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Univariate maxima and EVDs

The df of the maximum of iid random variables X1, . . . , Xn with
common df F is given by

P
{

max{X1, . . . , Xn} ≤ x
}

= F n(x).

Max-Stability: A df F is max-stable if

F n(dn + cnx) = F (x).

The max–stable dfs constitute the parametric family of extreme
value distributions (EVDs) (consisting of Gumbel, Fréchet,
Weibull dfs) with shape parameter γ. We have

Gγ(x) = exp
(

−(1 + γx)−1/γ
)

.

EVDs are limiting dfs of sample maxima.
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Univariate Exceedances and GPDs

The exceedance df at the threshold u of a random variable X
with df F is given by

P(X ≤ x |X > u) =
F (x) − F (u)

1 − F (u)
= F [u](x) .

POT-Stability: A df F is pot-stable if

F [u](bu + aux) = F (x).

The possible pot–stable dfs constitute the parametric family of
generalized Pareto dfs (GPDs) (consisiting of exponential,
Pareto, beta dfs) with shape parameter γ. We have

Wγ(x) = 1 − (1 + γx)−1/γ , x ≥ 0.

The following relationship between EVDs G and GPDs W
holds:

W = 1 + log G, if log G > −1.

GPDs are limiting dfs of exceedance dfs.
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The univariate Poisson process of
exceedances

A full statistical model for exceedances above the threshold u
is provided by the Poisson counting process given by

◮ a Poisson rv τ (the random number of exceedances above
the threshold u)

◮ iid GP rvs X1, X2, X3, . . . up to the number τ ,

or, alternatively, given by a Poisson point process

τ
∑

i=1

εXi

Aims: we study
◮ multivariate EVDs, GPDs, and dfs deviating from GPDs,
◮ multivariate GPDs in complex stochastic systems.
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The notion of tail dependence

We say that there is upper tail dependence in data (x , y) if x
and y are simultaneously large.

Discussion of bivariate normal samples
(ρ = 0, 0.7, 0.9,−0.7)
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A measure for tail dependence

We deal with this question within the copula framework, that is,
we study [0, 1]-uniform rvs U and V .
As a measure of tail dependence consider the conditional
probability

P(V > u|U > u) := P(U > u, V > u)/P(U > u)

Tail dependence parameter:

χ = lim
u↑1

P(V > u|U > u).

We have tail independence if χ = 0. In that case, we also
study rates of tail independence:

P(V > u|U > u) ≃ (1 − u)β , u ↑ 1, β > 0. (1)

We call the exponent β > 0 in (1) the residual tail
dependence parameter .
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Residual tail dependence parameter

There is a relationship of the residual tail dependence
parameter β to the coefficient of tail dependence

χ̄ = lim
u↑1

2 log P{U > u}
log P{U > u, V > u}

− 1.

We have

β =
1 − χ̄

1 + χ̄
≥ 0.

Example: Consider a copula normal random vectors
(U, V ) = (Φ(X ),Φ(Y )) with correlation coefficient ρ. We have

χ̄ = ρ .
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A representation of EVDs and GPDs

For EVDs G with univariate, exponential margins the Pickands
representation is valid:

GD(x , y) = exp
(

(x + y)D
( x

x + y

))

, (x , y) ≤ 0,

where D is the Pickands dependence function .

For (X , Y ) with EVD df GD and Pickands dependence
function D we have

◮ if D(t) = 1: independence of X , Y
◮ if D(t) = max(t , 1 − t): total dependence of X , Y .

Again we study the pertaining generalized Pareto
distributions (GPDs) which are given by

WD = 1 + log GD, if log GD > −1,

or modifications on appropriate supports S(u).
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A spectral decomposition

We decompose a bivariate df H, defined on
(−∞, 0) × (−∞, 0), into an array of certain univariate dfs by
using the angular and radial components

z = x/(x + y) and c = x + y .

Rewriting
H(x , y) = H(cz, c(1 − z)) =: Hz(c)

one gets a df in c for each fixed angle z (called spectral
decomposition of H). Consider the spectral densities

hz(c) =
∂

∂c
Hz(c).

Remark: (i) If H = WD, then hz(c) = D(z).
(ii) If H = GD, then hz(c) = D(z) + cD2(z) + 0(c).
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DFs deviating from GPDs

Condition 1:

Assume that the spectral densities hz satisfy

hz(c) = D(z) + B(c)A(z) + o(B(c)), c ↑ 0,

for some regularly varying B with exponent β > 0.

