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I. STATIC PICTURE: DISTRIBUTION

THEORY

References:

BK N. H. BINGHAM and R. KIESEL,: Semi-

parametric modelling in finance: theoretical

foundations. Quantitative Finance 2 (2002),

241-250,

BKS N. H. BINGHAM, R. KIESEL and R.

SCHMIDT: A semi-parametric approach to risk

management. Quantitative Finance 3 (2003),

426-441,

BS N. H. BINGHAM and R. SCHMIDT: Dis-

tributional and temporal dependence structure

of high-frequency financial data: A copula ap-

proach. From stochastic analysis to mathe-

matical finance: The Shiryaev Festschrift, ed.

Yu. Kabanov, R. Liptser & J. Stoyanov) 69-

92, Springer, 2006.



Recall the bench-mark Black-Scholes(-Merton)

model. The evolution of a stock price St is

modelled by a stochastic differential equation

(SDE)

dSt = St.(µdt + σdBt), (SDE)

where µ is the mean growth rate, σ is the

volatility and B = (Bt) is Brownian motion

(BM). The solution is

St = exp{(µ− 1

2
σ2)t + σBt}.

In particular, St has a log-normal distribution.

Similarly in higher dimensions. In d dimensions,

µ is a d-vector, Bt is d-dimensional BM, St is

a d-dimensional stochastic process with log-

normal components, and σ is a d×d matrix. So

log-prices are multivariate normal or Gaussian.

Recall that this distribution has characteristic

function (CF)

M(t) = exp{itTµ− 1

2
tTΣt},



where µ is the mean vector and Σ is the co-

variance matrix, and density

f(x) = const. exp{−1

2
(t− µ)TΣ−1(t− µ)}.

(Edgeworth’s formula, 1893).

Markowitz Theory.

Recall the two key insights of Markowitz’s the-

sis of 1952:

1. Look at risk (σ, Σ) and return (µ) together

not separately (mean-variance theory).

2. Diversify. Hold a (large) number d of as-

sets, and balance your portfolio by choosing a

range of assets with negative correlations.

Problems

The Black-Scholes model gives Gaussian log-

prices, which have ultra-thin tails. Real finan-

cial data typically have much fatter tails.

One thus seeks a model which retains (as much

as possible) the mathematical tractability of

the Gaussian model but is not restricted to

ultra-thin Gaussian tails. One way to do this



is to use an elliptically contoured model, where

the density is of the form (generalizing Edge-

worth’s formula)

f(x) = g(Q), Q := (x− µ)TΣ−1(x− µ),

where g is a positive function of a positive vari-

able (the density generator). We summarize

this as

f ∈ EC, or f ∈ ECd(µ,Σ, g).

Then if X is a random d-vector with law of

type EC, one has a stochastic representation

X − µ = RATU, (SR)

where Σ has Cholesky decomposition

Σ = ATA,

U is uniformly distributed over the unit sphere

in d dimensions, and R > 0 is a random vari-

able.



Examples.
1. Gaussian: here g(x) = const.e−

1
2x. The

tails are ultra-thin, as above. Suitable for mod-
elling, say, monthly returns.
2. Student t in d dimensions with n degrees of
freedom: here g(x) = const.(1+xTΣ−1x

n )−
1
2(n+d).

Heavy tails – decay like a power. May be use-
ful for modelling, say, high-frequency returns.
Can be obtained as a normal variance mixture
(NVM) – Gaussian with mean 0 and covariance
matrix uΣ, where u is random with inverse
Gamma distribution, IG (‘mixing law IG’).
3. Generalized hyperbolic, GH: again NVM,
with mixing law generalized inverse Gaussian
(GIG). Semi-heavy tails (log-tails decay linearly).
Suitable for modelling daily returns, say.
Note. 1. Observe how varying the return in-
terval can alter the character of the return dis-
tribution!
2. Returns correspond to discrete time; log-
prices are more suitable for continuous time.
3. Data are discrete; theory may be easier in
continuous time (we return to this later).



Infinite divisibility and Lévy processes
A random variable X with CF φ is called in-
finitely divisible (ID) if for each n = 1,2, . . .

