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Introduction

Motivation
Preliminaries

STOCHASTIC (GEOMETRIC MODELLING OF WIRELESS NETWORKS
@ Nodes as point process.

@ Performance as certain functionals of the point process

GOAL: COMPARISON OF CERTAIN CLASS OF FUNCTIONALS OF POINT
PROCESSES

Way ?
@ Comparison of performances of two different networks.
@ Closed form expressions are hard to obtain for many networks.

@ Tighter bounds than achieved by coupling.

~~ Results shall be generic and possible applications in various models which
use point processes.
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Introduction

Motivation
Preliminaries

DEFINITION

We say a function f : RY — R is directionally convex(dcx) if for every
X, ¥, p,q €R? such that p < x,y < q and x +y = p+ q,

f(x)+f(y) < f(p)+f(q).

Similarly dev and f : RY — R". A function is directionally linear (dl) if it is dcx
and dcv.

DEFINITION
@ X <z Y IifE(f(X)) <E(f(Y)) forall f € §.

@ Let S be a set. Suppose {X(s)}ses and {Y(s)}ses are two real-valued
random fields, we say that {X(s)} <z {Y(s)} if for every n > 1 and
Sty..y8n, (X(s1),-..,X(sn)) <5 (Y(s1),..., Y(sn))-

§ = dex/idex/idev. Negation gives dev, ddcv, ddex.
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Ordering of Random Measures Definition
Properties

Palm Measures

Standard framework (Kallenberg, O. , 1983)
@ E - Polish space. B,(E) - o-ring of bounded, Borel subsets(bbs).

@ M = M(E) - space of Radon measures on E. N = N(E) space of Radon
counting measures.

@ Random measure (rm) A : Q — M. Point process (pp) ¢ : Q — N.
@ A - arandom field {A(B)} ez, &)

/\1 Sdcx /\2 If-(/\l(ll)7 cooyg /\1([,,)) Sdcx (/\2(/1), coo 7/\2(/,,)), for Il, ey In bbS

For any bbs Bi, ..., B,, one can choose disjoint bbs h, ..., I, such that
A(B;j) = Zfe/j A(l}). Hence definition is equivalent to the condition on disjoint
bbs h,..., I,
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Ordering of Random Measures Definition
Properties

Palm Measures

@ & ={X;} pp. {Vi}iidrvs. ®={(X;, Y;)} independently marked pp
(impp).

@ Y, €{0,1}, ® is the independently thinned pp (ithpp).

LEMMA (MEESTER & SHANTHIKUMAR, 1993) : {Sf}j>0 fori=1,....m
independent i.i.d. sequences of non-negative rvs. If f is dex(idex, idcv), then

g(n,...,nm) = ( (St S’")) also is dex(idex, idev).

Proposition

If ®1 <gex (idex, idev)®, then
e &, <dex (idex, idcv)&>2 and
0 &) <gex (idex, idcv)@z.

SKETCH OF PRrOOF : &;(A X B) = T:ng) 1[Y; € B]. Condition on pp & use
Me-Sh Lemma. O )
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Ordering of Random Measures Definition
Properties

Palm Measures

@ ®j - Cox process with intensity measure A.

@ Intensity field : A\(x) is density of A € M(R?).

Proposition

@ If /\1 Sdcx (idCX, idCV)/\2, then q)/\l Sdcx (I'dCX7 idCV)¢A2.

@ Suppose that Ai(.) ,i = 1,2 a.s have locally Riemman integrable densities
Then {A1(x)}erd <( dex)(idex, idev){A2(x)}era implies that
A1(.) <( dex)(idex, idev)Aa(.).

SKETCH OF PROOF : Proof by approximation of integrals via middle Riemann
sums and the below result. O
LEMMA (MULLER & STOYAN, 2002) : (X®) and (Y™) - sequences of

random vectors with X% <dex Y® if X® — X and Y — Y in distribution

and if moreover E (X(k)) — E(X) and E (Y(k)> — E(Y), then X <ue« Y. &
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Ordering of Random Measures Definition
Properties

Palm Measures

@ f measurable and 0 < E ([, f(x)A(dx)) < oo. The mixed Palm version
Ar € M of rm A is defined for M € M as

E (fJE f(x)A(dx)1[A € M])
E(fe FOONdx))

@ A € M(RY) with a stationary density field {\(x)}, the Palm version A is
defined as follows :

Prob (Ar € M) =

E(A(x)1[A € M)

Prob (Ax € M) = EC() ,

Proposition

N',i=1,2- two random measures. N\; -the corresponding mixed Palm versions
and N the Palm versions.

@ IfFAL Lo /\2, then /\,lr <idex A%
O IF{N(X)} Saw {N2(X)} then AL i A2,

Yogeshwaran D Ordering of Random Measures and Fields




Integral Shot-Noise Fields
Ordering of Shot-Noise Fields Max Shot-Noise Fields

Monotonic Shot-Noise Fields

@ S, aset. VA(y) = [ h(x,y)A(dx), y €S, his R*-valued and measurable

in x.

