Directionally convex ordering of random measures, shot-noise fields and some applications to wireless networks

Yogeshwaran D. Joint work with : Francois Baccelli and Bartek Blaszczyszyn

TREC, Departement d'informatique Ecole Normale Superieure, Paris.

《曰》 《聞》 《臣》 《臣》

æ

Introduction

Ordering of Random Measures Ordering of Shot-Noise Fields Examples Applications

Motivation Preliminaries

Motivation

STOCHASTIC GEOMETRIC MODELLING OF WIRELESS NETWORKS

- Nodes as point process.
- Performance as certain functionals of the point process

GOAL: COMPARISON OF CERTAIN CLASS OF FUNCTIONALS OF POINT PROCESSES

Why ?

- Comparison of performances of two different networks.
- Closed form expressions are hard to obtain for many networks.
- Tighter bounds than achieved by coupling.

 \rightsquigarrow Results shall be generic and possible applications in various models which use point processes.

・ロン ・回と ・ヨン・

э

Motivation Preliminaries

Preliminaries

Definition

We say a function $f : \mathbb{R}^d \to \mathbb{R}$ is directionally convex(dcx) if for every $x, y, p, q \in \mathbb{R}^d$ such that $p \le x, y \le q$ and x + y = p + q,

 $f(x) + f(y) \le f(p) + f(q).$

Similarly dcv and $f : \mathbb{R}^d \to \mathbb{R}^n$. A function is directionally linear (dl) if it is dcx and dcv.

DEFINITION

- $X \leq_{\mathfrak{F}} Y$ if $E(f(X)) \leq E(f(Y))$ for all $f \in \mathfrak{F}$.
- Let S be a set. Suppose $\{X(s)\}_{s\in S}$ and $\{Y(s)\}_{s\in S}$ are two real-valued random fields, we say that $\{X(s)\} \leq_{\mathfrak{F}} \{Y(s)\}$ if for every $n \geq 1$ and s_1, \ldots, s_n , $(X(s_1), \ldots, X(s_n)) \leq_{\mathfrak{F}} (Y(s_1), \ldots, Y(s_n))$.

 $\mathfrak{F} = dcx/idcx/idcv$. Negation gives dcv, ddcv, ddcx.

dên.

Definition Properties Palm Measures

Definition

Standard framework (Kallenberg, O., 1983)

- \mathbb{E} Polish space. $B_b(\mathbb{E})$ σ -ring of bounded, Borel subsets(bbs).
- $\mathbb{M} = \mathbb{M}(\mathbb{E})$ space of Radon measures on \mathbb{E} . $\overline{\mathbb{N}} = \overline{\mathbb{N}}(\mathbb{E})$ space of Radon counting measures.
- Random measure (rm) $\Lambda : \Omega \to \mathbb{M}$. Point process (pp) $\Phi : \Omega \to \overline{\mathbb{N}}$.
- Λ a random field {Λ(B)}_{B∈B_b(E)}

DEFINITION

 $\Lambda_1 \leq_{dcx} \Lambda_2$ if $(\Lambda_1(I_1), \ldots, \Lambda_1(I_n)) \leq_{dcx} (\Lambda_2(I_1), \ldots, \Lambda_2(I_n))$, for I_1, \ldots, I_n bbs.

For any bbs B_1, \ldots, B_n , one can choose disjoint bbs I_1, \ldots, I_m such that $\Lambda(B_j) = \sum_{i \in I_j} \Lambda(I_j)$. Hence definition is equivalent to the condition on disjoint bbs I_1, \ldots, I_n .

・ロン ・回 と ・ 回 と ・ 回 と

3

Definition Properties Palm Measures

Point Processes and Ordering

- Φ = {X_i} pp. {Y_i} i.i.d rvs. Φ̃ = {(X_i, Y_i)} independently marked pp (impp).
- $Y_i \in \{0,1\}$, $\widehat{\Phi}$ is the independently thinned pp (ithpp).

LEMMA (MEESTER & SHANTHIKUMAR, 1993) : $\{S_j^i\}_{j>0}$ for i = 1, ..., mindependent i.i.d. sequences of non-negative rvs. If f is dcx(idcx, idcv), then $g(n_1, ..., n_m) = \mathsf{E}\left(f(\sum_{j=1}^{n_1} S_j^1, ..., \sum_{j=1}^{n_m} S_j^m)\right)$ also is dcx(idcx, idcv).

