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1 INTRODUCTION

1. Introduction

� Basic model is the workhorse of mathematical �nance: X, often the
log of an asset price, is assumed to follow an Itô semimartingale.

� A semimartingale can be decomposed into the sum of a drift, a con-

tinuous Brownian-driven part and a discontinuous, or jump, part.

{ The jump part can in turn be decomposed into a sum of small

jumps and big jumps.

{ Such a process will always generate a �nite number of big jumps.

{ But it may give rise to either a �nite or in�nite number of small

jumps.
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1 INTRODUCTION

� The model is

Xt = X0 +
Z t
0
bsds| {z }
drift

+
Z t
0
�sdWs| {z }

continuous part

+ JUMPS

JUMPS =
Z t
0

Z
fjxj�"g

x(�� �)(ds; dx)| {z }
small jumps

+
Z t
0

Z
fjxj>"g

x�(ds; dx)| {z }
big jumps

� � is the jump measure of X, and its predictable compensator is the
L�evy measure �.

� The distinction between small and big jumps (") is arbitrary. What is
important is that " > 0 is �xed.
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1 INTRODUCTION

� In earlier work, we developed tests to determine on the basis of the
observed sampled path on [0; T ]:

{ whether a jump part was present

{ whether the jumps had �nite or in�nite activity

{ in the latter situation proposed a de�nition and an estimator of a

degree of jump activity parameter

{ whether a Brownian continuous component was needed once in�-

nite activity jumps are included

� In this talk, we show how these di�erent results can be put in a com-
mon framework using a common methodology.
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1 INTRODUCTION

� We proceed by analogy with spectrography

� We observe a time series of high frequency returns (a single path) over
a �nite length of time [0; T ]

� For example, 2006 returns on MSFT and INTC
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1 INTRODUCTION

� And then design a set of statistical tools that can tell us something
about speci�c components of the process that produced the observa-

tions

� These tools play the role of the measurement devices used in astro-
physics to analyze the light emanating from a star, for instance

{ our observations are the high frequency returns; in astrophysics it's

the light (visible or not)

{ here the data generating mechanism is assumed to be a semimartin-

gale; in astrophysics it's whatever nuclear reactions inside the star

are producing the light
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1 INTRODUCTION

� In astrophysics, one can look at a speci�c range of the light spectrum
to learn something about speci�c chemical elements present in the star

� Here, we design statistics that focus on speci�c parts of the distri-
bution of high frequency returns in order to learn something about

the di�erent components of the semimartingale that produced those

returns

{ decide which component(s) need to be included in the model (jumps,
�nite or in�nite activity, continuous component, etc.)

{ determine their relative magnitude

{ magnify speci�c components of the model if they are present, so
we can analyze their �ner characteristics (such as the degree of

activity of jumps)
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1 INTRODUCTION

� From the time series of returns, we get the distribution of returns at

time interval �n

� 2006 returns on MSFT and INTC at 15 seconds
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1 INTRODUCTION

� From the previous plot, we would like to �gure out which components

should be included in the model

� And in what proportions
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1 INTRODUCTION

� Similarly to what is done in spectrographic analysis

{ we will emphasize visual tools

{ so we will only include the LLN here

{ and refer to the underlying papers for the formal derivations in-

cluding regularity conditions and the CLT, as well as simulations.
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2 THE MEASUREMENT DEVICE

2. The Measurement Device

� We construct power variations of the increments, suitably truncated
and/or sampled at di�erent frequencies.

� We exploit the di�erent asymptotic behavior of the variations as we
vary:

{ the power p

{ the truncation level u

{ the sampling frequency �
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2 THE MEASUREMENT DEVICE

� This gives us three degrees of freedom, or tuning parameters, with
enough exibility to isolate what we are looking for.

� Having these three parameters to play with, p; u and �; is like having
three knobs to adjust in the measurement device.
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2 THE MEASUREMENT DEVICE

� Varying the power

{ Powers p < 2 will emphasize the continuous component of the

underlying sampled process.

