Analyzing the Spectrum of Asset Returns: Jump and Volatility Components in High Frequency Data

Yacine Aït-Sahalia
Princeton University

Jean Jacod
Université de Paris VI

1. Introduction

- Basic model is the workhorse of mathematical finance: X, often the log of an asset price, is assumed to follow an Itô semimartingale.
- A semimartingale can be decomposed into the sum of a drift, a continuous Brownian-driven part and a discontinuous, or jump, part.
- The jump part can in turn be decomposed into a sum of small jumps and big jumps.
- Such a process will always generate a finite number of big jumps.
- But it may give rise to either a finite or infinite number of small jumps.
- The model is

$$
\begin{aligned}
X_{t} & =X_{0}+\underbrace{\int_{0}^{t} b_{s} d s}_{\text {drift }}+\underbrace{\int_{0}^{t} \sigma_{s} d W_{s}}_{\text {continuous part }}+\text { JUMPS } \\
\text { JUMPS } & =\underbrace{\int_{0}^{t} \int_{\{|x| \leq \varepsilon\}} x(\mu-\nu)(d s, d x)}_{\text {small jumps }}+\underbrace{\int_{0}^{t} \int_{\{|x|>\varepsilon\}} x \mu(d s, d x)}_{\text {big jumps }}
\end{aligned}
$$

- μ is the jump measure of X, and its predictable compensator is the Lévy measure ν.
- The distinction between small and big jumps (ε) is arbitrary. What is important is that $\varepsilon>0$ is fixed.
- In earlier work, we developed tests to determine on the basis of the observed sampled path on $[0, T]$:
- whether a jump part was present
- whether the jumps had finite or infinite activity
- in the latter situation proposed a definition and an estimator of a degree of jump activity parameter
- whether a Brownian continuous component was needed once infinite activity jumps are included
- In this talk, we show how these different results can be put in a common framework using a common methodology.
- We proceed by analogy with spectrography
- We observe a time series of high frequency returns (a single path) over a finite length of time $[0, T]$
- For example, 2006 returns on MSFT and INTC

- And then design a set of statistical tools that can tell us something about specific components of the process that produced the observations
- These tools play the role of the measurement devices used in astrophysics to analyze the light emanating from a star, for instance
- our observations are the high frequency returns; in astrophysics it's the light (visible or not)
- here the data generating mechanism is assumed to be a semimartingale; in astrophysics it's whatever nuclear reactions inside the star are producing the light
- In astrophysics, one can look at a specific range of the light spectrum to learn something about specific chemical elements present in the star
- Here, we design statistics that focus on specific parts of the distribution of high frequency returns in order to learn something about the different components of the semimartingale that produced those returns
- decide which component(s) need to be included in the model (jumps, finite or infinite activity, continuous component, etc.)
- determine their relative magnitude
- magnify specific components of the model if they are present, so we can analyze their finer characteristics (such as the degree of activity of jumps)
- From the time series of returns, we get the distribution of returns at time interval Δ_{n}
- 2006 returns on MSFT and INTC at 15 seconds

- From the previous plot, we would like to figure out which components should be included in the model
- And in what proportions

- Similarly to what is done in spectrographic analysis
- we will emphasize visual tools
- so we will only include the LLN here
- and refer to the underlying papers for the formal derivations including regularity conditions and the CLT, as well as simulations.

2. The Measurement Device

- We construct power variations of the increments, suitably truncated and/or sampled at different frequencies.
- We exploit the different asymptotic behavior of the variations as we vary:
- the power p
- the truncation level u
- the sampling frequency Δ
- This gives us three degrees of freedom, or tuning parameters, with enough flexibility to isolate what we are looking for.
- Having these three parameters to play with, p, u and Δ, is like having three knobs to adjust in the measurement device.
- Varying the power
- Powers $p<2$ will emphasize the continuous component of the underlying sampled process.
- Powers $p>2$ will conversely accentuate its jump component.
- The power $p=2$ puts them on an equal footing.

- Truncating the large increments at a suitably selected cutoff level can eliminate the big jumps when needed
- Early use of this device: Mancini (2001)

15

- Sampling at different frequencies can let us distinguish between situations where the variations:
- converge to a finite limit;
- converge to zero;
- diverge to infinity.

