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Outline
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• North American Regional Climate Change Program

• Logspline density estimates

• Functional and spatial data.

• Regional climate simulations under current climate.

Challenges:

Spatial and functional data, design and analysis of

computer experiments, computational statistics for large

problems.



Probability of extreme events.
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Focus on the log density
Given observations {yi} from f(y), a probability density function.

f(y) = eg(y) or g(y) = log(f(y))

we are interested in the (simple) behavior of g when p is large.

For example, g could be linear for large y

Quantify how g changes over space and for dif-
ferent cases

i.e. g = g(p, x, M) with x being a location and M being a climate

model.



Regional Climate Simulations
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Geophysical models simulate weather under dif-
ferent climate states.

Snapshot of 3 hour precip-

itation for Exp. Climate

Prediction Center Regional

forced by observations.



Inferring changes in extreme weather
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Basic strategy Use numerical simulations, such as regional

climate models to determine the distribution of weather under

different global conditions.

e.g. Change the amount of greenhouse gases in the atmosphere

over time and simulate possible changes in climate.

Numerical Experiments Need to quantify the sources of

uncertainty for different geophysical models and for different re-

gions of the Earth.



Global climate change experiments
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Summary for Policymakers 
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GLOBAL AND CONTINENTAL TEMPERATURE CHANGE

Figure SPM.4. Comparison of observed continental- and global-scale changes in surface temperature with results simulated by climate 
models using natural and anthropogenic forcings. Decadal averages of observations are shown for the period 1906 to 2005 (black line) 
plotted against the centre of the decade and relative to the corresponding average for 1901–1950. Lines are dashed where spatial 
coverage is less than 50%. Blue shaded bands show the 5–95% range for 19 simulations from fi ve climate models using only the natural 
forcings due to solar activity and volcanoes. Red shaded bands show the 5–95% range for 58 simulations from 14 climate models using 
both natural and anthropogenic forcings.  {FAQ 9.2, Figure 1}

– observations
– with human
greenhouse gases
– without

Summary figure from Intergovernmental Panel on Climate Change,

Fourth Assessement Report. Used as evidence for attributing

global warming to human activities.



The problem of regional climate.
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The global models on their own do not give enough
detailed information at regional and local scales.

32km and 256km grid boxes for elevation

Many physical processes and features are not modeled explicitly!
E.g. thunderstorms or extreme weather events.



NARCCAP
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4GCMS × 6RCMs: 12 runs as a balanced design

MM5I RegCM CRCM HADRM RSM3 WRFP
GFDL • • •
CGCM3 • • •
HADCM3 • • •
CCSM • • •
Obs. (NCEP) • • • • • •

Surface Precipitation.

ECPC model forced by
NCEP reanalysis



Study region (for this talk)
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Includes ≈ 800 grid points from RCM simulations



Mean summer precip (mm/hour)
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Maybe we should just stop here!



95% quantiles/ mean
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Spatial smoothing
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Summarizing the distribution

13

log spline estimates

Stone, Hansen, Kooperberg, Truong (1997)

ˆf(y) = exp{B1(y)β1+B2(y)β2+ . . .+B2(y)β2+C(β)}

Basis will be a cubic polynomial in between the J ”knots”.

Y1 < Y2 < ... < YJ

and linear outside of Y1 and YJ

f̂ will have exponential tails.



Estimating parameters and knots
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When knots are known: Estimate the parameters {β} by

maximum likelihood.

Forward knot selection: Starting with a minimum number

of knots placed according to order statistics.

Add knots sequentially by maximizing a likelihood test statis-

tic (Rao)

Backward knot deletion: Remove knots sequentially us-

ing a likelihood test statistic (Wald)

Information criterion: Select among all the sequences of

models generated from forward and backward selection.



An example
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Daily precipitation from a grid box of ECPC.
Values relative to the mean and the logged transformation.

 PPT/mean

0 2 4 6 8 10

0
50

10
0

15
0

20
0

 log(PPT/mean)

F
re

qu
en

cy

−4 −3 −2 −1 0 1 2

0
20

40
60



Logspline fit
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Fit having logged the precipitation values
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Fit in unlogged scale
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Log density estimated tail probabilities.
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Building a distribution from EOFs
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Approximate the log quantile function as a linear combination of

strategic basis functions.

log[q(p)] =
M∑

i=1
φj(p)uj

The basis functions and coefficients are found by EOF/PC anal-

ysis.

• There is a set of coefficients for every grid box of every model.

• Log form means basis functions have multiplicative effects.

• Working with quantiles simplifies finding a common range.



EOFs for the ECPC model
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EOF analysis of the log quantile function for ECPC.

3 leading EOFs ( 1, 2, 3) coefficients for leading EOF.

Singular values: 265.0,21.4,9.6
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Comparing basis functions
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Comparing leading EOFs of 4 RCMs: ECPC, MM5I, WRFP,
RCM3
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Coefficients for ECPC and WRFP
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Towards a hierarchical model ...
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99% /mean estimate for ECPC
Use Tps to smooth three fields of coefficients
then reconstruct quantiles with 3 EOFs.
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An ANOVA summary of first EOF
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Summary
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Regional climate experiments have the potential to
provide more detailed information about changes in
extremes for future climate

logspline density estimates are a flexible method for
fitting large data sets

EOFs are useful in reducing the dimension for com-
parison across space and across models

Some challenges are to add uncertainties bounds on
these estimates – Bayesian methods are the easiest
way to do this.



Thank you!
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