{ Powers p > 2 will conversely accentuate its jump component.

{ The power p = 2 puts them on an equal footing.
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2 THE MEASUREMENT DEVICE
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2 THE MEASUREMENT DEVICE

� Truncating the large increments at a suitably selected cuto� level can
eliminate the big jumps when needed

� Early use of this device: Mancini (2001)
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2 THE MEASUREMENT DEVICE

� Sampling at di�erent frequencies can let us distinguish between situ-
ations where the variations:

{ converge to a �nite limit;

{ converge to zero;

{ diverge to in�nity.
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2 THE MEASUREMENT DEVICE
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2 THE MEASUREMENT DEVICE

� These various limiting behaviors of the variations are indicative of
which component of the model dominates at a particular power and

in a certain range of returns (by truncation)

� Just like certain chemical elements have a very speci�c spectrographic
signature.

� So they e�ectively allow us to distinguish between all manners of null
and alternative hypotheses.
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2 THE MEASUREMENT DEVICE

� There are n observed increments of X on [0; T ]; which are

�niX = Xi�n �X(i�1)�n;

to be contrasted with the actual (unobservable) jumps of X :

�Xs = Xs �Xs�

X

t

t

ΔXt

Xt-

Xt+

data=

jump
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2 THE MEASUREMENT DEVICE

� For any real p � 0; the basic instruments are the sum of the pthpower

of the increments of X; sampled at time interval �n; and truncated

at level un :

B(p; un;�n) =
[T=�n]X
i=1

j�niXjp 1fj�ni Xj�ung

� The entire methodology relies only on the computation of B for various
values of (p; un;�n); it's pretty much one line of code:

B(p,u,del)=sum((abs(dX(del)).^p).*(abs(dX(del))<=u(del)))
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2 THE MEASUREMENT DEVICE

� T is �xed, asymptotics are all with respect to �n ! 0:

� un is the cuto� level for truncating the increments

� un ! 0 when n!1: in the form un = ��$n for some $ 2 (0; 1=2):

� $ < 1=2 to keep all the increments which contain a Brownian contri-

bution.

� There will be further restrictions on the rate at which un ! 0, ex-

pressed in the form of restrictions on the choice of $.

� If we don't want to truncate, we write B(p;1;�n):
21



2 THE MEASUREMENT DEVICE

� Sometimes we will truncate in the other direction, that is retain only
the increments larger than u :

U(p; un;�n) =
[T=�n]X
i=1

j�niXjp 1fj�ni Xj>ung:

� With un = ��$n and $ < 1=2; that can allow us to eliminate all the

increments from the continuous part of the model.

� In terms of the power variations B :

U(p; un;�n) = B(p;1;�n)�B(p; un;�n):
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2 THE MEASUREMENT DEVICE

� Sometimes, we will simply count the number of increments of X; that
is, take the power p = 0

U(0; un;�n) =
[T=�n]X
i=1

1fj�ni Xj>ung
:
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3 WHICH COMPONENT(S) ARE PRESENT

3. Which Component(s) Are Present

� Leaving aside the drift (e�ectively invisible at high frequency), the
model has three components

Xt = X0 +
Z t
0
bsds| {z }
drift

+
Z t
0
�sdWs| {z }

continuous part

+ JUMPS

JUMPS =
Z t
0

Z
fjxj�1g

x(�� �)(ds; dx)| {z }
small jumps

+
Z t
0

Z
fjxj>1g

x�(ds; dx)| {z }
big jumps

� The analogy with spectrography would be that we are looking for
three possible chemical elements (say, hydrogen, helium and everything

else).
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3 WHICH COMPONENT(S) ARE PRESENT

� Consider the sets

cT = fX is continuous in [0; T ]g


j
T = fX has jumps in [0; T ]g



f
T = fX has finitely many jumps in [0; T ]g


iT = fX has in�nitely many jumps in [0; T ]g

WT = fX has a Wiener component in [0; T ]g

noWT = fX has no Wiener component in [0; T ]g

� Formally, 
WT =
nR T
0 �

2
sds > 0

o
and 
noWT =

nR T
0 �

2
sds = 0

o
:
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3 WHICH COMPONENT(S) ARE PRESENT

� We observe a time series and wish to determine in which set(s) the
path was.

