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Don’t look at the stars with a microscope --- and
don’t use statistical methods tailored to means and
typical behavior to study extreme occurrences: Use
Extreme Value Statistics! (if not -- you will not see
the important things )

This talk is about two recent “instruments” for looking at
extreme values



Outline of talk = what to take home

Background: univariate GPD, multivariate EVD

The multivariate Generalized Pareto distribution
- limit of conditional distribution given at least one
component is large: definition, independence, density,
lower-dimensional marginal distributions

Mixture models
— analogues of Gaussian time series and spatial models

Wind storm insurance
- prediction intervals
— bivariate models may be more realistic
—> structured thinking for “not yet seen catastrophes”



1-dim Peaks over Thresholds model — GP distribution
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Multivariate Extreme Value model

M = (M, ...M;) vector of componentwise maxima

Example: d=2 and M; = largest building loss
M, = largest forest loss

The multivariate extreme value distributions are the natural
models for M. They are described in terms of marginal
distributions and dependence, typically specified in terms of a
“spectral measure” which gives the “angular distribution”. Much
studied, but still only a beginning. In example the observed

maxima might be yearly, but the aim prediction for 10 or 100
Or more years.



Basis for Generalized Pareto and Extreme Value distributions

e stability: maxima of vectors which are EV distributed are also
EV; going to higher levels preserves the GP distribution of
EeXCesSes

e asymptotics: maxima of many independent vectors are often
(approximately) EV distributed; asymptotically excesses of

high levels are are GP when maxima are EV

e “transition”: easy to go back and forth between GP and EV



The multivariate Generalized Pareto distribution should:

e be the natural distribution for excesses over high thresholds
by multivariate random variables -- i.e. it should have the
stability and asymptotics properties from previous slide

e should describe what happens to the other variables

when one or more of the variables exceed their
threshold(s)



The multivariate GP distribution: conditional distribution of
a vector given that at least one component is “large”
(cf also Segers 2004)

H(x) =log GX) , G multivariate EV, G(0)=e™
G(xA0)

from a multivariate EV distribution you get a multivariate GP
distribution; parametric families of EV distributions give
corresponding families of GP distributions; and vice versa

 this family is the only one which is stable under (a suitably
coordinated) change of excess levels

e exceedances asymptotically have a multivariate GP
distribution if and only if maxima are asymptotically
multivariate EV
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e stability
e asymptotics
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GP: approximate (conditional) distribution for (X1 — u1, X2 — u2)
in shaded region
-- exceedance times approximately Poisson process



An independent margins example
(X1,Y1),(X2,Ys),... iid. M, = (maxj<i<, X;, maxi<i<n Y;)

X, Y independent, standard exponential
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An absolutely continuous example: a bivariate symmetric
logistic distribution with margins normalized to Frechet, a = 2
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If (X,...X,) hasamultivariate GP distribution then the
marginal distribution of a component X; is not a univariate
GP distribution

However, if in the marginal distribution of X; one conditions
on X; >0 the resultis a univariate GP distribution

The reason is that in the multivariate GP distribution the
conditioning is on one of the d components being large,
while in the univariate GP distribution the condition is that the

variable itself is large

Similar results hold for higher-dimensional marginal distributions






Mixture models for maxima

- mixture models for multivariate GPD



S pos. stable if E(e™)=exp(-t*), where O<a<l
Gumbel distribution G(x) = exp(— exp(—X_ﬂ)j
O

if  P(X <x|S)=exp(-S exp(—x_—ﬂ))

then  P(X <x)=E(exp(- Sexp(——ﬂ)) exp(— exp(—#ﬂ )
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Gumbd!
Watson & Smith (1985), Hougaard (1986), Crowder (1989),
Tawn (1990), Coles & Tawn (1991), Stephenson (2003)

“same” holds for the general EV distribution




—p |arge, flexible and interpretable class of ”logistic”
models with Gumbel margins and with maxima
over all kinds of sets Gumbel distributed

Xt= Gt + ologSt, teT
t/t gft

i.i.d. Gumbel (y4,0) pos ¢-stable process

e components of variance ---S;  sum of effects

e time series - St ARMA
e spatial --- St spatial ARMA process
e continuous parameter  --—- St continous parameter MA

e hierarchical models (McFadden)

distribution funktion easy --- density hard




A spatial moving average process

(u,v) spatial coordinates, G, i.i.d ~ Gumbel(y,0)
X(u,v) — G(u,’u) + alogfexp(—ﬁKu, ’U) o (Q?,y)"y)S(d(.’L"y))

P(X(u; ) < Tt;,i=1,...n)

— exp(— [ (X0, exp(—B|(ur,, vr,) — (2, y)|)e™ 5 ) *“dady)

The d.f. of the corresponding multivariate GPD then, in the
third quadrant, is (up to appropriate normalization)

1 — (X0, exp(—B|(ut,, vr,) — (w,y)[V)e—7 )*dzdy

Perhaps tractable for n=5 to 10






Windstorm losses for
Lénsforsdkringar 1982-2005

Gudrun January 2005
26 MEuro loss
% due to forest losses
4 Ximes larger than second largest
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The real problem!