- These various limiting behaviors of the variations are indicative of which component of the model dominates at a particular power and in a certain range of returns (by truncation)
- Just like certain chemical elements have a very specific spectrographic signature.
- So they effectively allow us to distinguish between all manners of null and alternative hypotheses.
- There are n observed increments of X on $[0, T]$, which are

$$
\Delta_{i}^{n} X=X_{i \Delta_{n}}-X_{(i-1) \Delta_{n}}
$$

to be contrasted with the actual (unobservable) jumps of X :

$$
\Delta X_{s}=X_{s}-X_{s-}
$$

- For any real $p \geq 0$, the basic instruments are the sum of the $p^{\text {th }}$ power of the increments of X, sampled at time interval Δ_{n}, and truncated at level u_{n} :

$$
B\left(p, u_{n}, \Delta_{n}\right)=\sum_{i=1}^{\left[T / \Delta_{n}\right]}\left|\Delta_{i}^{n} X\right|^{p} 1_{\left\{\left|\Delta_{i}^{n} X\right| \leq u_{n}\right\}}
$$

- The entire methodology relies only on the computation of B for various values of $\left(p, u_{n}, \Delta_{n}\right)$, it's pretty much one line of code:
$B(p, u, d e l)=\operatorname{sum}\left(\left(\operatorname{abs}(d X(d e l)) .{ }^{\wedge} p\right) . *(\operatorname{abs}(d X(d e l))<=u(d e l))\right)$
- T is fixed, asymptotics are all with respect to $\Delta_{n} \rightarrow 0$.
- u_{n} is the cutoff level for truncating the increments
- $u_{n} \rightarrow 0$ when $n \rightarrow \infty$: in the form $u_{n}=\alpha \Delta_{n}^{\varpi}$ for some $\varpi \in(0,1 / 2)$.
- $\varpi<1 / 2$ to keep all the increments which contain a Brownian contribution.
- There will be further restrictions on the rate at which $u_{n} \rightarrow 0$, expressed in the form of restrictions on the choice of ϖ.
- If we don't want to truncate, we write $B\left(p, \infty, \Delta_{n}\right)$.
- Sometimes we will truncate in the other direction, that is retain only the increments larger than u :

$$
U\left(p, u_{n}, \Delta_{n}\right)=\sum_{i=1}^{\left[T / \Delta_{n}\right]}\left|\Delta_{i}^{n} X\right|^{p} 1_{\left\{\left|\Delta_{i}^{n} X\right|>u_{n}\right\}}
$$

- With $u_{n}=\alpha \Delta_{n}^{\varpi}$ and $\varpi<1 / 2$, that can allow us to eliminate all the increments from the continuous part of the model.
- In terms of the power variations B :

$$
U\left(p, u_{n}, \Delta_{n}\right)=B\left(p, \infty, \Delta_{n}\right)-B\left(p, u_{n}, \Delta_{n}\right)
$$

- Sometimes, we will simply count the number of increments of X, that is, take the power $p=0$

$$
U\left(0, u_{n}, \Delta_{n}\right)=\sum_{i=1}^{\left[T / \Delta_{n}\right]} 1_{\left\{\left|\Delta_{i}^{n} X\right|>u_{n}\right\}}
$$

3. Which Component(s) Are Present

- Leaving aside the drift (effectively invisible at high frequency), the model has three components

$$
\begin{aligned}
X_{t} & =X_{0}+\underbrace{\int_{0}^{t} b_{s} d s}_{\text {drift }}+\underbrace{\int_{0}^{t} \sigma_{s} d W_{s}}_{\text {continuous part }}+\text { JUMPS } \\
\text { JUMPS } & =\underbrace{\int_{0}^{t} \int_{\{|x| \leq 1\}} x(\mu-\nu)(d s, d x)}_{\text {small jumps }}+\underbrace{\int_{0}^{t} \int_{\{|x|>1\}} x \mu(d s, d x)}_{\text {big jumps }}
\end{aligned}
$$

- The analogy with spectrography would be that we are looking for three possible chemical elements (say, hydrogen, helium and everything else).
- Consider the sets

$$
\begin{array}{rlc}
\Omega_{T}^{c} & = & \{X \text { is continuous in }[0, T]\} \\
\Omega_{T}^{j} & = & \{X \text { has jumps in }[0, T]\} \\
\Omega_{T}^{f} & = & \{X \text { has finitely many jumps in }[0, T]\} \\
\Omega_{T}^{2} & = & \{X \text { has infinitely many jumps in }[0, T]\} \\
\Omega_{T}^{T} & = & \{X \text { has a Wiener component in }[0, T]\} \\
\Omega_{T}^{\text {no }} W & = & \{X \text { has no Wiener component in }[0, T]\}
\end{array}
$$

