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1 INTRODUCTION

1. Introduction

e Basic model is the workhorse of mathematical finance: X, often the
log of an asset price, is assumed to follow an It6 semimartingale.

e A semimartingale can be decomposed into the sum of a drift, a con-
tinuous Brownian-driven part and a discontinuous, or jump, part.

— The jump part can in turn be decomposed into a sum of small

jumps and big jumps.
— Such a process will always generate a finite number of big jumps.

— But it may give rise to either a finite or infinite number of small

jumps.



1 INTRODUCTION

e [he model is

t t
X, = Xg + /Obsds + /OanWS + JUMPS
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e /1 is the jump measure of X, and its predictable compensator is the
Lévy measure v.

e The distinction between small and big jumps (¢) is arbitrary. What is
important is that € > 0 is fixed.



1 INTRODUCTION

e In earlier work, we developed tests to determine on the basis of the
observed sampled path on [0, T]:

— whether a jump part was present
— whether the jumps had finite or infinite activity

— in the latter situation proposed a definition and an estimator of a
degree of jump activity parameter

— whether a Brownian continuous component was needed once infi-
nite activity jumps are included

e In this talk, we show how these different results can be put in a com-
mon framework using a common methodology.
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1 INTRODUCTION

e We proceed by analogy with spectrography

e \We observe a time series of high frequency returns (a single path) over
a finite length of time [0, T']

e For example, 2006 returns on MSFT and INTC
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1 INTRODUCTION

e And then design a set of statistical tools that can tell us something
about specific components of the process that produced the observa-
tions

e These tools play the role of the measurement devices used in astro-
physics to analyze the light emanating from a star, for instance

— our observations are the high frequency returns; in astrophysics it’s
the light (visible or not)

— here the data generating mechanism is assumed to be a semimartin-
gale; in astrophysics it's whatever nuclear reactions inside the star
are producing the light



1 INTRODUCTION

e In astrophysics, one can look at a specific range of the light spectrum
to learn something about specific chemical elements present in the star

e Here, we design statistics that focus on specific parts of the distri-
bution of high frequency returns in order to learn something about
the different components of the semimartingale that produced those
returns

— decide which component(s) need to be included in the model (jumps,
finite or infinite activity, continuous component, etc.)

— determine their relative magnitude

— magnify specific components of the model if they are present, so
we can analyze their finer characteristics (such as the degree of
activity of jumps)



1 INTRODUCTION

e From the time series of returns, we get the distribution of returns at
time interval A,

e 2006 returns on MSFT and INTC at 15 seconds

Tails of INTC Log-Returns Density Tails of MSFT Log-Returns Density




1 INTRODUCTION

e From the previous plot, we would like to figure out which components
should be included in the model

e And in what proportions

Log-Returns Density: Continuous and Jump Components
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1 INTRODUCTION

e Similarly to what is done in spectrographic analysis
— we will emphasize visual tools
— so we will only include the LLN here

— and refer to the underlying papers for the formal derivations in-

cluding regularity conditions and the CLT, as well as simulations.
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2 THE MEASUREMENT DEVICE

2. The Measurement Device

e We construct power variations of the increments, suitably truncated

and/or sampled at different frequencies.
e We exploit the different asymptotic behavior of the variations as we
vary:
— the power p
— the truncation level u
— the sampling frequency A
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2 THE MEASUREMENT DEVICE

e This gives us three degrees of freedom, or tuning parameters, with

enough flexibility to isolate what we are looking for.

e Having these three parameters to play with, p, © and A, is like having
three knobs to adjust in the measurement device.

12



2 THE MEASUREMENT DEVICE

e Varying the power

— Powers p < 2 will emphasize the continuous component of the

underlying sampled process.
— Powers p > 2 will conversely accentuate its jump component.