� There are theoretically many possible ways to do this, even if we re-
strict attention to power variations only.

� However, we wish to construct test statistics that are model-free in
the sense that:

{ their implementation does not require that we estimate or calibrate
the model, which can potentially be quite complicated (stochastic
volatility, jumps, jumps in volatility, jumps in jump intensity, etc.)

{ so we want the distribution of the test statistics to be assessed
using only power variations (of perhaps other powers, truncation
levels and sampling frequencies)
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3.1 Jumps: Present or Not 3 WHICH COMPONENT(S) ARE PRESENT

3.1. Jumps: Present or Not

� Here are processes which measure some kind of variability of X and

depend on the whole (unobserved) path of X:

A(p) =
Z T
0
j�sjpds; B(p) =

X
s�T

j�Xsjp

where p > 0 and �Xs = Xs �Xs� are the jumps of X.

� A(p) is �nite for all p > 0: B(p) is �nite if p � 2 but often not when

p < 2.

� The quadratic variation of the process is [X;X]T = A(2) +B(2).
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3.1 Jumps: Present or Not 3 WHICH COMPONENT(S) ARE PRESENT

� We have

8>><>>:
p > 2; all X ) B(p;1;�n) P�! B(p)

all p; X continuous ) �
1�p=2
n
mp

B(p;1;�n) P�! A(p):

� We see that, when p > 2, B(p;1;�n) tends to B(p) : the jump
component dominates.

� If there are jumps, the limit B(p)t > 0 is �nite.

� On the other hand when X is continuous, then the limit is B(p) = 0

and B(p;1;�n)t converges to 0 at rate �
p=2�1
n .
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3.1 Jumps: Present or Not 3 WHICH COMPONENT(S) ARE PRESENT

� These considerations lead us to pick a value of p > 2 and compare
B(p;1;�n)t on two di�erent sampling frequencies.

� Speci�cally, for an integer k, consider the test statistic SJ :

SJ(p; k;�n) =
B(p;1; k�n)T
B(p;1;�n)T

:

� The ratio in SJ exhibits a markedly di�erent behavior depending upon
whether X has jumps or not.
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3.1 Jumps: Present or Not 3 WHICH COMPONENT(S) ARE PRESENT
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3.1 Jumps: Present or Not 3 WHICH COMPONENT(S) ARE PRESENT

� Theorem

SJ(p; k;�n)t !

8<: 1 on 

j
T

kp=2�1 on 
cT

� This is valid on 
jT whether the jump component include �nite or

in�nite components, or both.

� We provide a CLT under 
cT and one under 

j
T , so one can test either

H0 : 

c
T vs. H1 : 


j
T or the reverse H0 : 


j
T vs. H1 : 


c
T .
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3.2 Jumps: Finite or In�nite Activity 3 WHICH COMPONENT(S) ARE PRESENT

3.2. Jumps: Finite or In�nite Activity

� Many models in mathematical �nance do not include jumps.

� But among those that do, the framework most often adopted consists
of a jump-di�usion: these models include a drift term, a Brownian-

driven continuous part, and a �nite activity jump part (compound Pois-

son process): early examples include Merton (1976), Ball and Torous

(1983) and Bates (1991).

� Other models are based onin�nite activity jumps: see for example
Madan and Seneta (1990), Eberlein and Keller (1995), Barndor�-

Nielsen (1998), Carr, Geman, Madan and Yor (2002), Carr and Wu

(2003), etc.
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3.2 Jumps: Finite or In�nite Activity 3 WHICH COMPONENT(S) ARE PRESENT

3.2.1. Null Hypothesis: Finite Activity

� We �rst set the null hypothesis to be �nite activity, that is H0 :


f
T \ 


W
T , whereas the alternative is H1 : 


i
T .