- Formally, $\Omega_{T}^{W}=\left\{\int_{0}^{T} \sigma_{s}^{2} d s>0\right\}$ and $\Omega_{T}^{\mathrm{no} W}=\left\{\int_{0}^{T} \sigma_{s}^{2} d s=0\right\}$.
- We observe a time series and wish to determine in which set(s) the path was.
- There are theoretically many possible ways to do this, even if we restrict attention to power variations only.
- However, we wish to construct test statistics that are model-free in the sense that:
- their implementation does not require that we estimate or calibrate the model, which can potentially be quite complicated (stochastic volatility, jumps, jumps in volatility, jumps in jump intensity, etc.)
- so we want the distribution of the test statistics to be assessed using only power variations (of perhaps other powers, truncation levels and sampling frequencies)

3.1. Jumps: Present or Not

- Here are processes which measure some kind of variability of X and depend on the whole (unobserved) path of X :

$$
A(p)=\int_{0}^{T}\left|\sigma_{s}\right|^{p} d s, \quad B(p)=\sum_{s \leq T}\left|\Delta X_{s}\right|^{p}
$$

where $p>0$ and $\Delta X_{s}=X_{s}-X_{s-}$ are the jumps of X.

- $A(p)$ is finite for all $p>0 . B(p)$ is finite if $p \geq 2$ but often not when $p<2$.
- The quadratic variation of the process is $[X, X]_{T}=A(2)+B(2)$.
- We have $\begin{cases}p>2, \text { all } X & \Rightarrow B\left(p, \infty, \Delta_{n}\right) \xrightarrow{\mathbb{P}} B(p) \\ \text { all } p, X \text { continuous } & \Rightarrow \frac{\Delta_{n}^{1-p / 2}}{m_{p}} B\left(p, \infty, \Delta_{n}\right) \xrightarrow{\mathbb{P}} A(p) .\end{cases}$
- We see that, when $p>2, B\left(p, \infty, \Delta_{n}\right)$ tends to $B(p)$: the jump component dominates.
- If there are jumps, the limit $B(p)_{t}>0$ is finite.
- On the other hand when X is continuous, then the limit is $B(p)=0$ and $B\left(p, \infty, \Delta_{n}\right)_{t}$ converges to 0 at rate $\Delta_{n}^{p / 2-1}$.
- These considerations lead us to pick a value of $p>2$ and compare $B\left(p, \infty, \Delta_{n}\right)_{t}$ on two different sampling frequencies.
- Specifically, for an integer k, consider the test statistic S_{J} :

$$
S_{J}\left(p, k, \Delta_{n}\right)=\frac{B\left(p, \infty, k \Delta_{n}\right)_{T}}{B\left(p, \infty, \Delta_{n}\right)_{T}}
$$

- The ratio in S_{J} exhibits a markedly different behavior depending upon whether X has jumps or not.

- Theorem

$$
S_{J}\left(p, k, \Delta_{n}\right)_{t} \rightarrow \begin{cases}1 & \text { on } \Omega_{T}^{j} \\ k^{p / 2-1} & \text { on } \Omega_{T}^{c}\end{cases}
$$

- This is valid on Ω_{T}^{j} whether the jump component include finite or infinite components, or both.
- We provide a CLT under Ω_{T}^{c} and one under Ω_{T}^{j}, so one can test either $H_{0}: \Omega_{T}^{c}$ vs. $H_{1}: \Omega_{T}^{j}$ or the reverse $H_{0}: \Omega_{T}^{j}$ vs. $H_{1}: \Omega_{T}^{c}$.

3.2. Jumps: Finite or Infinite Activity

- Many models in mathematical finance do not include jumps.
- But among those that do, the framework most often adopted consists of a jump-diffusion: these models include a drift term, a Browniandriven continuous part, and a finite activity jump part (compound Poisson process): early examples include Merton (1976), Ball and Torous (1983) and Bates (1991).
- Other models are based oninfinite activity jumps: see for example Madan and Seneta (1990), Eberlein and Keller (1995), BarndorffNielsen (1998), Carr, Geman, Madan and Yor (2002), Carr and Wu (2003), etc.