Proposition

- If $\Phi_1 \leq_{dcx} (idcx, idcv) \Phi_2$ then
 - $\tilde{\Phi}_1 \leq_{\textit{dcx}} (\textit{idcx},\textit{idcv}) \tilde{\Phi}_2$ and
 - $\widehat{\Phi}_1 \leq_{dcx} (idcx, idcv) \widehat{\Phi}_2.$

SKETCH OF PROOF : $\tilde{\Phi}_j(A \times B) = \sum_{i=1}^{\Phi_j(A)} \mathbb{1}[Y_i \in B]$. Condition on pp & use Me-Sh Lemma.

Definition Properties Palm Measures

Intensity measures and fields

- Φ_{Λ} Cox process with intensity measure Λ .
- Intensity field : $\lambda(x)$ is density of $\Lambda \in \mathbb{M}(\mathbb{R}^d)$.

Proposition

• If
$$\Lambda_1 \leq_{dcx} (idcx, idcv)\Lambda_2$$
, then $\Phi_{\Lambda_1} \leq_{dcx} (idcx, idcv)\Phi_{\Lambda_2}$.

• Suppose that $\Lambda_i(.)$, i = 1, 2 a.s have locally Riemman integrable densities Then $\{\lambda_1(x)\}_{x \in \mathbb{R}^d} \leq_{(} dcx)(idcx, idcv)\{\lambda_2(x)\}_{x \in \mathbb{R}^d}$ implies that $\Lambda_1(.) \leq_{(} dcx)(idcx, idcv)\Lambda_2(.).$

SKETCH OF PROOF : Proof by approximation of integrals via middle Riemann sums and the below result.

LEMMA (MULLER & STOYAN, 2002) : $(X^{(k)})$ and $(Y^{(k)})$ - sequences of random vectors with $X^{(k)} \leq_{dcx} Y^{(k)}$. If $X^{(k)} \to X$ and $Y^{(k)} \to Y$ in distribution and if moreover $E(X^{(k)}) \to E(X)$ and $E(Y^{(k)}) \to E(Y)$, then $X \leq_{dcx} Y$.

Definition Properties Palm Measures

Ordering of Palm Version of Measures

• f measurable and $0 < E(\int_{\mathbb{E}} f(x)\Lambda(dx)) < \infty$. The mixed Palm version $\Lambda_f \in \mathbb{M}$ of rm Λ is defined for $M \in \mathcal{M}$ as

$$\mathsf{Prob}\,(\Lambda_f\in M)=\frac{\mathsf{E}\,\big(\int_{\mathbb{E}}f(x)\Lambda(dx)\mathbb{1}[\Lambda\in M]\big)}{\mathsf{E}\,\big(\int_{\mathbb{E}}f(x)\Lambda(dx)\big)},$$

Λ ∈ M(ℝ^d) with a stationary density field {λ(x)}, the Palm version Λ_s is defined as follows :

$$\mathsf{Prob}\left(\Lambda_x \in M
ight) = rac{\mathsf{E}\left(\lambda(x)\mathbb{1}[\Lambda \in M]
ight)}{\mathsf{E}\left(\lambda(x)
ight)},$$

Proposition

 $\Lambda^i, i=1,2$ - two random measures. Λ^i_f -the corresponding mixed Palm versions and Λ^i_s the Palm versions.

• If
$$\Lambda^1 \leq_{dcx} \Lambda^2$$
, then $\Lambda^1_f \leq_{idcx} \Lambda^2_f$.

• If
$$\{\lambda^1(x)\} \leq_{dcx} \{\lambda^2(x)\}$$
 then $\Lambda^1_s \leq_{idcx} \Lambda^2_s$.

Integral Shot-Noise Fields Max Shot-Noise Fields Monotonic Shot-Noise Fields

Integral Shot-Noise fields

S, a set. V_Λ(y) = ∫_E h(x, y)Λ(dx), y ∈ S, h is ℝ⁺-valued and measurable in x.

Theorem

If $\Lambda_1 \leq_{dcx} (idcx, idcv)\Lambda_2$, then $\{V_{\Lambda_1}(y)\}_{y \in S} \leq_{dcx} (idcx, idcv)\{V_{\Lambda_2}(y)\}_{y \in S}$.