� We choose an integer k � 2 and a real p > 2.

� The only di�erence is that we now truncate

SFA(p; un; k;�n) =
B(p; un; k�n)

B(p; un;�n)
:

� Without truncation, we could discriminate between jumps and no
jumps, but not among di�erent types of jumps.
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3.2 Jumps: Finite or In�nite Activity 3 WHICH COMPONENT(S) ARE PRESENT

� Like before, we set p > 2 to magnify the jump component.

� But since we want to separate big and small jumps, we now truncate
as a means of eliminating the large jumps.

� Since the large jumps are of �nite size (independent of �n), at some
point in the asymptotics �n # 0; the truncation level un = O(�$n )

will have eliminated all the large jumps.
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3.2 Jumps: Finite or In�nite Activity 3 WHICH COMPONENT(S) ARE PRESENT
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3.2 Jumps: Finite or In�nite Activity 3 WHICH COMPONENT(S) ARE PRESENT

� Then if there are only big jumps and the Brownian component, the
two power variations B(p; un; k�n) and B(p; un;�n) will behave as

if there were no jumps and the limit of the ratio will be 2 as in the

test for jumps.

� But if there are small jumps, then the truncation cannot eliminate them
because their size is �n�dependent then each B truncated tends to

the small of remaining jumps and the ratio tends to 1:
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3.2 Jumps: Finite or In�nite Activity 3 WHICH COMPONENT(S) ARE PRESENT

� Theorem: Under regularity conditions on un;

SFA(p; un; k;�n)
P�!

(
kp=2�1 on 


f
T \ 


W
T :

1 on 
iT
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3.2 Jumps: Finite or In�nite Activity 3 WHICH COMPONENT(S) ARE PRESENT

3.2.2. Null Hypothesis: In�nite Activity

� We next set the null hypothesis to be in�nite activity, that is H0 : 
iT ,
whereas the alternative is H1 : 


f
T \ 


W
T :

� Why do we need di�erent statistics? Because the distribution of SFA
is not model-free under 
iT ; and that of SIA is not model-free under



f
T \ 


W
T :

� We choose three reals  > 1 and p0 > p > 2 and de�ne a family of

test statistics as follows:

SIA(p; un; ;�n) =
B(p0; un;�n)B(p; un;�n)
B(p0; un;�n)B(p; un;�n)

:
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3.2 Jumps: Finite or In�nite Activity 3 WHICH COMPONENT(S) ARE PRESENT

� Theorem: Under regularity conditions on un;

SIA(p; un; ;�n)
P�!

(
p

0�p on 
iT
1 on 


f
T \ 


W
T
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3.3 Brownian Motion: Present or Not 3 WHICH COMPONENT(S) ARE PRESENT

3.3. Brownian Motion: Present or Not

� We would like to construct procedures which allow to:

{ decide whether the Brownian motion is really there

{ or if it can be forgone with in favor of a pure jump process with

in�nite activity.

� When in�nitely many jumps are included, there are a number of models
in the literature which dispense with the Brownian motion altogether.

The log-price process is then a purely discontinuous L�evy process with

in�nite activity jumps, or more generally is driven by such a process:

see for example Madan and Seneta (1990), Eberlein and Keller (1995),

Carr, Geman, Madan and Yor (2002), Carr and Wu (2003), etc.
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3.3 Brownian Motion: Present or Not 3 WHICH COMPONENT(S) ARE PRESENT

3.3.1. Null Hypothesis: Brownian Motion Present

� In order to construct a test, we seek a statistic with markedly di�erent
behavior under the null and alternative.

� The idea is now to consider powers less than 2

{ since in the presence of Brownian motion the power variation would

be dominated by it

{ while in its absence it would behave quite di�erently.
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3.3 Brownian Motion: Present or Not 3 WHICH COMPONENT(S) ARE PRESENT

� Speci�cally, the large number of small increments generated by a con-
tinuous component would cause a power variation of order less than

2 to diverge to in�nity.