— The power p = 2 puts them on an equal footing.
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2 THE MEASUREMENT DEVICE
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2 THE MEASUREMENT DEVICE

e Truncating the large increments at a suitably selected cutoff level can
eliminate the big jumps when needed

e Early use of this device: Mancini (2001)

Large Jumps Eliminated by Truncation
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2 THE MEASUREMENT DEVICE

e Sampling at different frequencies can let us distinguish between situ-

ations where the variations:
— converge to a finite limit;
— converge to zero;

— diverge to infinity.
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2 THE MEASUREMENT DEVICE

Ratios of Power Variations at Two Frequencies
to Identify the Asymptotic Behavior of B
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2 THE MEASUREMENT DEVICE

e These various limiting behaviors of the variations are indicative of
which component of the model dominates at a particular power and
in a certain range of returns (by truncation)

e Just like certain chemical elements have a very specific spectrographic

signature.

e So they effectively allow us to distinguish between all manners of null
and alternative hypotheses.
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2 THE MEASUREMENT DEVICE

e There are n observed increments of X on [0, T], which are

to be contrasted with the actual (unobservable) jumps of X :

AXS — XS — XS—
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2 THE MEASUREMENT DEVICE

e For any real p > 0, the basic instruments are the sum of the pthpower
of the increments of X, sampled at time interval Ay, and truncated
at level uy, :

[T/ An]
- n
B(p,un, An) = ) |AFXP1yanx|<u,)

1=1

e The entire methodology relies only on the computation of B for various
values of (p, un, Ay), it's pretty much one line of code:

B(p,u,del)=sum((abs(dX(del)). p).*(abs(dX(del))<=u(del)))
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2 THE MEASUREMENT DEVICE

T is fixed, asymptotics are all with respect to A,, — 0.

un, is the cutoff level for truncating the increments

up, — 0 when n — oo: in the form uy, = aAY for some w € (0,1/2).

w < 1/2 to keep all the increments which contain a Brownian contri-
bution.

There will be further restrictions on the rate at which u,;, — 0, ex-
pressed in the form of restrictions on the choice of w.

If we don’t want to truncate, we write B(p, oo, Ap).
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2 THE MEASUREMENT DEVICE

e Sometimes we will truncate in the other direction, that is retain only
the increments larger than w :

[T/ An]

1=1

e With up = aAY and w < 1/2, that can allow us to eliminate all the

increments from the continuous part of the model.

e In terms of the power variations B :

U(p, Un,, An) = B(p, o, An) - B(]?7 Un,, An)
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2 THE MEASUREMENT DEVICE

e Sometimes, we will simply count the number of increments of X, that
Is, take the power p = 0

[T/ An]

U0, un, An) = > 1{ArX|>un}:
i=1
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3 WHICH COMPONENT(S) ARE PRESENT

3. Which Component(s) Are Present

e Leaving aside the drift (effectively invisible at high frequency), the
model has three components

t t
X, = Xo + / bsds + /adeS + JUMPS
0 Jo ’

-~

drift continuous part
t
JUMPS = / / z(pu — v)(ds, daz)+/ / az,u(ds da:)
J0 J{|z|<1} {[z>
small]amps bngumps

e The analogy with spectrography would be that we are looking for
three possible chemical elements (say, hydrogen, helium and everything

else).
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3 WHICH COMPONENT(S) ARE PRESENT

e Consider the sets

QF = {X is continuous in [0,T]}

Q. = {X has jumps in [0, 7]}

Qi = {X has finitely many jumps in [0, 7]}
QY = {X has infinitely many jumps in [0,77]}

Qggf = {X has a Wiener component in [0, 7]}
{X has no Wiener component in [0, T]}

e Formally, Q {f o2ds > 0} and Q“OW {f o2ds = 0} :
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3 WHICH COMPONENT(S) ARE PRESENT

e We observe a time series and wish to determine in which set(s) the
path was.

e There are theoretically many possible ways to do this, even if we re-
strict attention to power variations only.

e However, we wish to construct test statistics that are model-free in
the sense that:

— their implementation does not require that we estimate or calibrate
the model, which can potentially be quite complicated (stochastic
volatility, jumps, jumps in volatility, jumps in jump intensity, etc.)