X = X1+ . . .+Xn with X1, . . . , Xn independent
and identically distributed (iid) – equivalently,
φ = φn

n for some CF φn. The ID laws are given
by the Lévy-Khintchine formula, in terms of a
triple (a, σ, ν), where a is real (the drift), σ ≥ 0
(the Gaussian component), and ν is a measure
(the Lévy measure) satisfying an integrability
condition. An ID law corresponds to a Lévy
processes (Xt)t≥0 – stochastic process (SP)
with stationary independent increments – by
X ↔ X1.
Examples.
1. Brownian motion [normal or Gaussian dis-
tributions].
2. Poisson process [Poisson distribution].
3. Student t processes [Student t distribu-
tions].
4. Generalized hyperbolic processes [gener-
alised hyperbolic distributions, GH].



Self-decomposability (SD).

Call a random variable X self-decomposable

(SD) if for each c ∈ (0,1),

X =d cX +ind Xc

for some r.v. Xc (note the similarity to AR(1)!)

– equivalently, the CF φ satisfies φ(t) = φ(ct).φc(t)

for some CF φc. Then SD laws are ID:

SD ⊂ ID,

and the SD laws are known in terms of the

Lévy-Khintchine formula.

Examples: Gaussian, Student t and GH laws

are SD.

Type G.

Suppose now that

Y = σε,

where

ε ∼ Nd(0,Σ)



is a random d-vector, multivariate normal (Gaus-
sian) with mean 0 and covariance matrix Σ and
σ is independent of ε with σ2 ID. Then Y is said
to be of type G (M. B. Marcus, 1987). Then
Y has CF

ψY (t) = φ(
1

2
tTΣt),

where φ is the Laplace-Stieltjes transform (LST)
of σ2. Then

X := Y + µ

is elliptically contoured:

X ∼ ECd(µ,Σ, φ)

say. We specialize further from σ2 ID to σ2

SD. Then (check) X above is also SD.

The message of BK, BKS is that this set-
ting provides a very suitable and flexible way
of modelling return or log-price laws in many
dimensions.
Note. The concept of type G is not made ex-
plicit in BK, BKS.



II. DYNAMIC PICTURE: LÉVY PROCESSES

Risk driver.

We now take a dynamic version of (SR):

Xt − µ = RtA
TUt, (SRt)

where X = (Xt)t≥0 is a d-dimensional SP, R =

(Rt) is a SP on the positive half-line, and U =

(Ut) is BM on the surface of the unit sphere in

d dimensions. We call X a multivariate ellipti-

cal process (MEP) with risk driver R.

Interpretation: X is the log-price process of our

portfolio of d assets. We need (µ,Σ) (mean

vector, covariance matrix) as a parameter, by

Markowitz. We assume here that the vari-

ability can be adequately modelled by a one-

dimensional driving noise process, the risk driver

R. This greatly simplifies computations, and

avoids the curse of dimensionality. From (SRt):

var(Xt) = E[R2
t ]Σ. (vol)

So large or small values of Rt give large or small

values for the covariance matrix, or volatility



matrix. A tendency for large [small] values of

Rt to be followed by other large [small] values

will give volatility clustering, one of the ”styl-

ized facts” of mathematical finance.

Processes of Ornstein-Uhlenbeck type.

Recall the classical Ornstein-Uhlenbeck pro-

cess, given by the SDE

dVt = −cVt + σdBt.

We generalize this as follows:

dYt = −cYt + dZt. (OU)

Here c > 0, and Z = (Zt) is a positive Lévy

process (subordinator), called the background

driving Lévy process (BDLP). The solution to

SDE (OU) is a process of Ornstein-Uhlenbeck

type. We quote:

(a) If Z is a BDLP whose Lévy measure ν sat-

isfies the log-integrability condition
∫

log+(|x|)dν(x) < ∞, (logint)



then (OU) has a unique strong solution Y =

(Yt), with an SD limit law Y∞.

(b) Conversely, every SD law is the limit law

of a process of OU type.