� Without the Brownian motion, however, and when p > �, the power

variation converges to 0 at exactly the same rate for the two sampling

frequencies �n and k�n

� Whereas with a Brownian motion the choice of sampling frequency
will inuence the magnitude of the divergence.

� Taking a ratio will eliminate all unnecessary aspects of the problem
and focus on that key aspect.
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3.3 Brownian Motion: Present or Not 3 WHICH COMPONENT(S) ARE PRESENT

� We choose an integer k � 2 and a real p < 2.

� We propose the test statistic

SW (p; un; k;�n) =
B(p; un;�n)

B(p; un; k�n)
:
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3.3 Brownian Motion: Present or Not 3 WHICH COMPONENT(S) ARE PRESENT

� Theorem: Under regularity conditions on un;

SW (p; un; k;�n)
P�!

(
k1�p=2 on 
WT
1 on 
noWT \ 
iT ; p > �
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3.3 Brownian Motion: Present or Not 3 WHICH COMPONENT(S) ARE PRESENT

3.3.2. Null Hypothesis: No Brownian Motion

� The null model is now pure jump (plus perhaps a drift) with jumps.

{ When there are no jumps, or �nitely many jumps, and no Brownian

motion, X reduces to a pure drift plus occasional jumps, and such

a model is fairly unrealistic in the context of most �nancial data

series.

{ But one can certainly consider models that consist only of a jump

component, plus perhaps a drift, if that jump component is allowed

to be in�nitely active.
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3.3 Brownian Motion: Present or Not 3 WHICH COMPONENT(S) ARE PRESENT

� Designing a test under this null is trickier

{ because we are aiming for a test that remains model-free even for

this model.

{ that is, despite being driven by what is now a pure jump process, the

behavior of the statistic should not depend on the characteristics

of the pure jump process

{ such as for instance its degree of activity �

{ since those characteristics are a priori unknown.
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3.3 Brownian Motion: Present or Not 3 WHICH COMPONENT(S) ARE PRESENT

� We choose a real  > 1 to de�ne two di�erent truncation ratios

� And de�ne a family of test statistics as follows:

SnoW (p; un; ;�n) =
B(2; un;�n) U(0; un;�n)

B(2; un;�n) U(0; un;�n)
:

� Theorem: Under regularity conditions on un;

SnoW (p; un; ;�n)
P�!

(
2 on 
noWT \ 
iT
� on 
WT

47



4 THE RELATIVE MAGNITUDE OF THE COMPONENTS

4. The Relative Magnitude of the Components

� A typical \main sequence" star might be made of 90% hydrogen, 10%

helium and 0.1% everything else.

� Here, what is the relative magnitude of the two jump and the contin-
uous components?

� We can answer this question using the same device.

� It makes sense to consider p = 2 since this is the power where all the
components are present together.
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4 THE RELATIVE MAGNITUDE OF THE COMPONENTS

� We can then truncate to split the QV into its continuous and jump

components

� And not truncate to estimate the full QV:
B(2;un;�n)
B(2;1;�n) = % of QV due to the continuous component

1� B(2;un;�n)
B(2;1;�n) = % of QV due to the jump component

� Alternative splitting of the QV based on bipower variation instead

of truncating: Barndor�-Nielsen and Shephard (2004), Huang and

Tauchen (2005), Andersen, Bollerslev and Diebold (2007).
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4 THE RELATIVE MAGNITUDE OF THE COMPONENTS
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4 THE RELATIVE MAGNITUDE OF THE COMPONENTS

� We can then split the rest of the QV, which by construction is at-
tributable to jumps, into a small jumps and a big jumps component.

� This depends on the cuto� level " selected to distinguish big and small
jumps:

U(2;";�n)
B(2;1;�n) = % of QV due to big jumps

B(2;1;�n)�B(2;un;�n)�U(2;";�n)
B(2;1;�n) = % of QV due to small jumps
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4 THE RELATIVE MAGNITUDE OF THE COMPONENTS
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5 THE FINER CHARACTERISTICS OF THE COMPONENTS

5. The Finer Characteristics of the Components

5.1. De�ning an Index of Jump Activity

� Recall B(p) = P
s�T j�Xsjp.

