Clustering of Extreme Storms

David Stephenson, Renato Vitolo, Chris Ferro

KNMI/EURANDOM workshop "Climate change and EVT", May 11-13 2009, Eindhoven

Examples of wet and windy extremes

Examples of dry and hot extremes

Simple taxonomy

Acute: Having a rapid onset and following a short but severe course. Chronic: Lasting for a long period of time or marked by frequent recurrence

What do we mean by "extreme"?

Large meteorological values

- Maximum value (i.e. a local extremum)
- Exceedance above a high threshold
- Record breaker (threshold=max of past values)

Rare event

(e.g. less than 1 in 100 years $-p=0.01$)

Large losses (severe or high-impact) (e.g. $\$ 200$ billion if hurricane hits Miami) RISK = Expected loss due to the event $=\operatorname{Pr}($ event $) \times$ loss(event) where loss = vulnerability x exposure

Definition of "extreme" event is:

- context-dependent;
- not a binary property (it’s a relative concept!)

Gare Montparnasse, 22 Oct 1895

Societal relevance of storm clustering

Clustering of European winter storms leads to cumulative insurance losses comparable to those from a catastrophic hurricane:

- Dec 1999: 3 consecutive storms (loss $\$ 7.5$ bn)
- Dec 1989/Jan 1990: 8 consecutive storms (loss $\$ 10.5$ bn)

Example 2:Return periods for >15
storms/month estimated using negative binomial with a mean rate of
5.7 cyclones/month

Example 1:

Reinsurance typically bought for 2 events per yr. Assume to buy cover from 15% exceedance probability level:

Dispersion $=$	0	0.5
Prob[2 events/yr]	0.011	0.021
Prob[>2 events/yr]	0.001	0.008

Some key scientific questions

- How much do extratropical wintertime storms cluster?
- How does clustering depend on storm intensity?
- Can large-scale flow be used to explain the clustering?
- What are the implications of this for estimating return periods?

Storm feature tracking 1948-2003

- Eastward cyclone tracks identified objectively using TRACK software
- Extended winters (1 Oct-31 Mar)
- 6 hourly NCAR/NCEP reanalyses from 1948-2003

355,460 VOR zeniths (maxima)

The Storms of Dec 1989-Feb1990

Clustering of storms

Transits +/-10 ${ }^{0}$ of Nova Scotia ($45^{\circ} \mathrm{N}, 60^{\circ} \mathrm{W}$)

Transits +/-100 of Berlin ($52^{\circ} \mathrm{N}, 12.5^{\circ} \mathrm{E}$)

\rightarrow Clustered over Europe but not over western Atlantic

Dispersion of storm counts

Oct-Mar counts near Berlin

Dispersion statistic:

$$
\psi=\frac{\operatorname{Var}(n)}{\operatorname{mean}(n)}-1
$$

$=0$ when $\operatorname{Var}(\mathrm{n})=\operatorname{Mean}(\mathrm{n})$ e.g. Poisson distributed counts >0 when $\operatorname{Var}(\mathrm{n})>\operatorname{Mean}(\mathrm{n})$

Mean and dispersion of monthly counts

Green lines outline area with
Units:
>5 storms/month passing $20^{\circ} \mathrm{N}$-S line counts/month
Units: \%
\rightarrow Regions of overdispersion (reds) and underdispersion (blues)
Mailier, P.J., Stephenson, D.B., Ferro, C.A.T. and Hodges, K.I. (2006):
Serial clustering of extratropical cyclones, Monthly Weather Review, 134, pp 2224-2240

Dispersion increases for intense storms

Dispersion of 3-month counts:

$$
\frac{s_{n}^{2}}{\bar{n}}-1
$$

Dispersion versus intensity for Berlin

Exceedance probabilities (storm numbers)

- dispersion in counts.
- 90% prediction interval
---- dispersion from GLM fit

Equivalent windspeed threshold (m / s)

Dispersion increases for longer periods

Dispersion of counts for all storms:

$$
\frac{s_{n}^{2}}{\bar{n}}-1
$$

Dispersion versus aggregation period for Berlin

Flow-dependent clustering (e.g. UK buses)

Is this because bus drivers really love each other?

Don't think so! More to do with rate of arrival depending on time varying background traffic flow.

Teleconnection patterns

Polar-Eurasian

PNA

East Atlantic

E. Atl/W. Russian

Daily teleconnection indices x_{k}

Regression of counts on teleconnections: rate depends on large-scale flow

Poisson regression
$n \mid x \sim \operatorname{Poisson}(\mu)$
$\log \mu=\beta_{0}+\sum_{k=1}^{K} \beta_{k} x_{k}$

PEU index

PNA index

NAO index

East Atlantic index

Scandinavian index

East Atlantic/West Russia inde»

n = number of storms, e.g. monthly counts of windstorms.
$\mu=$ time-varying, flow dependent rate.
$X_{k}(t)=$ large-scale teleconnection indices (covariates).
GLM maximum likelihood estimation of β_{0}, β_{i}

Estimated ß regression parameters

\rightarrow all teleconnection patterns are important for European storms
See Seierstad et al. (2007)

Teleconnections account for overdispersion

Residual dispersion of fits to 3-month counts

Stochastic modelling of the process

Consider the points $\mathrm{Z}_{\mathrm{i}}>\mathrm{z}$
$\left(i /(n+1), Z_{i}=\left(Y_{i}-b_{n}\right) / a_{n}\right)$
$i=1,2, \ldots, n$