3.2.1. Null Hypothesis: Finite Activity

- We first set the null hypothesis to be finite activity, that is H_{0} : $\Omega_{T}^{f} \cap \Omega_{T}^{W}$, whereas the alternative is $H_{1}: \Omega_{T}^{i}$.
- We choose an integer $k \geq 2$ and a real $p>2$.
- The only difference is that we now truncate

$$
S_{F A}\left(p, u_{n}, k, \Delta_{n}\right)=\frac{B\left(p, u_{n}, k \Delta_{n}\right)}{B\left(p, u_{n}, \Delta_{n}\right)}
$$

- Without truncation, we could discriminate between jumps and no jumps, but not among different types of jumps.
- Like before, we set $p>2$ to magnify the jump component.
- But since we want to separate big and small jumps, we now truncate as a means of eliminating the large jumps.
- Since the large jumps are of finite size (independent of Δ_{n}), at some point in the asymptotics $\Delta_{n} \downarrow 0$, the truncation level $u_{n}=O\left(\Delta_{n}^{\varpi}\right)$ will have eliminated all the large jumps.

- Then if there are only big jumps and the Brownian component, the two power variations $B\left(p, u_{n}, k \Delta_{n}\right)$ and $B\left(p, u_{n}, \Delta_{n}\right)$ will behave as if there were no jumps and the limit of the ratio will be 2 as in the test for jumps.
- But if there are small jumps, then the truncation cannot eliminate them because their size is Δ_{n}-dependent then each B truncated tends to the small of remaining jumps and the ratio tends to 1 .
- Theorem: Under regularity conditions on u_{n},

$$
S_{F A}\left(p, u_{n}, k, \Delta_{n}\right) \xrightarrow{\mathbb{P}}\left\{\begin{array}{cc}
k^{p / 2-1} & \text { on } \Omega_{T}^{f} \cap \Omega_{T}^{W} \\
1 & \text { on } \Omega_{T}^{i}
\end{array}\right.
$$

3.2.2. Null Hypothesis: Infinite Activity

- We next set the null hypothesis to be infinite activity, that is $H_{0}: \Omega_{T}^{i}$, whereas the alternative is $H_{1}: \Omega_{T}^{f} \cap \Omega_{T}^{W}$.
- Why do we need different statistics? Because the distribution of $S_{F A}$ is not model-free under Ω_{T}^{i}, and that of $S_{I A}$ is not model-free under $\Omega_{T}^{f} \cap \Omega_{T}^{W}$.
- We choose three reals $\gamma>1$ and $p^{\prime}>p>2$ and define a family of test statistics as follows:

$$
S_{I A}\left(p, u_{n}, \gamma, \Delta_{n}\right)=\frac{B\left(p^{\prime}, \gamma u_{n}, \Delta_{n}\right) B\left(p, u_{n}, \Delta_{n}\right)}{B\left(p^{\prime}, u_{n}, \Delta_{n}\right) B\left(p, \gamma u_{n}, \Delta_{n}\right)}
$$

- Theorem: Under regularity conditions on u_{n},

$$
S_{I A}\left(p, u_{n}, \gamma, \Delta_{n}\right) \xrightarrow{\mathbb{P}}\left\{\begin{array}{cc}
\gamma^{p^{\prime}-p} & \text { on } \Omega_{T}^{i} \\
1 & \text { on } \Omega_{T}^{f} \cap \Omega_{T}^{W}
\end{array}\right.
$$

3.3. Brownian Motion: Present or Not

- We would like to construct procedures which allow to:
- decide whether the Brownian motion is really there
- or if it can be forgone with in favor of a pure jump process with infinite activity.
- When infinitely many jumps are included, there are a number of models in the literature which dispense with the Brownian motion altogether. The log-price process is then a purely discontinuous Lévy process with infinite activity jumps, or more generally is driven by such a process: see for example Madan and Seneta (1990), Eberlein and Keller (1995), Carr, Geman, Madan and Yor (2002), Carr and Wu (2003), etc.