— so we want the distribution of the test statistics to be assessed
using only power variations (of perhaps other powers, truncation
levels and sampling frequencies)
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3.1 Jumps: Present or Not 3 WHICH COMPONENT(S) ARE PRESENT

3.1. Jumps: Present or Not

e Here are processes which measure some kind of variability of X and
depend on the whole (unobserved) path of X:

T
Ap) = [ loulds,  Bp) = X |AXP
0 s<T

where p > 0 and AXs = X5 — X _ are the jumps of X.

e A(p) is finite for all p > 0. B(p) is finite if p > 2 but often not when
p < 2.

e The quadratic variation of the process is [ X, X]|7 = A(2) 4+ B(2).
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3.1 Jumps: Present or Not 3 WHICH COMPONENT(S) ARE PRESENT

e

p>2, all X —  B(p, oo, An) —— B(p)
e We have [« AL-P/2 P
\ all p, X continuous = " B(p, 00, Apn) — A(p).

e We see that, when p > 2, B(p,o00,Ay) tends to B(p) : the jump
component dominates.

e If there are jumps, the limit B(p); > 0 is finite.

e On the other hand when X is continuous, then the limit is B(p) = 0
and B(p, o0, Ap)+ converges to 0 at rate A£/2_1.
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3.1 Jumps: Present or Not 3 WHICH COMPONENT(S) ARE PRESENT

e These considerations lead us to pick a value of p > 2 and compare

B(p, 00, Ap)+ on two different sampling frequencies.

e Specifically, for an integer k, consider the test statistic S ;:

B(p7 oo, kAn)T
B(p, o0, An)T .

SJ(p7 k, An) —

e The ratio in S j exhibits a markedly different behavior depending upon
whether X has jumps or not.
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3.1 Jumps: Present or Not 3 WHICH COMPONENT(S) ARE PRESENT
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3.1 Jumps: Present or Not 3 WHICH COMPONENT(S) ARE PRESENT

e | heorem
J
1 on QT

A
SJ(pﬂka n)t_> kp/2_1 on QCCZ_,

e This is valid on Q‘% whether the jump component include finite or
infinite components, or both.

e We provide a CLT under Q% and one under Q.. so one can test either
Hq: Q% vs. Hy : Q‘% or the reverse Hy : Q‘% vs. Hy : Q%F.
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3.2 Jumps: Finite or Infinite Activity 3 WHICH COMPONENT(S) ARE PRESENT

3.2. Jumps: Finite or Infinite Activity

e Many models in mathematical finance do not include jumps.

e But among those that do, the framework most often adopted consists
of a jump-diffusion: these models include a drift term, a Brownian-
driven continuous part, and a finite activity jump part (compound Pois-
son process): early examples include Merton (1976), Ball and Torous
(1983) and Bates (1991).

e Other models are based oninfinite activity jumps: see for example
Madan and Seneta (1990), Eberlein and Keller (1995), Barndorff-
Nielsen (1998), Carr, Geman, Madan and Yor (2002), Carr and Wu

(2003), etc.
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3.2 Jumps: Finite or Infinite Activity 3 WHICH COMPONENT(S) ARE PRESENT

3.2.1. Null Hypothesis: Finite Activity

e We first set the null hypothesis to be finite activity, that is Hy :
Qé N QY. whereas the alternative is Hy Q%.

e We choose an integer kK > 2 and a real p > 2.

e The only difference is that we now truncate

B(p, Un, kAn)

SFA(]?, Umk,An) = B(p A ) .
s Ty n

e Without truncation, we could discriminate between jumps and no
jumps, but not among different types of jumps.
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3.2 Jumps: Finite or Infinite Activity 3 WHICH COMPONENT(S) ARE PRESENT

e Like before, we set p > 2 to magnify the jump component.

e But since we want to separate big and small jumps, we now truncate

as a means of eliminating the large jumps.

e Since the large jumps are of finite size (independent of Ay), at some
point in the asymptotics Ay, | 0, the truncation level up, = O(AY)
will have eliminated all the large jumps.
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3.2 Jumps: Finite or Infinite Activity

3 WHICH COMPONENT(S) ARE PRESENT

Large Jumps Eliminated by Truncation
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3.2 Jumps: Finite or Infinite Activity 3 WHICH COMPONENT(S) ARE PRESENT

e Then if there are only big jumps and the Brownian component, the
two power variations B(p, un, kAp) and B(p, un, Ap) will behave as
if there were no jumps and the limit of the ratio will be 2 as in the

test for jumps.