In the limit $n \rightarrow \infty$
$N \sim$ Poisson(1)
$\operatorname{Pr}(N=n)=\frac{\Lambda^{n} e^{-\Lambda}}{n!}$
$\Lambda=\left(t_{2}-t_{1}\right)\left\{1+\xi\left(\frac{z-\mu}{\sigma}\right)\right\}^{-1 / \xi}$

$\rightarrow\left(t_{2}-t_{1}\right) \exp \left\{-\left(\frac{z-\mu}{\sigma}\right)\right\}$
when $\xi \rightarrow 0$

Distribution of marks \& inter-arrival times

 Voricity vs. Interarival time
\rightarrow More time needed before more intense storms

Modelling times \& intensities of extreme storms

Large-scale flow patterns are known to influence the growth rate of storms AND the path of the storms.

Hence, we try to capture both these processes by modelling extreme storms as a COMPOUND POISSON PROCESS - a marked point process where the arrival times are independent of the marks (the vorticities).

Start by trying a Poisson process with time-varying rate for the arrival times AND a GPD fit for the marks.
The arrival rate and GPD parameters are allowed to depend on the NAO, EAP, EWP and SCP teleconnection indices (covariates).

Distribution of inter-arrival times

\rightarrow Interarrival times are more dispersed than exponential

Auto-intensity function for top 50\% most intense storms
Conditional probability density that an event arrives at time T+ lag, given that an event arrived at time T.

Inhibition at lag=1day. Storms can't arrive too close (hard-core rejection) Clustering at lag=2,3,4 days. Higher conditional probability of a $2^{\text {nd }}$ storm.

Survival function for 50\% most intense storms

Berln (12.5w,5204)

\rightarrow Log-normal gives a much better fit than does Exponential (or Gamma \& Weibull)

Rate-varying Poisson process for arrival times (*)

$$
\begin{aligned}
& \Delta t \sim \operatorname{Exp}(\lambda(t)) \\
& \log \lambda(t)=\beta_{0}+\sum_{k} \beta_{k} X_{k}(t)
\end{aligned}
$$

Maximum-likelihood estimates for storms passing Berlin:

	Rate	NAO	EAP	EA/WR	SCA
Beta	2.053	0.092	0.175	-0.25	-0.32
2*SE *	0.061	0.067	0.064	0.064	0.062

Statistically significant non-zero effects of
EAP, SCA and EAWR patterns.

* - of top 50% most intense storms

Generalized Pareto Distribution (GPD)

$$
\begin{aligned}
& F(z)=\operatorname{Pr}\{Z \leq z \mid Z>u\}=1-\left[1+\xi\left(\frac{z-u}{\tilde{\sigma}}\right)\right]^{-1 / \xi} \quad \tilde{\sigma}=\sigma+\xi(u-\mu) \\
& \Rightarrow f(z)=\frac{d F}{d z}=\frac{1}{\tilde{\sigma}}\left[1+\xi\left(\frac{z-u}{\tilde{\sigma}}\right)\right]^{-1-1 / \xi} \rightarrow\left\{\begin{array}{c}
0 \quad \text { when } z \geq u-\tilde{\sigma} / \xi=\mu-\sigma / \xi \\
\tilde{\sigma}^{-1} \exp (-z / \tilde{\sigma}) \\
\frac{1}{\tilde{\sigma}}\left(\frac{\xi z}{\tilde{\sigma}}\right)^{-(1+1 / \xi)}
\end{array}\right.
\end{aligned}
$$

Shape $=-0.4-$ upper cutoff

Shape $=0.0$ - exponential tail

Shape $=10$ - power law tail

Probability density function

How well does Generalised Pareto Distribution fit the vorticity marks at Berlin?

Including teleconnection covariates in the GPD

Summary

- Extratropical wintertime storms cluster esp. over NW Europe;
- Dispersion of counts increases for more intense storms;
- Dispersion of counts increases for longer count periods;
- Large-scale teleconnection indices can account for this overdispersion;
- Interarrival times show clustering (and inhibition)
- Have started to use a compound Poisson-GPD process to model the extremes but may need a compound renewalGPD process

Exeter Climate Systems

www.secam.ex.ac.uk/xcs

References

Mailier, P.J., Stephenson, D.B., Ferro, C.A.T. and Hodges, K.I. (2006):
Serial clustering of extratropical cyclones
Monthly Weather Review, 134, pp 2224-2240

Vitolo, R., Stephenson, D.B., Cook, I.M. and Mitchell-Wallace, K. (2008):
Serial clustering of intense European storms
Meteorologische Zeitschrift (in press).

Seierstad, I.A., Stephenson, D.B., and Kvamsto, N.G. (2007):
How useful are teleconnection patterns for explaining
variability in extratropical storminess?
Tellus A, 59 (2), pp 170-181

Exeter Climate Systems www.secam.ex.ac.uk/xcs

Willis Research Network

 www. willisresearchnetwork.com

Relative Vorticity : the "spin"

e.g.: wind speed of $15 \mathrm{~m} / \mathrm{s}$ and radius of $500 \mathrm{~km} \rightarrow$ vorticity of $6 \times 10^{\wedge}-5 / \mathrm{s}$.

Why use relative vorticity instead of SLP?

- More prominent small-scale features allow earlier detection
- Much less sensitive to the background state
- Directly linked with low-level winds (through circulation) and precipitation (through vertical motion)