3.3.1. Null Hypothesis: Brownian Motion Present

- In order to construct a test, we seek a statistic with markedly different behavior under the null and alternative.
- The idea is now to consider powers less than 2
- since in the presence of Brownian motion the power variation would be dominated by it
- while in its absence it would behave quite differently.
- Specifically, the large number of small increments generated by a continuous component would cause a power variation of order less than 2 to diverge to infinity.
- Without the Brownian motion, however, and when $p>\beta$, the power variation converges to 0 at exactly the same rate for the two sampling frequencies Δ_{n} and $k \Delta_{n}$
- Whereas with a Brownian motion the choice of sampling frequency will influence the magnitude of the divergence.
- Taking a ratio will eliminate all unnecessary aspects of the problem and focus on that key aspect.
- We choose an integer $k \geq 2$ and a real $p<2$.
- We propose the test statistic

$$
S_{W}\left(p, u_{n}, k, \Delta_{n}\right)=\frac{B\left(p, u_{n}, \Delta_{n}\right)}{B\left(p, u_{n}, k \Delta_{n}\right)} .
$$

- Theorem: Under regularity conditions on u_{n},

$$
S_{W}\left(p, u_{n}, k, \Delta_{n}\right) \xrightarrow{\mathbb{P}}\left\{\begin{array}{c}
k^{1-p / 2} \\
1
\end{array} \text { on } \Omega_{T}^{\mathrm{noW}} \cap \Omega_{T}^{W}, p>\beta\right.
$$

3.3.2. Null Hypothesis: No Brownian Motion

- The null model is now pure jump (plus perhaps a drift) with jumps.
- When there are no jumps, or finitely many jumps, and no Brownian motion, X reduces to a pure drift plus occasional jumps, and such a model is fairly unrealistic in the context of most financial data series.
- But one can certainly consider models that consist only of a jump component, plus perhaps a drift, if that jump component is allowed to be infinitely active.
- Designing a test under this null is trickier
- because we are aiming for a test that remains model-free even for this model.
- that is, despite being driven by what is now a pure jump process, the behavior of the statistic should not depend on the characteristics of the pure jump process
- such as for instance its degree of activity β
- since those characteristics are a priori unknown.
- We choose a real $\gamma>1$ to define two different truncation ratios
- And define a family of test statistics as follows:

$$
S_{\mathrm{no} W}\left(p, u_{n}, \gamma, \Delta_{n}\right)=\frac{B\left(2, \gamma u_{n}, \Delta_{n}\right) U\left(0, u_{n}, \Delta_{n}\right)}{B\left(2, u_{n}, \Delta_{n}\right) U\left(0, \gamma u_{n}, \Delta_{n}\right)}
$$

- Theorem: Under regularity conditions on u_{n},

$$
S_{\mathrm{noW}}\left(p, u_{n}, \gamma, \Delta_{n}\right) \xrightarrow{\mathbb{P}}\left\{\begin{array}{cc}
\gamma^{2} & \text { on } \Omega_{T}^{n o W} \cap \Omega_{T}^{i} \\
\gamma^{\beta} & \text { on } \Omega_{T}^{W}
\end{array}\right.
$$

4. The Relative Magnitude of the Components

- A typical "main sequence" star might be made of 90% hydrogen, 10% helium and 0.1% everything else.
- Here, what is the relative magnitude of the two jump and the continuous components?
- We can answer this question using the same device.
- It makes sense to consider $p=2$ since this is the power where all the components are present together.
- We can then truncate to split the QV into its continuous and jump components
- And not truncate to estimate the full QV:

$$
\begin{aligned}
& \frac{B\left(2, u_{n}, \Delta_{n}\right)}{B\left(2, \infty, \Delta_{n}\right)}=\% \text { of } \mathrm{QV} \text { due to the continuous component } \\
& 1-\frac{B\left(2, u_{n}, \Delta_{n}\right)}{B\left(2, \infty, \Delta_{n}\right)}=\% \text { of } \mathrm{QV} \text { due to the jump component }
\end{aligned}
$$

- Alternative splitting of the QV based on bipower variation instead of truncating: Barndorff-Nielsen and Shephard (2004), Huang and Tauchen (2005), Andersen, Bollerslev and Diebold (2007).