e But if there are small jumps, then the truncation cannot eliminate them
because their size is A, —dependent then each B truncated tends to

the small of remaining jumps and the ratio tends to 1.
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3.2 Jumps: Finite or Infinite Activity 3 WHICH COMPONENT(S) ARE PRESENT

e Theorem: Under regularity conditions on up,

2—1 / 11,7
Sra(p, un, k, An) i kP! on QT m,QT :
1 on Q%
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3.2 Jumps: Finite or Infinite Activity 3 WHICH COMPONENT(S) ARE PRESENT

3.2.2. Null Hypothesis: Infinite Activity

e We next set the null hypothesis to be infinite activity, that is Hy : Q..
whereas the alternative is Hy : Q{ﬂ a Q:,W.

e Why do we need different statistics? Because the distribution of Sg 4
is not model-free under 2%, and that of S;4 is not model-free under

/ 4%
QN Q7.

e We choose three reals v > 1 and p’ > p > 2 and define a family of
test statistics as follows:

B(p/7 YUn, An)B(pa Un, An)
B(plv Un, An) B(p, YUn, An)

SIA(pa Un, 7, An) —
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3.2 Jumps: Finite or Infinite Activity 3 WHICH COMPONENT(S) ARE PRESENT

e Theorem: Under regularity conditions on up,

/ .
~P P on 7%,

P
S ,Un, Y, DAp) —
14(P; un, 7, An) { 1 on Qgﬂﬂ QJW
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3.3 Brownian Motion: Present or Not 3 WHICH COMPONENT(S) ARE PRESENT

3.3. Brownian Motion: Present or Not

e We would like to construct procedures which allow to:
— decide whether the Brownian motion is really there

— or if it can be forgone with in favor of a pure jump process with
infinite activity.

e When infinitely many jumps are included, there are a number of models
in the literature which dispense with the Brownian motion altogether.
The log-price process is then a purely discontinuous Lévy process with
infinite activity jumps, or more generally is driven by such a process:
see for example Madan and Seneta (1990), Eberlein and Keller (1995),
Carr, Geman, Madan and Yor (2002), Carr and Wu (2003), etc.
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3.3 Brownian Motion: Present or Not 3 WHICH COMPONENT(S) ARE PRESENT

3.3.1. Null Hypothesis: Brownian Motion Present

e In order to construct a test, we seek a statistic with markedly different
behavior under the null and alternative.
e The idea is now to consider powers less than 2

— since in the presence of Brownian motion the power variation would
be dominated by it

— while in its absence it would behave quite differently.
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3.3 Brownian Motion: Present or Not 3 WHICH COMPONENT(S) ARE PRESENT

e Specifically, the large number of small increments generated by a con-
tinuous component would cause a power variation of order less than
2 to diverge to infinity.

e Without the Brownian motion, however, and when p > 3, the power
variation converges to 0 at exactly the same rate for the two sampling
frequencies Ay and kA,

e Whereas with a Brownian motion the choice of sampling frequency
will influence the magnitude of the divergence.

e Taking a ratio will eliminate all unnecessary aspects of the problem
and focus on that key aspect.
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3.3 Brownian Motion: Present or Not 3 WHICH COMPONENT(S) ARE PRESENT

e We choose an integer k£ > 2 and a real p < 2.

e We propose the test statistic

B(])7 ’U/n,, An)
B(pa Un, kAn) .

Sw(p, un, k, An) =
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3.3 Brownian Motion: Present or Not 3 WHICH COMPONENT(S) ARE PRESENT

e Theorem: Under regularity conditions on up,

kl—p/2 on QZW
1 onQ&‘PWﬂQZ,p>B

SW(p7 Un, k? An) i {
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3.3 Brownian Motion: Present or Not 3 WHICH COMPONENT(S) ARE PRESENT

3.3.2. Null Hypothesis: No Brownian Motion

e The null model is now pure jump (plus perhaps a drift) with jumps.

— When there are no jumps, or finitely many jumps, and no Brownian
motion, X reduces to a pure drift plus occasional jumps, and such
a model is fairly unrealistic in the context of most financial data

series.