The insurance problems

How much reinsurance should Lansférsakringar buy?

How should Lansforsakringar adjust if its forest
insurance portfolio grows?

What statistics can provide: estimates of high quantiles
of distribution of maximum loss (= Extreme Value
Statistics — we used PoT).



History: result of 1994 analysis of 1982-1993 LFAB data

Risk next next5 nextl15 o0
(MSEK) year  years years %
10% 66 215 473 3
1% 366 1149 2497 L,g
S
Yi GP(y’ Oy, 7/) 0'30 400 800 X (MSEK)
o, =exp(a+ M) conditional probability that a
5 =151 loss in excees of the reinsurance
- level 850 MISEK exceeds x
£ =.013+.013
no evidence of trend in extremes  Gudrun: 2912 MSEK, after

12 years
Windstorms of 1902 and 1969 probably comparable to Gudrun



The data

all individual claims for windstorm damage to buildings and forest paid
out by Lansforsakringar during 1982-2005

Inflation adjusted into 2005 prices using the factor price index for building

appr 80 storm events where selected based on exceedances of three-day

moving sums, different selection for univariate and bivariate analysis

simplistic correction for portfolio changes
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One-dimensional analysis: total loss, standard PoT, ML estimation

Two-dimensional analysis: (loss from buildings , loss from forest)
bivariate GP model with symmetric logistic distribution,
simultaneous ML estimation of all parameters, numerical
computation of quantiles

Covariates may be incorporated in parameters, in the “usual way”



Modelling, estimation and computation in different
areas!

buildings
A
AN
computation in area over
diagonal line

]

-
forest

estimation using data in open rectangle

assumed GP model above and to the right of blue square



Prediction intervals

A level p prediction interval includes the predicted quantity
(say, the maximum loss during the next 15 years) with probability
1-p.

A “naive” prediction interval ends at the estimated p-th
guantile from the top. However, this usually doesn’t achieve
the level p, because of estimation uncertainty.

e 1dim: used bootstrap approach due to Hall, Peng & Tajvidi
e >1 dim: no method available



Results of univariate analysis

15 years pummm 15 years pumm
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“Naive” 10% prediction intervals. Bootstrapped 10% prediction intervals.
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Results of bivariate analysis
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“Naive” 10% prediction intervals. Black: no portfolio change, grey: 20%

Black1982-2004 data, white 1982-2005 higher forest exposure, white 50% higher



Are windstorm losses getting worse?

e | R-tests of linear trend in shape parameter gave p=.90
e |R-test of exp linear trend in scale parameter gave p=.10
e 5recordsin 73 observations: as expected from i.i.d theory

' cope fmec | o

Estimated 0.9 quantle
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.7 and .9 quantiles of individual claims for storm events with
more than 100 claims - significant trends in individual claims



Conclusions

e both univariate and bivariate models fitted the data and gave
credible prediction intervals — quantiles substantially different,

changes in probabilities of exceeding much less dramatic

e bivariate analysis may give the most correct evaluation of
the real uncertainties

e predicted losses were rather insensitive to changes in portfolio

size

e organizations should develop systematic ways of thinking
about “not yet seen” types of disasters



... and conclusions for statistics

e existing models can handle the problems, but still:
e much more thinking about prediction intervals is desirable

e much more thinking about multivariate peaks over thres-
holds modelling is needed

e should statistics involve itself in thinking about “not yet
seen” disasters?
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Does the univariate model fit?
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Does the bivariate model fit?

QQ-plot forest Pickand’s dependence funct QQ-plot buildings
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Bivariate GPD-model with symmetric logistic dependence
function, all parameters estimated simultaneously



Ex2:. 2 dim, totally dependent margins,
Xi=(XpYp) Mp=(max; ;  (Xp).max; ()

X=Y exponential, o= (O-)?l, o-)_,l), Ut = (log pt,logqt), p<qg

(Mp —up)

= exp(—exp(min(x/ oy +log p, ylcy +logq)) =G(x,Y)
O
G(x)
(X,Y)-ut  p(X, <x|(X, <0)° lo
X, = o (Xy =x|[(Xy=<0)")—>p gG(X/\O)
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