SKETCH OF PROOF : Check the following approximation satisfies Mu-St Lemma.

$$V_k^j(y_i) = \sum_{n=1}^{\gamma_k} \frac{n-1}{2^k} \Lambda_j(I_{kn}^i),$$

for j = 1, 2 and I_{kn}^i are bbs.

• $V_k^j(y_i) \nearrow V_{\Lambda_j}(y_i)$ a.s. Hence in distribution and in L_1 .

• As I_{kn}^i are bbs, by definition of ordering , V_k^j 's are ordered.

 \rightarrow Miyoshi(2004) proved Theorem when Λ_i 's are three different point processes, for *h* lower semi-continuous and for rvs $V_i(x)$ under *icx*.

Integral Shot-Noise Fields Max Shot-Noise Fields Monotonic Shot-Noise Fields

Remarks

- $V_{\Lambda_1+\Lambda_2} = V_{\Lambda_1} + V_{\Lambda_2}$ a increasing linear function in Λ . Not a surprising result !! The proof is easy if one can prove that $\Lambda_1 \leq_{dcx} \Lambda_2$ as random fields is equivalent to $\Lambda_1 \leq_{dcx} \Lambda_2$ as measure-valued rvs. This remains an open question.
- h(A × B) = 1[x ∈ A]F(B), A, B bbs in E, E₁; F(.) be a probability distribution on E₁. V_Λ(A × B) represents intensity measure of independently marked Cox(Λ) with mark distribution F(.).
- p(x, A) a sub-probability kernel. Choose h(x, A) = p(x, A), then $\{V_{\Lambda_i}(A)\}_{A \in S}$ represents the intensity measure of the Cox(Λ) whose points are independently and randomly transformed via the probability kernel p(x, A). p(x, A) = 0 for A such that $x \notin A$ corresponds to independent thinning.
- $\{f_s\}_{s \in S}$ increasing convex(concave), then $\{f_s(V_{\Lambda_1}(s))\} \leq_{idcx} (idcv)\{f_s(V_{\Lambda_2}(s))\}$ and also their integrals under appropriate assumptions.

dette

Integral Shot-Noise Fields Max Shot-Noise Fields Monotonic Shot-Noise Fields

Extremal Shot Noise Fields

- Φ a pp, max shot-noise field $U_{\Phi}(y) = \max_{X_i \in \Phi} \{h(y, X_i)\}.$
- Lower orthant(lo) order for vectors : X ≤_{lo} Y if Prob (X ≤ t) ≥ Prob (Y ≤ t) for every t ∈ R^d.
- For 1-dimensional vectors, *lo* is same as strong order i.e, order generated by increasing functions.

Theorem

Let $\Phi_1 \leq_{idcv} \Phi_2$. Then $\{U_{\Phi_1}(.)\} \leq_{lo} \{U_{\Phi_2}(.)\}$.

Sketch of Proof :

$$\mathsf{Prob}\left(\mathit{U}(x_i) \leq \mathit{a}_i, 1 \leq i \leq m\right) = \mathsf{E}\left(\mathsf{e}^{-\sum_i \hat{\mathit{U}}(x_i)}
ight),$$

where $\hat{U}(x_i) = \sum_n -\log \mathbb{1}_{[h(x_i, Y_n) \leq a_i]}$. \rightsquigarrow Expectation of a *ddcx* function of an additive shot-noise field.

Integral Shot-Noise Fields Max Shot-Noise Fields Monotonic Shot-Noise Fields

Monotonicity of Shot-Noise Fields

• A stationary and isotropic random field $\{X(s)\}_{s \in \mathbb{R}^d}$ is said to be dcx regular if for any k and $s_1, \ldots, s_k, t_1, \ldots, t_k$ such that $||t_i - t_j|| \le ||s_i - s_j||$

$$(X(s_1)\ldots,X(s_k))\leq_{dcx}(X(t_1)\ldots,X(t_k)).$$

- If $\{X(s)\}_{s\in\mathbb{R}^d}$ is *dcx* regular, $\{X_c(s) = X(cs)\}$ are *dcx* decreasing random fields in c > 0.
- If the intensity field {λ(s)} is dcx regular then we get a parametric family of ordered Cox processes and hence their shot-noise fields.
- $\lim_{s\to 0} \lambda_c(s) = \lambda(0)$ mixed Poisson pp
- If the field is ergodic, thenlim_{s→∞} λ_c(s) = E (λ(0)).
 Stationary Poisson pp.