— But one can certainly consider models that consist only of a jump
component, plus perhaps a drift, if that jump component is allowed

to be infinitely active.
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3.3 Brownian Motion: Present or Not 3 WHICH COMPONENT(S) ARE PRESENT

e Designing a test under this null is trickier

— because we are aiming for a test that remains model-free even for
this model.

— that is, despite being driven by what is now a pure jump process, the
behavior of the statistic should not depend on the characteristics

of the pure jump process
— such as for instance its degree of activity 3

— since those characteristics are a priori unknown.
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3.3 Brownian Motion: Present or Not 3 WHICH COMPONENT(S) ARE PRESENT

e We choose a real v > 1 to define two different truncation ratios

e And define a family of test statistics as follows:

B(2, YUn, An) U(07 Un, An)
B(2,un, An) U(0, yun, An).

SnoW(p7 Un, 7Y, An) —

e Theorem: Under regularity conditions on wup,

2 noW )
P ~v< on €2 N Q
SnoW(p7 Un, 7, An) - { ’YB Ojr: Q’ZVY s
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4 THE RELATIVE MAGNITUDE OF THE COMPONENTS

4.

The Relative Magnitude of the Components

A typical “main sequence” star might be made of 90% hydrogen, 10%
helium and 0.1% everything else.

Here, what is the relative magnitude of the two jump and the contin-

uous components?
We can answer this question using the same device.

It makes sense to consider p = 2 since this is the power where all the

components are present together.
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4 THE RELATIVE MAGNITUDE OF THE COMPONENTS

e We can then truncate to split the QV into its continuous and jump
components

e And not truncate to estimate the full QV:

B(27un7An) . .
B(2.00.80) — % of QV due to the continuous component

B(2,'U/n,An)

1— B(2.00.An) = % of QV due to the jump component

e Alternative splitting of the QV based on bipower variation instead
of truncating: Barndorff-Nielsen and Shephard (2004), Huang and
Tauchen (2005), Andersen, Bollerslev and Diebold (2007).
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4 THE RELATIVE MAGNITUDE OF THE COMPONENTS
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4 THE RELATIVE MAGNITUDE OF THE COMPONENTS

e We can then split the rest of the QV, which by construction is at-
tributable to jumps, into a small jumps and a big jumps component.

e This depends on the cutoff level € selected to distinguish big and small
jumps:

g(g%;;gng) — % of QV due to big jumps

B(2,oo,An)—§((22§naAAvs)—U (2:2.80) — 9 of QV due to small jumps
9 y=n
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4 THE RELATIVE MAGNITUDE OF THE COMPONENTS

Splitting Up QV: Continuous and Jump Components
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5 THE FINER CHARACTERISTICS OF THE COMPONENTS

5. The Finer Characteristics of the Components

5.1. Defining an Index of Jump Activity

o Recall B(p) = > s<7 |AX5|P.
e Define IT={p>0: B(p) < oc}.

e Necessarily, the (random) set I is of the form [B7,00) or (87, c0)
for some Bp(w) < 2, and 2 € I always.
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5.1 Defining an Index of Jump Activity 5 THE FINER CHARACTERISTICS OF THE COMPONENTS

e We call Bp(w) the jump activity index for the path ¢ — X;(w) at time
T.

e We define this index in analogy with the special case where X is a
Lévy process:

— Then Bp(w) = B does not depend on (w,T'), and it is also the
infimum of all 7 > 0 such that [;,1<1} [#|"v(dz) < oo, where v is
the Lévy measure

— So, for a Lévy process, the jump activity index coincides with the
Blumenthal-Getoor index of the process.

— In the further special case where X is a stable process, then (3 is
also the stable index of the process.
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5.1 Defining an Index of Jump Activity 5 THE FINER CHARACTERISTICS OF THE COMPONENTS

e (3 captures an essential qualitative feature of v, which is its level of
activity: when S increases, the (small) jumps tend to become more
and more frequent.

— Processes with finite jump activity have 3 = 0.

— Processes with infinite jump activity may also have 8 = 0 if the
rate of divergence of the jump measure is sub-polynomial.

