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linear regime,
f(k) =a(k+1)

e model introduced in Barabasi, Albert '99
(Bollobas, Riordan, Spencer, Tusnady '01)
e most studied regime
e maximal degree grows polynomially
e degree distribution converges to
a power law

superlinear regime,
f(k) = (k+1)* > k

e in the limit only one vertex has
degree oo (Oliveira, Spencer '05)

sublinear regime,
f(k) = (k+1)* < k

e degree distribution has typically
stretched exponential tails
(Krapivski, Redner '01)




Modified Preferential Attachment Model

Model specification via attachment rule f : Z, — (0, o)
(f concave, f(k) < k+1).
Model evolution: (G,),cn sequence of growing random graphs such
that at time n = 1, we start with a single vertex (labeled 1), and in each
time stepn — n+1

> a new vertex (labeled n+ 1) is added and

» for each m < n a new edge n+ 1 — m is added independently with

probability
f(indegree of m at time n)
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Objects of interest

(Empirical) Degree distribution

Outdegree of new vertices

Typical behaviour of degree evolutions (of single vertices)
Exceptional behaviour of degree evolutions

Vertex with maximal degree (hub)



Indegree evolutions
/-attachment, f(k) = (k 4 1)%/2

Indegree evolutions of two nodes
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Result: The indegree evolution Z°(-) of a vertex s in the artificial scaling

can be represented as

Z5(t)y=t—s+ M;_..

Moreover, lim;_,o, Z°(t)/t =1, as.



Indegree evolutions
linear attachment, f(k) = (k +1)/2

Indegree evolutions of two nodes (lin) Indegree evolutions of two nodes (lin)
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Result: The indegree evolution Z°(-) of a vertex s in the artificial scaling
can be represented as

Z5(t)=t—s+ M;_,.

Moreover, lim;_, Z°(t)/t =1, as.



The scaling
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Time Scaling (logarithmic)

natural time n ~ artificial time t = W(n) = Z,';_:ll 1/m~logn
(In-)degree Scaling

natural indegree k ~- artificial indegree u = ®(k) = f;ol 1/f (k)
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Time Scaling (logarithmic)

natural time n ~ artificial time t = W(n) = an_:ll 1/m~logn
(In-)degree Scaling

natural indegree k ~- artificial indegree u = ®(k) = f;ol 1/f (k)
Typical indegree evolutions behave like ®~1(W(n))

f(k) ~ ck* a€l0,1) ~ o ©7Y(W(n)) ~ (c(1 — a)log n)t/ (=)

f(k)=ak+o(1),a €[0,1) ~ & 1(W(n)) ~ constn®



The indegree distribution

Not.: Xi(n) = rel. number of vertices in G, with indegree k
Result: Xi(n) converges a.s. to juk, where

k

fF(I-1)
Hie = 1+f Il;ll:1+f
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The indegree distribution

Not.: Xi(n) = rel. number of vertices in G, with indegree k
Result: Xi(n) converges a.s. to juk, where

k

fF(I-1)
Hie = 1+f Il;ll:1+f

(1) is the invariant distribution of the Markov chain described by:
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Asymptotic behaviour:
f(k)=(k+1)* ~ logu ~ —72- ki=®
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f(k) =a(k+1) ~ px~ const k—1-1/«




The outdegree

T B

Result:

L(outdegree of vertex n + 1|G,) = Poiss({u, £)), a.s.

In other words, the system stabilises!



Two phases

Strong preference () -, 1/f(k)? < o0)
> eg., f(k) = k/?(log k)}/?>+=
» (M;) converges a.s. for every vertex s

» persistent hub
(vertex with maximal indegree)

Weak preference (3.~ 1/f(k)? = <)
> eg., f(k) < k*?(log k)*/?
» (M) satisfies a CLT for each s

» indegree evolutions overtake each other
infinitely often




The indegree evolution of the hub for weak preference

Ass.: f(k) ~ ck®, a < 1/2 (weak preference)

Not.: e M(n) maximal indegree at time n
e /(n) index of a vertex with maximal indegree at time n
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Result: As n tends to infinity, one has in probability that
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The indegree evolution of the hub for weak preference

Ass.: f(k) ~ ck®, a < 1/2 (weak preference)

Not.: e M(n) maximal indegree at time n
e /(n) index of a vertex with maximal indegree at time n

Result: As n tends to infinity, one has in probability that

1 (1 _ a)(l—2a)/(1—a)

~ — (1720)/(17(”
log I(n) 2 (1= 20)ci/0-a) X (log n)
and
M(n) = (c(1 — a)log n)* =% 4(1 4 o(1)) 11za log n.
21 -2«

typ. evol. of the 1st vertex



The indegree evolution of the hub - 2

(in the artificial scaling)
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The indegree evolution of the hub - 2

(in the artificial scaling)

I(t) t t~1

—— ~ const t(172o¢)/(17a)

Moderate deviation principle with speed t(172)/(1=9) and rate
function

J(x) = %fooo(ksf sToa ds — const xp  if x is a.bS. cont. and xp < 0,
’¢) otherwise.



|deas of the proofs

Moderate deviation principle
» Occupation times are approximately exponentially distributed
(exponentially good approximation)

» Use moderate deviations for the occupation times to deduce the
pathwise principle.



|deas of the proofs

Moderate deviation principle

» Occupation times are approximately exponentially distributed
(exponentially good approximation)

» Use moderate deviations for the occupation times to deduce the
pathwise principle.

Evolution of the hub

» It suffices to look at evolutions with indices of order t(1—2a)/(1-a)

» The result follows by a Borel-Cantelli argument based on the
moderate deviation principle together with a Varadhan type lemma.
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Empirical degree distribution

A.s. convergence to an explicit distribution
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A recap

Empirical degree distribution

A.s. convergence to an explicit distribution

Outdegree of new vertices
A.s. convergence to a Poisson distribution

Typical behaviour of degree evolutions (of single vertices)
Linear behaviour in the artificial picture
Dichotomy for persistent hubs
Degree distribution of the neighbors of a fixed vertex (similar as Méri '07)

Exceptional behaviour of degree evolutions
Moderate deviation principle and large deviation principle

Vertex with maximal degree (hub)

Typical evolutions for weak preference



