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Examples of wet and windy extremes
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Simple taxonomy

Rarity
Rare
weather/climate
events
Rare and Severe Rare and Non-Severe Severity
events Events
Rare, Severe Rare, Non-severe, )
Rare, Severe, Chronic events Acute events Rgrher,ol:ll?cnesvee\;ﬁrse,
Acute events e.g. European blocking e.g. hurricane over the : K
e.g. hurricane in New South Atlantic ocean €49 A [eloelang
England
Rapidity
Acute: Having a rapid onset and following a short but severe course.

Chronic: Lasting for a long period of time or marked by frequent recurrence



What do we mean by “extreme™?

Large meteorological values
= Maximum value (i.e. a local extremum)
= Exceedance above a high threshold
= Record breaker (threshold=max of past values)

Rare event | Gare Montparnasse, 22 Oct 1895
(e.g. less than 1 in 100 years — p=0.01) = ﬁ?

Large losses (severe or high-impact)
(e.g. $200 billion if hurricane hits Miami)
RISK = Expected loss due to the event
= Pr(event) x loss(event)

where loss = vulnerability X exposure

Definition of “extreme” event Is:

- context-dependent; S
- not a binary property (it's a relative concept!) ==
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Societal relevance of storm clustering

Clustering of European winter storms leads to
cumulative insurance losses comparable to those
from a catastrophic hurricane: Example 2:Return periods for >15

» Dec 1999: 3 consecutive storms (loss $7.5 bn) Storms/month estlmated US|ng
» Dec 1989/Jan 1990: 8 consecutive storms (loss $10.5 bn) . : : .
negative binomial with a mean rate of

5.7 cyclones/month

Example 1: S
; ; Dispersion Return
Reinsurance typically bought for 2 events per yr.o £ oe
Assume to buy cover from 15% exceedance 3 0% 586
probability level: n years
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Some key scientific questions

= How much do extratropical wintertime storms cluster?

= How does clustering depend on storm intensity?

= Can large-scale flow be used to explain the clustering?

= What are the implications of this for estimating return periods?




Storm feature tracking 1948-2003

« Eastward cyclone tracks identified objectively using TRACK software
» Extended winters (1 Oct-31 Mar)
* 6 hourly NCAR/NCEP reanalyses from 1948-2003

355,460 VOR zeniths (maxima)
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windspeed m/s
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Clustering of storms

Transits +/-10° of Nova Transits +/-10° of Berlin
Scotia (45°N, 60°W) (52°N,12.5°E)
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—> Clustered over Europe but not over western Atlantic




Counts

Dispersion of storm counts

Oct-Mar counts near Berlin
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=0 when Var(n)=Mean(n) e.g. Poisson distributed counts
>0 when Var(n)>Mean(n)




Mean and dispersion of monthly counts

0

Green lines outline area with Units:
>5 storms/month passing 20° N-S line counts/month Units: %

—~>Regions of overdispersion (reds) and underdispersion (blues)

Mailier, P.J., Stephenson, D.B., Ferro, C.A.T. and Hodges, K.I. (2006):
Serial clustering of extratropical cyclones, Monthly Weather Review, 134, pp 2224-2240 12



Dispersion increases for intense storms
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Dispersion of
3-month counts:
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Dispersion versus intensity for Berlin

Exceedance probabilities (storm numbers)

100% 80% 40% 10% 3% 0.7%
(1407)  (1133) (573) (140)  (46) (10)
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Dispersion

40% —
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Equivalent windspeed threshold (m/s)

dispersion in counts.
90% prediction interval
dispersion from GLM fit



Dispersion increases for longer periods

Dispersion of
counts for all storms:
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Dispersion

Dis

npersion versus aggregation period for Berlin

dispersion in counts.
—— 90% prediction interval
- — - - dispersion from GLM fit




Flow-dependent clustering (e.g. UK buses)

Is this because bus drivers really
love each other?

Don’t think so! More to do with rate of

arrival depending on time
varying background traffic flow.
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Leading rotated

Teleconnection patterns EOFs of 700mb

geopotential height

Polar-Eurasian Scandinavian

PNA | East Atlantic E. Atl/W. Russian
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Daily teleconnection indices x,
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Regression of counts on teleconnections:
rate depends on large-scale flow

Poisson regression

n| x ~ Poisson(u)

K
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N = humber of storms, e. g. monthly counts of windstorms.