� De�ne IT = fp � 0 : B(p) <1g:

� Necessarily, the (random) set IT is of the form [�T ;1) or (�T ;1)
for some �T (!) � 2, and 2 2 IT always.
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5.1 De�ning an Index of Jump Activity 5 THE FINER CHARACTERISTICS OF THE COMPONENTS

� We call �T (!) the jump activity index for the path t 7! Xt(!) at time

T .

� We de�ne this index in analogy with the special case where X is a

L�evy process:

{ Then �T (!) = � does not depend on (!; T ), and it is also the

in�mum of all r � 0 such that
R
fjxj�1g jxjr�(dx) <1, where � is

the L�evy measure

{ So, for a L�evy process, the jump activity index coincides with the

Blumenthal-Getoor index of the process.

{ In the further special case where X is a stable process, then � is

also the stable index of the process.
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5.1 De�ning an Index of Jump Activity 5 THE FINER CHARACTERISTICS OF THE COMPONENTS

� � captures an essential qualitative feature of �, which is its level of
activity: when � increases, the (small) jumps tend to become more

and more frequent.

{ Processes with �nite jump activity have � = 0:

{ Processes with in�nite jump activity may also have � = 0 if the

rate of divergence of the jump measure is sub-polynomial.

{ Processes with � 2 (0; 2) have in�nite jump activity

{ And the higher �; the more active the jumps.

� Brownian motion has � = 2 in the limit.
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5.1 De�ning an Index of Jump Activity 5 THE FINER CHARACTERISTICS OF THE COMPONENTS
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5.1 De�ning an Index of Jump Activity 5 THE FINER CHARACTERISTICS OF THE COMPONENTS

� The problem is made more challenging because we want a method

that works even if X has a continuous martingale part:

{ We need to see through the continuous part of the semimartingale

in order to say something about the number and concentration of

small jumps.

{ So we will truncate, but in the other direction.
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5.1 De�ning an Index of Jump Activity 5 THE FINER CHARACTERISTICS OF THE COMPONENTS

� We are now looking in adi�erent range of the spectrum of returns

� Considering only returns that are larger than the cuto� un = ��$n for
some $ 2 (0; 1=2):

� This allows us to eliminate the increments due to the continuous com-
ponent.

� We can then use all values of p; not just those p > 2:
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5.1 De�ning an Index of Jump Activity 5 THE FINER CHARACTERISTICS OF THE COMPONENTS
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5.2 Estimating Jump Activity 5 THE FINER CHARACTERISTICS OF THE COMPONENTS

5.2. Estimating Jump Activity

� We propose two estimators of � based on counting the number of

increments greater than the cuto� un:

� The �rst one: �x 0 < � < �0 and consider two cuto�s un = ��$n
and u0n = �

0�$n with  = �0=� :

b�n($;�; �0) = log(U(0; un;�n)=U(0; un;�n))

log()
;

� The second one: sample on two time scales, �n and 2�n.

b�0n($;�; k) = log(U(0; un;�n)=U(0; un; k�n))

$ log k
:
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5.2 Estimating Jump Activity 5 THE FINER CHARACTERISTICS OF THE COMPONENTS

� Given consistent estimators and with a CLT

� We could test various hypotheses, for instance whether � > 1 or � < 1
which correspond to �nite or in�nite variation for X:

� Related methods: testing whether � = 1 (Cont and Mancini (2008)),

testing whether � = 2 or � < 2 (Tauchen and Todorov (2008)).
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6 SUMMARY: (P;U;�)

6. Summary: (p; u;�)
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6 SUMMARY: (P;U;�)

Brownian Motion: Present or Not
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7 EMPIRICAL RESULTS: INTEL & MICROSOFT 2006

7. Empirical Results: Intel & Microsoft 2006

7.1. The Data
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7.1 The Data 7 EMPIRICAL RESULTS: INTEL & MICROSOFT 2006
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7.1 The Data 7 EMPIRICAL RESULTS: INTEL & MICROSOFT 2006

� Whenever we need to truncate, we express the truncation cuto� level
un in terms of a number of standard deviations of the continuous part

of the semimartingale.