- We can then split the rest of the QV, which by construction is attributable to jumps, into a small jumps and a big jumps component.
- This depends on the cutoff level ε selected to distinguish big and small jumps:

$$
\begin{aligned}
& \frac{U\left(2, \varepsilon, \Delta_{n}\right)}{B\left(2, \infty, \Delta_{n}\right)}=\% \text { of QV due to big jumps } \\
& \frac{B\left(2, \infty, \Delta_{n}\right)-B\left(2, u_{n}, \Delta_{n}\right)-U\left(2, \varepsilon, \Delta_{n}\right)}{B\left(2, \infty, \Delta_{n}\right)}=\% \text { of QV due to small jumps }
\end{aligned}
$$

5. The Finer Characteristics of the Components

5.1. Defining an Index of Jump Activity

- Recall $B(p)=\sum_{s \leq T}\left|\Delta X_{s}\right|^{p}$.
- Define $I_{T}=\{p \geq 0: B(p)<\infty\}$.
- Necessarily, the (random) set I_{T} is of the form $\left[\beta_{T}, \infty\right)$ or $\left(\beta_{T}, \infty\right)$ for some $\beta_{T}(\omega) \leq 2$, and $2 \in I_{T}$ always.
- We call $\beta_{T}(\omega)$ the jump activity index for the path $t \mapsto X_{t}(\omega)$ at time T.
- We define this index in analogy with the special case where X is a Lévy process:
- Then $\beta_{T}(\omega)=\beta$ does not depend on (ω, T), and it is also the infimum of all $r \geq 0$ such that $\int_{\{|x| \leq 1\}}|x|^{r} \nu(d x)<\infty$, where ν is the Lévy measure
- So, for a Lévy process, the jump activity index coincides with the Blumenthal-Getoor index of the process.
- In the further special case where X is a stable process, then β is also the stable index of the process.
- β captures an essential qualitative feature of ν, which is its level of activity: when β increases, the (small) jumps tend to become more and more frequent.
- Processes with finite jump activity have $\beta=0$.
- Processes with infinite jump activity may also have $\beta=0$ if the rate of divergence of the jump measure is sub-polynomial.
- Processes with $\beta \in(0,2)$ have infinite jump activity
- And the higher β, the more active the jumps.
- Brownian motion has $\beta=2$ in the limit.

- The problem is made more challenging because we want a method that works even if X has a continuous martingale part:
- We need to see through the continuous part of the semimartingale in order to say something about the number and concentration of small jumps.
- So we will truncate, but in the other direction.
- We are now looking in adifferent range of the spectrum of returns
- Considering only returns that are larger than the cutoff $u_{n}=\alpha \Delta_{n}^{\varpi}$ for some $\varpi \in(0,1 / 2)$.
- This allows us to eliminate the increments due to the continuous component.
- We can then use all values of p, not just those $p>2$.

5.2. Estimating Jump Activity

- We propose two estimators of β based on counting the number of increments greater than the cutoff u_{n}.
- The first one: fix $0<\alpha<\alpha^{\prime}$ and consider two cutoffs $u_{n}=\alpha \Delta_{n}^{\varpi}$ and $u_{n}^{\prime}=\alpha^{\prime} \Delta_{n}^{\varpi}$ with $\gamma=\alpha^{\prime} / \alpha$:

$$
\widehat{\beta}_{n}\left(\varpi, \alpha, \alpha^{\prime}\right)=\frac{\log \left(U\left(0, u_{n}, \Delta_{n}\right) / U\left(0, \gamma u_{n}, \Delta_{n}\right)\right)}{\log (\gamma)}
$$

- The second one: sample on two time scales, Δ_{n} and $2 \Delta_{n}$.

$$
\widehat{\beta}_{n}^{\prime}(\varpi, \alpha, k)=\frac{\log \left(U\left(0, u_{n}, \Delta_{n}\right) / U\left(0, u_{n}, k \Delta_{n}\right)\right)}{\varpi \log k}
$$

- Given consistent estimators and with a CLT
- We could test various hypotheses, for instance whether $\beta>1$ or $\beta<1$ which correspond to finite or infinite variation for X.
- Related methods: testing whether $\beta=1$ (Cont and Mancini (2008)), testing whether $\beta=2$ or $\beta<2$ (Tauchen and Todorov (2008)).