Remark: (i) β is again the residual tail dependence parameter
if D = 1.
(ii) Roughly speaking, B(c) = |c|β in Condition 1.
(iii) If D(z) is replaced by a(z) then a(z) = D(z).
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Current research, Part I

(1) Testing tail dependence against residual tail dependence
under Condition 1 (M. Frick, E. Kaufmann, R.-D. Reiss
(2008), M. Frick and R.-D. Reiss (2009))

(2) Discriminant analysis in GPD models with particular
emphasis laid on truncated multivariate normal
distributions and limiting GPDs (with B.G. Manjunath, M.
Frick)

(3) Piecing-together-methods for multivariate GPDs and a lot
of other topics (M. Falk and his group, University of
Würzburg)
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Current research, Part II

(4) Under Condition 1 one gets for bivariate dfs Hβn with

βn → 0 as n → ∞, (2)

a limit theorem for maxima

Hn
βn

(x
n

,
x
n

)

→ exp
(

(x + y)(1 + λA
(

x
x + y

))

,

where λ depends on the speed of the convergence in (2),
and a related result for exceedances (with M. Frick).
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Data Example

Maximum daily winter wind speed and temperature in Aachen,
Germany from 1991 to 2008.
We want to model the conditional distribution of the wind speed
given the temperature in the tails.
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Conditional quantiles

Let (X i , Yi) i = 1, 2, . . . iid, (X1, Y1) ∼ (X, Y ) with values in
R × S and

F (y |x) = P (Y ≤ y |X = x) . (3)

Aim:
Estimation of conditional q–quantiles F−1(q|x) for x ∈ S.
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Estimation methods

1. non–parametric by moving sample quantiles

2. parametric model in the upper tail using GPDs

F (y |x) = Wγx ,µx ,σx (y), y > u

and estimating the parameters γx , µx , σx .
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Parametric modeling

We assume that

F (y |x) = Wγθ,x ,µθ,x ,σθ,x (y), y > u

where θ ∈ Θ ⊂ R
d is a parameter, for example if S = R one

may choose
γ(x) ≡ θ1 ∈ R,

σx = exp(θ2 + θ3x), θ2, θ3 ∈ R

as well as

µx = θ4 + θ5x , θ4, θ5 ∈ R.
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Results
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Modeling by Poisson point processes

Let

N =

τ
∑

i=1

ε(X i ,Yi ),

τ ∼ Pλ the Poisson point process of the observed data (on
T = S × R). Define

N [S,u] = N(· ∩ S × (u,∞))

the point process of exceedances over the threshold u and the
pertaining covariates.
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Point Process of Exceedances
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The threshold is chosen as u = 22m/s (79.2km/h) this yields
113 exceedances out of a total sample size of 1684
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The Process of Exceedances

Now it holds that N [S,u] is again a Poisson Process

N [S,u] d
=

τ∗

∑

i=1

ε(X∗

i ,Y∗

i ) (4)

where τ∗ and (X∗
i , Y ∗

i ), i ∈ N are independent, τ∗ is a Poisson
random variable with parameter λ∗ = λP {Y > u},

P (Y ∗ ≤ y |X∗ = x ) = W [u]
γθ,x ,µθ,x ,σθ,x

(u|x) (5)

and

P {X∗ ∈ B} = P (X ∈ B |Y > u ) . (6)
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A conditional approach

Let N and N [S,u] be as before. Let π1, be the projection
mapping

π1

(

n
∑

i=1

ε(x i ,yi )

)

=

n
∑

i=1

εx i

and define
N1 = π1(N).
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Likelihoods

◮ Let (x1, y1), . . . , (xn, yn) be the observed data
◮ (x∗

1, y∗
1 ), . . . , (x∗

k , y∗
k ) the pertaining “exceedances”

◮ x̃1, . . . , x̃n−k the covariates belonging to y-values smaller
then u.

◮ let η =
∑k

i=1 ε(x∗

i ,y∗

i ) and µ =
∑n

i=1 εx i

First approach: based on a density of L
(

N [S,u]
)

lη(θ) =

k
∏

i=1

wγx∗i ,θ,µx∗i ,θ,σx∗i ,θ
(y∗

i )

· exp
(

λ − λ

∫

Wγx,θ,µx,θ,σx,θ
(u)dL(X)(x)

)

.

Second approach: based on a density of P
(

N [S,u] ∈ ·|N1 = µ
)

lη,µ(θ) =

n−k
∏

i=1

Wγθ,x̃ i
,µθ,x̃ i

,σθ,x̃ i
(u)

k
∏

i=1

wγθ,x∗i
,µθ,x∗i

,σθ,x∗i
(y∗

i )
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Simulations
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Figure: Kernel densities of simulated estimators for θ2 and θ3, first
approach (dashed) and second approach (solid).
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95 % conditional Quantiles

Parameter estimates: γx = −0.12, σx = exp(1.12 + 0.04x),
µx = 9.93 + 0.35x
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