If N\ <dex (l-dCX7 idCV)/\z, then {\//\1 (y)}yes Llox (idCX, idCV){V/\2(y)}y€5.

SKETCH OF PROOF : Check the following approximation satisfies Mu-St
Lemma.
) RN )
VI{(yl): 2k Aj(lkn)a

n=1

for j =1,2 and I}, are bbs.
e Vily) / Vi (vi) a.s. Hence in distribution and in L;.
@ As I}, are bbs, by definition of ordering , V,{'s are ordered. O

~> Miyoshi(2004) proved Theorem when A;’s are three different point &
processes, for h lower semi-continuous and for rvs Vi(x) under icx.
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Integral Shot-Noise Fields
Ordering of Shot-Noise Fields Max Shot-Noise Fields

Monotonic Shot-Noise Fields

@ Vi,4+n, = VA, + Vi, a increasing linear function in A. Not a
surprising result ! The proof is easy if one can prove that
A1 <gex N2 as random fields is equivalent to Ay <gex Ao as
measure-valued rvs. This remains an open question.

@ h(Ax B)=1[x € AJF(B), A,B bbs in E,E;; F(.) be a probability
distribution on E;. VA(A X B) represents intensity measure of
independently marked Cox(A) with mark distribution F(.).

@ p(x,A) - a sub-probability kernel. Choose h(x, A) = p(x, A), then
{Vi,(A)} acs represents the intensity measure of the Cox(A) whose
points are independently and randomly transformed via the
probability kernel p(x, A). p(x, A) = 0 for A such that x ¢ A
corresponds to independent thinning.

@ {f;}scs increasing convex(concave),then
{fs(Va,(5))} <idex (idev){fs(Va,(s))} and also their integrals under &
appropriate assumptions.
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Integral Shot-Noise Fields
Ordering of Shot-Noise Fields Max Shot-Noise Fields
Monotonic Shot-Noise Fields

@ & a pp, max shot-noise field Us(y) = maxx,eo{h(y, Xi)}.

@ Lower orthant(lo) order for vectors : X <, Y if
Prob (X < t) > Prob(Y < t) for every t € RY.

@ For 1-dimensional vectors, lo is same as strong order i.e, order generated
by increasing functions.

Let ¢1 Ly ¢2. Then {U¢1()} <lo {U¢2()}

SKETCH OF PROOF :

Prob(U(x) <a;,1<i<m)=E (efZ,-L”/(x,-)> 7

where U(x;) = 3, — log Lin(x;, va)<a]- ~~ Expectation of a ddcx function of an

)
o

additive shot-noise field. O
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Integral Shot-Noise Fields
Ordering of Shot-Noise Fields Max Shot-Noise Fields

Monotonic Shot-Noise Fields

@ A stationary and isotropic random field {X(s)},cpq is said to be dex
regular if for any k and si, ..., sk, t1,. .., t such that ||t; — tj|| < ||si — sj]|

(X(s1) ...y, X(5k)) <dex (X(t1) ..., X(t))-
@ If {X(s)}sere is dex regular, {Xc(s) = X(cs)} are dex decreasing random

fields in ¢ > 0.

@ If the intensity field {\(s)} is dcx regular then we get a parametric family
of ordered Cox processes and hence their shot-noise fields.

@ lims—o Ac(s) = A(0) - mixed Poisson pp

@ If the field is ergodic, thenlims_.o Ac(s) = E(A(0)). - Stationary Poisson
pp.
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Clustered Point Processes
Shot-Noise Cox Processes

[SETTIES

Let Z' be the Z lattice shifted by a point distributed uniformly on the cube.
Let {X(s)},cp bei.id {+1,—1}-valued rvs. Let p» < 1. Define
Ay) = H1lix(s,)=1] + p2lix(s,)=—1] Where s, represents the unique nearest

“lower left point” in Z  to y. Suppose p = Prob (X(s) =1).
® &~ Po(p(pa — p2) + pi2)
@ &~ Cox(Aly))
@ &, ~ Cox(A(0))

Proposition

q>h Sdcx q)c Sdcx q>m

~+ Proposition holds under little more general condition on the Ising Model.
~ Points of ®. occurs more in some cubes than others i.e, clustering.
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Clustered Point Processes
Shot-Noise Cox Processes

[SETTIES

@ h(x), non-negative [, h(x)dx = A1 < oo.

@ & ~ Po(A) and @1 ~ Po(A X A1).

® Xo(x) =Xy co h(x = Yi). 2 ~ Cox(X2(x)).
@ A(dy) = Ady. Ai(dy) = A x Aidy.

Proposition
Al Sdcx q)l Sdcx ¢2-

SKETCH OF PROOF :
A= [ Hoc=yrdy = [ - @) e = [ - y)o(d)
RY Rd RY

Jensen's inequality implies A <go . Hence by our main theorem result
follows. 0 e
~ Usually h(x) = 1[||x]| < R]. This pp lllustrates clustering better.
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Clustered Point Processes
Shot-Noise Cox Processes

[SETTIES

~ Limiting case of Poisson-Poisson Cluster point process.