� We consider sampling frequencies up to 5 seconds.

� In real data, observations of the process X are blurred by market

microstructure noise, which messes things up at very high frequency.
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7.2 Jumps: Present or Not 7 EMPIRICAL RESULTS: INTEL & MICROSOFT 2006

7.2. Jumps: Present or Not

� Two polar cases: observations are blurred with either an additive white
noise or with noise due to rounding

{ Observations are a�ected by an additive noise, that is instead of
Xi�n we really observe Yi�n = Xi�n+"i, and the "i are i.i.d. with

E("2i ) and E("
4
i ) �nite.

{ Or we observe Yi�n = [Xi�n]a; that is X rounded to the nearest

multiple of a; say 1 cent for a decimalized asset.

� We show that, in the presence of additive noise, SJ(4; k;�n)
P�! 1

k:

� In the presence of rounding error noise, the limit is 1
k1=2

:
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7.2 Jumps: Present or Not 7 EMPIRICAL RESULTS: INTEL & MICROSOFT 2006

� So SJ has four possible limits: with k = 2 and p = 4;

1=2 : additive noise dominates

1=21=2 : rounding error dominates
1 : jumps present
2 : no jumps present
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7.2 Jumps: Present or Not 7 EMPIRICAL RESULTS: INTEL & MICROSOFT 2006
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7.2 Jumps: Present or Not 7 EMPIRICAL RESULTS: INTEL & MICROSOFT 2006
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7.3 Jumps: Finite or In�nite Activity 7 EMPIRICAL RESULTS: INTEL & MICROSOFT 2006

7.3. Jumps: Finite or In�nite Activity
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7.3 Jumps: Finite or In�nite Activity 7 EMPIRICAL RESULTS: INTEL & MICROSOFT 2006
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7.4 Brownian Motion: Present or Not 7 EMPIRICAL RESULTS: INTEL & MICROSOFT 2006

7.4. Brownian Motion: Present or Not

� Market microstructure noise with either an additive white noise or with
noise due to rounding, the respective limits of SW become 2 and 21=2

with k = 2:

� SW has four possible limits:

1 : No Brownian motion

k1�p=2 : Brownian motion present

k1=2 : rounding error dominates
k : additive noise dominates
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7.4 Brownian Motion: Present or Not 7 EMPIRICAL RESULTS: INTEL & MICROSOFT 2006
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7.4 Brownian Motion: Present or Not 7 EMPIRICAL RESULTS: INTEL & MICROSOFT 2006
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7.5 QV Relative Magnitude 7 EMPIRICAL RESULTS: INTEL & MICROSOFT 2006

7.5. QV Relative Magnitude
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7.6 Estimating Jump Activity 7 EMPIRICAL RESULTS: INTEL & MICROSOFT 2006

7.6. Estimating Jump Activity
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7.6 Estimating Jump Activity 7 EMPIRICAL RESULTS: INTEL & MICROSOFT 2006
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8 CONCLUSIONS

8. Conclusions

The empirical results for these data appear to:

� Indicate that jumps are present in the data

� Point towards the presence of in�nite activity jumps

� Of degree of jump activity that is somewhere around 1.5 or higher.

� Indicate that a continuous component is present.

� Representing about 3/4 of total QV.
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8 CONCLUSIONS

� Pros

{ Uni�ed methodology to address all these speci�cation questions in

a common framework

{ Symmetric treatment of null and alternative in each case, including

distribution theory

{ Model-free

{ Extremely simple to implement

{ Impact of the noise on the statistics is characterized
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8 CONCLUSIONS

� Cons

{ Not necessarily the optimal approach for each one of these ques-

tions taken individually.

{ Requires high frequency data (particularly the estimation of �)

{ Still to do: a full development of noise-robust statistics.
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