(ロ) (同) (E) (E) (E)

Clustered Point Processes Shot-Noise Cox Processes

Ising-Cox Point Process

Let \mathbb{Z}' be the \mathbb{Z}^d lattice shifted by a point distributed uniformly on the cube. Let $\{X(s)\}_{s\in\mathbb{Z}'}$ be i.i.d $\{+1, -1\}$ -valued rvs. Let $\mu_2 \leq \mu_1$. Define $\lambda(y) = \mu_1 \mathbb{1}_{[X(s_y)=1]} + \mu_2 \mathbb{1}_{[X(s_y)=-1]}$ where s_y represents the unique nearest "lower left point" in \mathbb{Z}' to y. Suppose $p = \operatorname{Prob}(X(s) = 1)$.

•
$$\Phi_h \sim \mathsf{Po}(p(\mu_1 - \mu_2) + \mu_2)$$

- $\Phi_c \sim \operatorname{Cox}(\lambda(y))$
- $\Phi_m \sim \operatorname{Cox}(\lambda(0))$

Proposition

$$\Phi_h \leq_{\mathit{dcx}} \Phi_c \leq_{\mathit{dcx}} \Phi_m$$

 \rightsquigarrow Proposition holds under little more general condition on the Ising Model.

 \rightsquigarrow Points of Φ_c occurs more in some cubes than others i.e, clustering.

・ロト ・回ト ・ヨト ・ヨト

Э

Clustered Point Processes Shot-Noise Cox Processes

Poisson-Poisson Cluster Point Process

- h(x), non-negative $\int_{\mathbb{R}^d} h(x) dx = \lambda_1 < \infty$.
- $\Phi \sim \mathsf{Po}(\lambda)$ and $\Phi_1 \sim \mathsf{Po}(\lambda \times \lambda_1)$.
- $\lambda_2(x) = \sum_{Y_i \in \Phi} h(x Y_i). \Phi_2 \sim Cox(\lambda_2(x)).$

•
$$\Lambda(dy) = \lambda dy$$
. $\Lambda_1(dy) = \lambda \times \lambda_1 dy$.

Proposition

 $\Lambda_1 \leq_{\mathit{dcx}} \Phi_1 \leq_{\mathit{dcx}} \Phi_2.$

Sketch of Proof :

$$\lambda \times \lambda_1 = \int_{\mathbb{R}^d} h(x-y) \lambda dy = \int_{\mathbb{R}^d} h(x-y) \Lambda(dy), \lambda_2(x) = \int_{\mathbb{R}^d} h(x-y) \Phi(dy)$$

Jensen's inequality implies $\Lambda \leq_{dcx} \Phi$. Hence by our main theorem result follows.

 \rightsquigarrow Usually $h(x) = \mathbf{1}[||x|| \le R]$. This pp Illustrates clustering better.

Clustered Point Processes Shot-Noise Cox Processes

Batch Point Process

→ Limiting case of Poisson-Poisson Cluster point process.

- $\Phi \sim \mathsf{Po}(\lambda)$ and $\Phi_1 \sim \mathsf{Po}(\lambda \times \lambda_1)$.
- $\Lambda_2(A) = \sum_{X_i \in \Phi \cap A} Y_i$ where Y_i i.i.d with mean λ_1 . $\Phi_2 \sim Cox(\Lambda_2(.))$
- Λ_2 does not have a density !

Proposition

 $\Phi_1 \leq_{\mathit{dcx}} \Phi_2.$

SKETCH OF PROOF : By Jensen's $(\lambda \times \lambda_1) dy \leq_{dcx} \Lambda_2(dy)$.

・ロン ・回 と ・ ヨ と ・ ヨ と

æ

Clustered Point Processes Shot-Noise Cox Processes

Lévy based Cox processes (LCP)

Lévy Basis - $L \in \mathbb{M}(\mathbb{R}^d)$ such that

- $L(A_i)$ independent for disjoint bbs.
- L(A) is infinitely divisible rv.

Definition

(Hellmund, G. et al, 2008.) Φ LCP if intensity field is $\lambda(y) = \int_{\mathbb{R}^d} h(x, y) L(dx)$ for a Lévy basis *L*.

Proposition

- $L_1 \leq_{dcx} L_2$ iff $L_1(A) \leq_{cx} L_2(A)$ for every bbs A.
- Suppose $L_1 \leq_{dcx} L_2$. Then $\Phi_1 \leq_{dcx} \Phi_2$.