@ ® ~ Po(\) and ®;1 ~ Po(A x Ap).

® N2(A) =D x.cona Yi where Y; i.i.d with mean A\;. &5 ~
Cox(A2(.))

@ N\, does not have a density !

Proposition
b1 <gex P2.

SKETCH OF PROOF : By Jensen's (A x A\1)dy <gex N2(dy). O
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Clustered Point Processes
Shot-Noise Cox Processes

[SETTIES

Lévy Basis - L € M(R?) such that
@ L[(A;) independent for disjoint bbs.
@ L(A) is infinitely divisible rv.

Definition

(Hellmund, G. et al, 2008.)® LCP if intensity field is A(y) = [za h(x,y)L(dx) for a
Lévy basis L.

Proposition

@ L1 <gex Lo iff L1(A) <cx L2(A) for every bbs A.
@ Suppose L1 <gex Lo. Then @1 <yo ®2.

ExXAMPLE Let {x;} be a fixed locally finite point configuration. {X}} be i.i.d
(exp(1/2) + exp(1/2)) rvs. {X2} be i.i.d exp(1) rvs. For A a bbs of RY and j = 1,2,
define )
Li(A) = Z X/ = L1 <4 Lo
PASY
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Clustered Point Processes

E Shot-Noise Cox Processes
xamples

DEFINITION

o (Hellmund, G. et al, 2008) ® Log-Lévy driven Cox
Process(LLCP) if intensity field is
A(x) = exp ( Jga k(x, y)L(dy))

o ® is Log-Gaussian Cox Process(LGCP) if intensity field is
A(x) = exp{X(x)} for X(x) is a Gaussian field.

REMARKS

~ Exponential is convex function, hence ordering of the arguments
imply the ordering of point processes.

~» For LLCP ordering of inside terms was studied in last example.
~ For LGCP, ordering of Gaussian fields are well-known in
literature. As expected, sufficient and necessary conditions on
expectation vector and covariance matrix of the fields.
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Clustered Point Processes
Shot-Noise Cox Processes

[SETTIES

(Mgller, 2005) ® is GNSCP if the intensity field
A(x) = >_; vjkb;(cj, x) where (cj, bj, ;) € V, a point process on
R? x (0,00) x (0, 00).

o Uy <dex v, implies that )\1(X) <dex )\Q(X) and ¢ <dex d5.

@ This class includes Matern-Cluster processes, Neyman-Scott
Processes, Thomas Processes.

o If b;'s are constants and (cj,7;) is Poisson pp, Shot-Noise Cox
Process. This is also a LCP.
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Applications

SIGNAL-TO-INTERFERENCE NOISE RATIO(SINR) NETWORKS (Baccelli, F. et
al, 2001)

@ {x;} emitters; {y:} receivers; ® pp of interferers;

@ x; successfully transmits to y; if T f'g(‘,‘(xﬂ’;yi”y)”“w >T;
J‘e J J 1

@ If S; are i.i.d; exponential, Probability Vi, x; successfully transmits to y; is
p=E(exp{—3; ciV(yi)}) , where V(y;) = Y co SiI(I1X; — yill)-
Hence, ®1 <gaex P2 implies that p1 < po.

COVERAGE PROCESSES

@ & a point process. U(x) = maxx,es{1[||x — Xi|| < R]}

@ U(x) is the indicator fn. of x being covered by a point process and is the
key quantity of analysis in the theory of coverage processes. (Hall, P.,
1988 )

@ Comparison exists (Hall, P., 1988) for certain class of Cox processes with
Poisson pp

@ &1 <jgew Py implies that {Ui(x)} < {U2(x)}.

Yogeshwaran D Ordering of Random Measures and Fields




Applications

@ Greater in dcx implies greater attraction for a point process. Notions of
attractions aren’t fully developed 77

@ Better understanding of Palm versions 77

@ Ordering induced by random measures as measure-valued rvs. This
implies ordering as random fields. Converse 7 No. May be something
weaker 77 For convex ordering by Scarsini et al, 1991 ; Strong order -
Equivalence was proved by Rolski et al, 1991.

@ Comparison of Hard-Core point processes with Poisson processes 7?7 More
generally dependent vs independent thinning/marking 77

@ Cluster processes with differing base intensites and differing radii 77
Some other order possibly 77

)
o
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Applications
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THANK YOU !
THANK YOU !

THANK YOU !
THANK YOU !
THANK YOU !

THANK YOU !
THANK YOU !

THANK YOU !
THANK YOU |

Yogeshwaran D Ordering of Random Measures and Fields



	Introduction
	Motivation
	Preliminaries

	Ordering of Random Measures
	Definition
	Properties
	Palm Measures

	Ordering of Shot-Noise Fields
	Integral Shot-Noise Fields
	Max Shot-Noise Fields
	Monotonic Shot-Noise Fields

	Examples
	Clustered Point Processes
	Shot-Noise Cox Processes

	Applications

