1−α k1−α

f (k) = α(k + 1)  µk ∼ const k−1−1/α
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The outdegree

41 2 3 5

?

Result:

L(outdegree of vertex n + 1|Gn)⇒ Poiss(〈µ, f〉), a.s.

In other words, the system stabilises!



Two phases
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Strong preference (
∑∞

k=0 1/f (k)2 <∞)

I e.g., f (k) � k1/2(log k)1/2+ε

I (Ms
t ) converges a.s. for every vertex s

I persistent hub
(vertex with maximal indegree)

Weak preference (
∑∞

k=0 1/f (k)2 =∞)

I e.g., f (k) ≺ k1/2(log k)1/2

I (Ms
t ) satisfies a CLT for each s

I indegree evolutions overtake each other
infinitely often



The indegree evolution of the hub for weak preference

Ass.: f (k) ∼ c kα, α < 1/2 (weak preference)

Not.: • M(n) maximal indegree at time n

• I (n) index of a vertex with maximal indegree at time n

Result: As n tends to infinity, one has in probability that

log I (n) ∼ 1

2

(1− α)(1−2α)/(1−α)

(1− 2α)c1/(1−α)
× (log n)(1−2α)/(1−α)

and

M(n) = (c(1− α)log n)1/(1−α)︸ ︷︷ ︸
typ. evol. of the 1st vertex

+(1 + o(1))
1

2

1− α
1− 2α

log n.
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The indegree evolution of the hub - 2
(in the artificial scaling)

tI (t)

t

M(t)

∼ const t(1−2α)/(1−α)

Moderate deviation principle with speed t(1−2α)/(1−α) and rate
function

J(x) =

{
1
2

∫∞
0

(ẋs)2 s
α

1−α ds − const x0 if x is abs. cont. and x0 ≤ 0,
∞ otherwise.
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Ideas of the proofs

Moderate deviation principle

I Occupation times are approximately exponentially distributed
(exponentially good approximation)

I Use moderate deviations for the occupation times to deduce the
pathwise principle.

Evolution of the hub

I It suffices to look at evolutions with indices of order t(1−2α)/(1−α).

I The result follows by a Borel-Cantelli argument based on the
moderate deviation principle together with a Varadhan type lemma.
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A recap

Empirical degree distribution

A.s. convergence to an explicit distribution

Outdegree of new vertices

A.s. convergence to a Poisson distribution

Typical behaviour of degree evolutions (of single vertices)

Linear behaviour in the artificial picture

Dichotomy for persistent hubs

Degree distribution of the neighbors of a fixed vertex (similar as Móri ’07)

Exceptional behaviour of degree evolutions

Moderate deviation principle and large deviation principle

Vertex with maximal degree (hub)

Typical evolutions for weak preference
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