EXAMPLE Let $\{x_i\}$ be a fixed locally finite point configuration. $\{X_i^1\}$ be i.i.d (exp(1/2) + exp(1/2)) rvs. $\{X_i^2\}$ be i.i.d exp(1) rvs. For A a bbs of \mathbb{R}^d and j = 1, 2, define

$$L_j(A) = \sum_{x_i \in A} X_i^j; \qquad \Rightarrow \quad L_1 \leq_{dex} L_2.$$

Clustered Point Processes Shot-Noise Cox Processes

Log Cox Point Process

DEFINITION

- (Hellmund, G. et al, 2008) Φ Log-Lévy driven Cox Process(LLCP) if intensity field is λ(x) = exp (∫_{ℝ^d} k(x, y)L(dy))
- Φ is Log-Gaussian Cox Process(LGCP) if intensity field is $\lambda(x) = \exp\{X(x)\}$ for X(x) is a Gaussian field.

Remarks

 \rightsquigarrow Exponential is convex function, hence ordering of the arguments imply the ordering of point processes.

→ For LLCP ordering of inside terms was studied in last example.
 → For LGCP, ordering of Gaussian fields are well-known in literature. As expected, sufficient and necessary conditions on expectation vector and covariance matrix of the fields.

Clustered Point Processes Shot-Noise Cox Processes

Generalized Shot-Noise Cox Point Process

DEFINITION

(Møller, 2005) Φ is GNSCP if the intensity field $\lambda(x) = \sum_{j} \gamma_{j} k_{b_{j}}(c_{j}, x)$ where $(c_{j}, b_{j}, \gamma_{j}) \in \Psi$, a point process on $\mathbb{R}^{d} \times (0, \infty) \times (0, \infty)$.

- $\Psi_1 \leq_{dcx} \Psi_2$ implies that $\lambda_1(x) \leq_{dcx} \lambda_2(x)$ and $\Phi_1 \leq_{dcx} \Phi_2$.
- This class includes Matern-Cluster processes, Neyman-Scott Processes, Thomas Processes.
- If b_j's are constants and (c_j, γ_j) is Poisson pp, Shot-Noise Cox Process. This is also a LCP.

・ロン ・回 と ・ ヨ と ・ ヨ と

3

Applications

SIGNAL-TO-INTERFERENCE NOISE RATIO(SINR) NETWORKS (Baccelli, F. et al, 2001)

- $\{x_i\}$ emitters; $\{y_i\}$ receivers; Φ pp of interferers;
- x_i successfully transmits to y_i if $\frac{S_i(||x_i y_i||)}{\sum_{X_i \in \Phi} S_i(||X_j y_i||) + W} \ge T_i$
- If S_i are i.i.d; exponential, Probability $\forall i, x_i$ successfully transmits to y_i is $p = E\left(exp\{-\sum_i c_i V(y_i)\}\right)$, where $V(y_i) = \sum_{X_j \in \Phi} S_j I(||X_j y_i||)$. Hence, $\Phi_1 \leq_{ddcx} \Phi_2$ implies that $p_1 \leq p_2$.

Coverage Processes

- Φ a point process. $U(x) = \max_{X_i \in \Phi} \{1[||x X_i|| \le R]\}$
- U(x) is the indicator fn. of x being covered by a point process and is the key quantity of analysis in the theory of coverage processes. (Hall, P., 1988)
- Comparison exists (Hall, P., 1988) for certain class of Cox processes with Poisson pp
- $\Phi_1 \leq_{idcv} \Phi_2$ implies that $\{U_1(x)\} \leq_{lo} \{U_2(x)\}$.

Further Questions

- Greater in *dcx* implies greater attraction for a point process. Notions of attractions aren't fully developed ??
- Better understanding of Palm versions ??
- Ordering induced by random measures as measure-valued rvs. This implies ordering as random fields. Converse ? No. May be something weaker ?? For convex ordering by Scarsini et al, 1991 ; Strong order Equivalence was proved by Rolski et al, 1991.
- Comparison of Hard-Core point processes with Poisson processes ?? More generally dependent vs independent thinning/marking ??
- Cluster processes with differing base intensites and differing radii ?? Some other order possibly ??

・ロン ・回と ・ヨン・

> THANK YOU ! THANK YOU !

・ロン ・回と ・ヨン ・ヨン

ŝ

æ