— Processes with 3 € (0, 2) have infinite jump activity

— And the higher 3, the more active the jumps.

e Brownian motion has § = 2 in the limit.
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5.1 Defining an Index of Jump Activity 5 THE FINER CHARACTERISTICS OF THE COMPONENTS
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5.1 Defining an Index of Jump Activity 5 THE FINER CHARACTERISTICS OF THE COMPONENTS

e The problem is made more challenging because we want a method
that works even if X has a continuous martingale part:

— We need to see through the continuous part of the semimartingale
in order to say something about the number and concentration of
small jumps.

— So we will truncate, but in the other direction.
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5.1 Defining an Index of Jump Activity 5 THE FINER CHARACTERISTICS OF THE COMPONENTS

e We are now looking in adifferent range of the spectrum of returns

e Considering only returns that are larger than the cutoff u,, = aAY’ for
some w € (0,1/2).

e T his allows us to eliminate the increments due to the continuous com-
ponent.

e We can then use all values of p, not just those p > 2.
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5.1 Defining an Index of Jump Activity 5 THE FINER CHARACTERISTICS OF THE COMPONENTS
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5.2 Estimating Jump Activity 5 THE FINER CHARACTERISTICS OF THE COMPONENTS

5.2. Estimating Jump Activity

e We propose two estimators of 3 based on counting the number of

increments greater than the cutoff uy,.

e The first one: fix 0 < a < &' and consider two cutoffs u, = alAY
and u, = o/ A% with v =o'/ :
log(U(0, un, Apn)/U(0, yun, An))
log(~)

Bn(wa a, O/) — )

e The second one: sample on two time scales, Ay and 2A,.

log(U (0, un, An)/U(0, un, kAy))
w log k '

Bl (w,a, k) =
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5.2 Estimating Jump Activity 5 THE FINER CHARACTERISTICS OF THE COMPONENTS

e Given consistent estimators and with a CLT

e We could test various hypotheses, for instance whether 3 > 1or 8 < 1
which correspond to finite or infinite variation for X.

e Related methods: testing whether 3 = 1 (Cont and Mancini (2008)),
testing whether 3 = 2 or § < 2 (Tauchen and Todorov (2008)).
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6 SUMMARY: (P,U,n0)

6.

Summary: (p, u, A)

Jumps: Present or Not
Hy Q7 Q.
Hy
Sy
c p > 2
Q7 oo
Ay, kAy
Sy
j p>2
Q. o
A, kKA,
Jumps: Finite or Infinite Activity
Ho Qf, Qi
H,
Siac:
of p>2p>2
T Un, ’)’un
SFAé
i p >
Q) w,
Ay, kKA,
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6 SUMMARY: (P,U,n0)

Brownian Motion: Present or Not
. Hy QYW Q”TOW
1
5=
74 p=VY, p =
n
Sw
QnoW p < 2
T Un
A, kKA,

Relative Magnitude
of the Components

Un

A,

()

Estimating the Degree of Jump Activity
. p=0
B Un, YUn
)
. p=0
B’ Un
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7 EMPIRICAL RESULTS: INTEL & MICROSOFT 2006

7. Empirical Results: Intel & Microsoft 2006

7.1. The Data
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7.1 The Data 7 EMPIRICAL RESULTS: INTEL & MICROSOFT 2006

Tails of INTC Log-Returns Density Tails of MSFT Log-Returns Density
|
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7.1

The Data 7 EMPIRICAL RESULTS: INTEL & MICROSOFT 2006

Whenever we need to truncate, we express the truncation cutoff level

un in terms of a number of standard deviations of the continuous part
of the semimartingale.

We consider sampling frequencies up to 5 seconds.

In real data, observations of the process X are blurred by market
microstructure noise, which messes things up at very high frequency.
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7.2 Jumps: Present or Not 7 EMPIRICAL RESULTS: INTEL & MICROSOFT 2006

7.2. Jumps: Present or Not

e Two polar cases: observations are blurred with either an additive white
noise or with noise due to rounding

— Observations are affected by an additive noise, that is instead of
X;A,, We really observe Y;aA = X;a, +¢;, and the g; are i.i.d. with
E(ezz) and E(e?) finite.