= time-varying, flow dependent rate.

(t) = large-scale teleconnection indices (covariates).
GLM maximum likelihood estimation of (3, (3,




Estimated [3 regression parameters

—>all teleconnection patterns are important for European storms
See Seierstad et al. (2007)




Teleconnections account for overdispersion

Residual dispersion
of fits to 3-month
counts
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Stochastic modelling of the process

Consider thepointsZ, >z
(i[(n+1),Z, =(Y; —b,)/a,)
1=12,...,n

In thelimitn — o
N~Poisson(A)

/e
A=(t, —tl){1+ 5( G )}
—(t, - 1) exp{—( 2 ﬂj}

O

whené — 0




Distribution of marks & inter-arrival times
Voriiclly vs. Interamival time
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vorticity & [107%™)

AT=Ti=Ts [days]

- More time needed before more intense storms




Modelling times & intensities of extreme storms

Large-scale flow patterns are known to influence
the growth rate of storms AND the path of the storms.

Hence, we try to capture both these processes by modelling
extreme storms as a COMPOUND POI SSON PROCESS - a marked
point process where the arrival times are independent of the
marks (the vorticities).

windspeed m/s
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Start by trying a Poisson process with time-varying

rate for the arrival times AND a GPD fit for the marks.

The arrival rate and GPD parameters are allowed to depend on
the NAO, EAP, EWP and SCP teleconnection indices (covariates).



Distribution of inter-arrival times

inforasvival times ~ all alorms QO plot, all slorns:
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- Interarrival times are more dispersed than exponential



Auto-intensity function for top 50% most intense storms

Conditional probability density that an event arrives at
time T+ lag, given that an event arrived at time T.

S -| Meanmie-0.074 [!
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Inhibition at lag=1day. Storms can't arrive too close (hard-core rejection)
Clustering at lag=2,3,4 days. Higher conditional probability of a 2" storm.



Survival function for 50% most intense storms

Berlin (12.5W,52N)
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- Log-normal gives a much better fit than does Exponential (or Gamma & Weibull)



Rate-varying Poisson process for arrival times (*)

At ~ EXp(A(1))

log A(t) = py + Zﬁkxk(t)

Maximume-likelihood estimates for storms passing Berlin:

Rate NAO EAP EA/WR | SCA
Beta 2.053 (0.092 |0.175 |-0.25 |-0.32
2*SE  |0.061 |0.067 |0.0064 |0.0064 |0.062

Statistically significant non-zero effects of

EAP, SCA and EA/WR patterns.

* - of top 50% most intense storms




Generalized Pareto Distribution (GPD)
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How well does Generalised Pareto Distribution
fit the vorticity marks at Berlin?

Probebiitty Plot Cuariie Plot
a 2
. &
) e All storms:
C ! Not a good fit
3

3 woe
: L 3
= T T T T T ) 1] T T

00 02 04 08 OB 10 4 L a |4 110 12

Probebity Plat Gumnifie Plot
2 21 Storms with vorticity > 50% quantile:
2 = Much better fit
3 -
3 J o
= ]
T T T T T
B0 42 48 aé am o a 5 L



Including teleconnection covariates in the GPD

Y ~GPD(o, &)
logo = ay + ) X, (t)
k
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Jlue: estimate of alpha
led: estimate + 2 s. error
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Summary

Extratropical wintertime storms cluster esp. over NW Europe,;

Dispersion of counts increases for more intense storms;

Dispersion of counts increases for longer count periods;

Large-scale teleconnection indices can account for this
overdispersion;

Interarrival times show clustering (and inhibition)

Have started to use a compound Poisson-GPD process to
model the extremes but may need a compound renewal-
GPD process

Exeter Climate Systems
Www.secam.ex.ac.uk/xcs
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One small
step ...




Relative Vorticity : the "spin”

VORTICITY = CIRCULATION u 2zr

~

AREA Tr?

ind speed U =2

e.g.: wind speed of 15 m/s and radius of 500 km - vorticity of 6x107-5 /s.

Why use relative vorticity instead of SLP?

* More prominent small-scale features allow earlier detection
* Much less sensitive to the background state

* Directly linked with low-level winds (through circulation) and
precipitation (through vertical motion)
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