6. Summary: (p, u, Δ)

	H_{0}
H_{1}	Jumps: Present or Not
Ω_{T}^{c}	Ω_{T}^{j}
Ω_{T}^{c}	\ddots
Ω_{T}^{j}	$\left(\begin{array}{c}S_{J}: \\ p>2 \\ \infty^{2} \\ \Delta_{n}, k \Delta_{n}\end{array}\right)$
	$\binom{S_{J}:}{D_{n}, k \Delta_{n}}$

$\left.\begin{array}{|c|cc|}\hline & H_{0} & \begin{array}{c}\text { Jumps: Finite or Infinite Activity } \\ \Omega_{T}^{f}\end{array} \\ \Omega_{1}^{i} \\ \Omega_{T}^{f} & \ddots & S_{I A} \\ \Omega_{T}^{i} & \left(\begin{array}{c}p>2, p^{p}>2 \\ u_{n}, \gamma u_{n} \\ \Delta_{n}\end{array}\right) \\ \hline & \ddots \\ p>2 \\ u_{n} \\ \Delta_{n}, k \Delta_{n}\end{array}\right) \quad$.

$\begin{array}{ll} & H_{0} \\ H_{1} & \\ \hline \end{array}$	Brownian Motion: Present or Not Ω_{T}^{W} $\Omega_{T}^{\text {no } W}$
Ω_{T}^{W}	$\left(\begin{array}{c} S_{\mathrm{no}} W: \\ p=0, p^{\prime}=2 \\ u_{n}, \gamma u_{n} \\ \Delta_{n} \end{array}\right)$
$\Omega_{T}^{\text {noW }}$	$\left(\begin{array}{c} S_{W}: \\ p<2 \\ u_{n} \\ \Delta_{n}, k \Delta_{n} \end{array}\right)$

7. Empirical Results: Intel \& Microsoft 2006

7.1. The Data

- Whenever we need to truncate, we express the truncation cutoff level u_{n} in terms of a number of standard deviations of the continuous part of the semimartingale.
- We consider sampling frequencies up to 5 seconds.
- In real data, observations of the process X are blurred by market microstructure noise, which messes things up at very high frequency.

7.2. Jumps: Present or Not

- Two polar cases: observations are blurred with either an additive white noise or with noise due to rounding
- Observations are affected by an additive noise, that is instead of $X_{i \Delta_{n}}$ we really observe $Y_{i \Delta_{n}}=X_{i \Delta_{n}}+\varepsilon_{i}$, and the ε_{i} are i.i.d. with $E\left(\varepsilon_{i}^{2}\right)$ and $E\left(\varepsilon_{i}^{4}\right)$ finite.
- Or we observe $Y_{i \Delta_{n}}=\left[X_{i \Delta_{n}}\right]_{a}$, that is X rounded to the nearest multiple of a, say 1 cent for a decimalized asset.
- We show that, in the presence of additive noise, $S_{J}\left(4, k, \Delta_{n}\right) \xrightarrow{\mathbb{P}} \frac{1}{k}$.
- In the presence of rounding error noise, the limit is $\frac{1}{k^{1 / 2}}$.
- So S_{J} has four possible limits: with $k=2$ and $p=4$,
$1 / 2$: additive noise dominates
$1 / 2^{1 / 2}$: rounding error dominates
1 : jumps present
2 : no jumps present

7.3. Jumps: Finite or Infinite Activity

Average of Test Statistic $S_{\text {FA }}$

7.4. Brownian Motion: Present or Not

- Market microstructure noise with either an additive white noise or with noise due to rounding, the respective limits of S_{W} become 2 and $2^{1 / 2}$ with $k=2$.
- S_{W} has four possible limits:

$$
\begin{array}{cl}
1 & : \text { No Brownian motion } \\
k^{1-p / 2} & : \text { Brownian motion present } \\
k^{1 / 2} & : \text { rounding error dominates } \\
k & : \text { additive noise dominates }
\end{array}
$$

7.5. QV Relative Magnitude

7.6. Estimating Jump Activity

8. Conclusions

The empirical results for these data appear to:

- Indicate that jumps are present in the data
- Point towards the presence of infinite activity jumps
- Of degree of jump activity that is somewhere around 1.5 or higher.
- Indicate that a continuous component is present.
- Representing about 3/4 of total QV.
- Pros
- Unified methodology to address all these specification questions in a common framework
- Symmetric treatment of null and alternative in each case, including distribution theory
- Model-free
- Extremely simple to implement
- Impact of the noise on the statistics is characterized
- Cons
- Not necessarily the optimal approach for each one of these questions taken individually.
- Requires high frequency data (particularly the estimation of β)
- Still to do: a full development of noise-robust statistics.