1. Log-prices.

The above gives a model for the log-prices of

a d-dimensional portfolio, which has two desir-

able properties:

(a) the dynamics are driven by a one-dimensional

noise process, the risk driver R;

(b) the process is stationary, and settles down

to equilibrium.

2. Stochastic Volatility (SV).

Barndorff-Nielsen and Shephard (JRSS B 2001)

introduce a SV model of this type:

dyt = (µ+cσ2
t )dt+σtdBt, dσ2

t = −λσ2
t dt+dzt,

where y = (yt) is the log-price process and the

BDLP z = (zt) is a subordinator (i.e. zt > 0,

which ensures the volatility σ2
t > 0 also).



III. DYNAMIC PICTURE: DIFFUSIONS.

In II above, the (log-)price process has jumps –

the only Lévy process without jumps is Brown-

ian motion, which takes us back to the Black-

Scholes model. Typically, jump processes will

give a market model which is incomplete, in

contrast to the Black-Scholes model, which

is complete. This section describes an alter-

native to the above Lévy-based models with

jumps, based instead on diffusions.

In the SDE

dXt = b(Xt)dt + σ(Xt)dBt, (diff)

subject to suitable conditions on the drift b(.)

and diffusion coefficient σ(.), the SDE (diff)

has a unique strong solution, which is path-

continuous and strong Markov, i.e. a diffusion

process. It may also be described by the dif-

ferential operator

bD +
1

2
σ2D2, D := d/dx,



(together with boundary conditions at end-points).

We shall take the risk-driver R = (Rt) as a pos-

itive diffusion, and impose the boundary condi-

tion that 0 is a reflecting boundary. The diffu-

sion has a speed measure and a scale function.

We take the speed measure finite, so it can be

normalized to a probability measure on (0,∞).

We take this absolutely continuous, with den-

sity f say. Then

(i) the diffusion is ergodic – it has a limit dis-

tribution as t →∞,

(ii) this limit distribution has density f ,

(iii) the process is time-reversible (from the

boundary condition – 0 is reflecting).

The density f is given by the DE

D(σ2f) = 2bf. (DE)

We shall take the function σ(.) as known [be-

cause if we could observe the path exactly, we

could find its quadratic variation and get σ(.)

from that; various approximation results mean



that we can approximate this in practice]. So
we can specify f and find b from (DE), or vice
versa.
Example. 1. Gamma diffusion. Here f has the
Gamma distribution Γ(α, ν) (α > 0, ν > 0),

f(x) =
αν

Γ(ν)
.xν−1e−αx, (x > 0).

We take σ constant. Then

b(x) =
1

2
σ2.(

ν − 1

x
− α).

2. Heston or Cox-Ingersoll-Ross (CIR) model.
Here σ(x) = c

√
x.

Note. Motivated as here by financial mod-
elling, there has been much recent work on
statistical estimation for diffusions. See e.g.
the book
Yu. A. KUTOYANTS: Statistical estimation
for ergodic diffusions, Springer, 2004,
and many papers in the journal Statistical In-
ference for Stochastic Processes (SISP).
Our approach applies all this in many dimen-
sions.



DISCRETE v. CONTINUOUS TIME
Is time discrete or continuous? Should we
use discrete-time or continuous-time models in
mathematical finance? The answer is that we
need both.
In favour of discrete time: (a) data is discrete;
(b) much of econometrics – e.g., GARCH mod-
els – is in discrete time.
For current work here in discrete time, see
SS Rafael SCHMIDT and Christian SCHMIEDER:
Modelling dynamic portfolio risk using risk drivers
of elliptical processes. Preprint, Dept. Eco-
nomics, U. Cologne [rafael.schmidt@uni-koeln.de].
In favour of continuous time: theory works
more smoothly – e.g., Itô calculus, Lévy pro-
cesses, diffusions.
Much current work is devoted to extending
ARMA and GARCH methods to continuous
time (CARMA and COGARCH): see recent pa-
pers of P. J. BROCKWELL, Alexander LIND-
NER,Vicky FASEN and others.
For econometrics in continuous time, see
A. R. (Rex) BERGSTROM (1925-2005).