— Or we observe Y;p = [X;A, ]a, that is X rounded to the nearest

multiple of a, say 1 cent for a decimalized asset.

e We show that, in the presence of additive noise, S 7(4, k, Ap) ﬂ %

e In the presence of rounding error noise, the limit is ﬁ
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7.2 Jumps: Present or Not 7 EMPIRICAL RESULTS: INTEL & MICROSOFT 2006

e So S has four possible limits: with £ =2 and p = 4,

1/2 : additive noise dominates
1/21/2 . rounding error dominates
1 ; jumps present

2 ; no jumps present
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7.2 Jumps: Present or Not 7 EMPIRICAL RESULTS: INTEL & MICROSOFT 2006

INTC & MSFT 2006
Test Statistic Sy
to Test for the Presence of Jumps
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7.2 Jumps: Present or Not 7 EMPIRICAL RESULTS: INTEL & MICROSOFT 2006

Average of Test Statistic Sy
to Test for the Presence of Jumps
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Jumps Present
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7.3 Jumps: Finite or Infinite Activity 7 EMPIRICAL RESULTS: INTEL & MICROSOFT 2006

7.3. Jumps: Finite or Infinite Activity

INTC & MSFT 2006
Test Statistic Spa
to Test Whether Jumps Have Finite or Infinite Activity
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7.3 Jumps: Finite or Infinite Activity 7 EMPIRICAL RESULTS: INTEL & MICROSOFT 2006

Average of Test Statistic Spa
to Test Whether Jumps Have Finite or Infinite Activity

Finite Activity

Infinite Activity
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7.4 Brownian Motion: Present or Not 7 EMPIRICAL RESULTS: INTEL & MICROSOFT 2006

7.4. Brownian Motion: Present or Not

e Market microstructure noise with either an additive white noise or with
noise due to rounding, the respective limits of Sy become 2 and 21/2

with k = 2.

e Sy has four possible limits:

1 ; No Brownian motion
k1=P/2 . Brownian motion present
K2 . rounding error dominates

k - additive noise dominates
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7.4 Brownian Motion: Present or Not 7 EMPIRICAL RESULTS: INTEL & MICROSOFT 2006

INTC & MSFT 2006
Test Statistic Sy
to Test Whether Brownian Motion is Present
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7.4 Brownian Motion: Present or Not 7 EMPIRICAL RESULTS: INTEL & MICROSOFT 2006

Average of Test Statistic Sy
to Test Whether Brownian Motion 1s Present
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7.5. QV Relative Magnitude

INTC & MSFT 2006
Proportion of Quadratic Variation
Attributable to Continuous Component
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7.5 QV Relative Magnitude 7 EMPIRICAL RESULTS: INTEL & MICROSOFT 2006

Proportion of Quadratic Variation

Attributable to Continuous Component
%QV

Pure Brownian

Pure Jump
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7.6 Estimating Jump Activity 7 EMPIRICAL RESULTS: INTEL & MICROSOFT 2006

7.6. Estimating Jump Activity

INTC & MSFT 2006
Estimate of the Degree of Jump Activity f3
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7.6 Estimating Jump Activity 7 EMPIRICAL RESULTS: INTEL & MICROSOFT 2006

Average of Estimates of the Degree of Jump Activity g3
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8 CONCLUSIONS

8.

Conclusions

The empirical results for these data appear to:
Indicate that jumps are present in the data
Point towards the presence of infinite activity jumps
Of degree of jump activity that is somewhere around 1.5 or higher.
Indicate that a continuous component is present.

Representing about 3/4 of total QV.

80



8 CONCLUSIONS

e Pros

— Unified methodology to address all these specification questions in
a common framework

— Symmetric treatment of null and alternative in each case, including
distribution theory

— Model-free
— Extremely simple to implement

— Impact of the noise on the statistics is characterized
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8 CONCLUSIONS

e Cons

— Not necessarily the optimal approach for each one of these ques-
tions taken individually.

— Requires high frequency data (particularly the estimation of j3)

— Still to do: a full development of noise-robust statistics.
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