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Introduction:

Use of Lévy processes for modelling purposes:

very popular in many areas

especially in the field of finance

Eberlein and Keller (1995)

Barndorff-Nielsen and Shephard (2001)

Cont and Tankov (2004)

Bertoin (1996)

Sato (1999).



Distribution of a Lévy process: specified by its characteristic triple

(drift, Gaussian component and Lévy measure.)

Rather than by the distribution of its independent increments

(intractable) ⇒

standard parametric approach by likelihood methods difficult.

⇒ nonparametric methods.

Lévy measure interesting to estimate because specifies the jumps

behavior.



Nonparametric estimation of the Lévy measure

Recent contributions:

Basawa and Brockwell (1982): non decreasing Lévy processes

and observations of jumps with size larger than some positive ε, or

discrete observations with fixed sampling interval.

Nonparametric estimators of a distribution function linked with the

Lévy measure.

Figueroa-López and Houdré (2006): a continuous-time

observation of a general Lévy process and study penalized

projection estimators of the Lévy density.

Neumann and Reiss (2009).



Our aim. Nonparametric estimation of the Lévy measure for

real-valued Lévy processes of pure jump type, i.e.

without drift and Gaussian component.

Assumption: the Lévy measure admits a density n(x) on R.

Notations: (Lt) the Lévy process. Observed random variables

(i.i.d.):

(Z∆
k = Lk∆ − L(k−1)∆, k = 1, . . . , n)

Process discretely observed with sampling interval ∆.

Link between n(x) and Z∆
k ’s?



Characteristic function of Z∆
1 = L∆:

ψ∆(u) = E(exp iuZ∆
1 ) = exp (∆

∫

R

(eiux − 1)n(x)dx) (1)

By derivating:

ψ′
∆(u) = iE(Z∆

1 exp iuZ∆
1 ) =

(
i∆

∫

R

eiuxxn(x)dx

)
ψ∆(u).



Assume
∫

R
|x|n(x)dx <∞.

Denote g(x) = xn(x):

g∗(u) =

∫
eiuxg(x)dx = −i

ψ′
∆(u)

∆ψ∆(u)
. (2)

Nonparametric estimation strategy using

empirical estimators of the characteristic functions

and Fourier inversion.

See also Watteel-Kulperger (2003) and Neumann-Reiss (2009).

⇒ Estimate g∗(u) by using empirical counterparts of ψ∆(u)

and ψ′
∆(u) = iE(Z1e

iuZ1) only.



⇒ Problem of estimating g = deconvolution-type problem.

i.e. estimation of the density of X with observations

Zi = Xi + εi

with εi centered i.i.d. noise. with density fε.

fZ density of Z, g density of X , u∗(x) =
∫
eitxu(t)dt,

f∗Z = g∗f∗ε ⇒ g∗ = f∗Z/f
∗
ε .

f∗Z estimated, f∗ε known.



But: Problem of deconvolution from (4) is not standard

Both the numerator and the denominator are estimated

⇒ Deconvolution in presence of unknown error density.

+ Have to be estimated from the same data.

Moreover estimator of 1/ψ∆(u) (like 1/f∗ε (x)) is not a simple

empirical counterpart.

Truncated version analogous to the one used in Neumann (1997)

and Neumann and Reiss (2009).



Technical assumptions up to now:

(H1)
∫

R
|x|n(x)dx <∞.

(H2(p)) For p integer,
∫

R
|x|p−1|g(x)|dx <∞.

(H3) The function g belongs to L2(R).

Our estimation procedure is based on the i.i.d. r.v.

Z∆
k = Lk∆ − L(k−1)∆,k = 1, . . . ,n, (3)

with common characteristic function ψ∆(u).

Key formula

g∗(u) =

∫
eiuxg(x)dx = −i

ψ′
∆(u)

∆ψ∆(u)
. (4)



Moments of Z∆
1 linked with g:

Proposition 1 Let p ≥ 1 integer. Under (H2)(p), E(|Z∆
1 |p) <∞.

Moreover, setting, for k = 1, . . . p, Mk =
∫

R
xk−1g(x)dx, we have

E(Z∆
1 ) = ∆M1, E[(Z∆

1 )2] = ∆M2 + ∆2M1,

and more generally,

E[(Z∆
1 )l] = ∆ Ml + o(∆) for all l = 1, . . . ,p.



Control of ψ∆.

(H4) ∀x ∈ R, cψ(1 + x2)−∆β/2 ≤ |ψ∆(x)| ≤ Cψ(1 + x2)−∆β/2,

for some given constants cψ, Cψ and β ≥ 0.

Also considered in Neumann and Reiss (2009).

For the adaptive version of our estimator, we need additional

assumptions for g:

(H5) There exists some positive a such that∫
|g∗(x)|2(1 + x2)adx < +∞,

and

(H6)
∫
x2g2(x)dx < +∞.

Independent assumptions for ψ∆ and g: there may be no

relation at all between these two functions.



Examples.

Compound Poisson processes.

Lt =

Nt∑

i=1

Yi, Yi i.i.d. with density f

(Yi) independent of Nt, Nt ∼ Poisson(c).

P(L∆ = 0) = e−c∆

n(x) = cf(x).

e−2c∆ ≤ |ψ∆(u)| ≤ 1.

The Lévy Gamma process.

Lt ∼ Γ(βt, α)

n(x) = βx−1e−αx1(x > 0).

ψ∆(u) =

(
α

α− iu

)β∆
.



Bilateral Gamma process. Küchler and Tappe (2008).

Lt = L
(1)
t − L

(2)
t , L

(1)
t and L

(2)
t independent and Lévy-Gamma.

Parameters (β′, α′;β, α).

Special case: β′ = β and α′ = α.

Variance-Gamma (Madan and Seneta, 1990).

Lt = WZt , (W ) Brownian motion independent of Z

and Z Lévy-Gamma.

• Bilateral Gamma. n(x) = x−1g(x)

g(x) = β′e−α
′x1(x > 0) − βe−α|x|1(x > 0).

ψ∆(u) =

(
α

α− iu

)β∆(
α′

α′ + iu

)β′∆

.



Notations

u∗ the Fourier transform of the function u: u∗(y) =
∫
eiyxu(x)dx,

‖u‖2 =

∫
|u(x)|2dx,

< u, v >=

∫
u(x)v(x)dx with zz = |z|2.

For any integrable and square-integrable functions u, u1, u2,

(u∗)∗(x) = 2πu(−x) and 〈u1,u2〉 = (2π)−1〈u∗
1,u

∗
2〉. (5)



Definition of the estimator.

g∗(x) = −i ψ
′
∆(x)

∆ψ∆(x)
=

θ∆(x)

∆ψ∆(x)
, (6)

with

ψ∆(x) = E(eixZ
∆

1 ), θ∆(x) = −iψ′
∆(x) = E(Z∆

1 e
ixZ∆

1 ).

ψ̂∆(x) =
1

n

n∑

k=1

eixZ∆
k , θ̂∆(x) =

1

n

n∑

k=1

Z∆
k eixZ∆

k .

Although |ψ∆(x)| > 0 for all x, this is not true for ψ̂∆.

As Neumann (1997) and Neumann and Reiss (2007), truncate 1/ψ̂∆

1

ψ̃∆(x)
=

1

ψ̂∆(x)
1I|ψ̂∆(x)|>κψn−1/2 . (7)



ĝ∗(x) =
θ̂∆(x)

∆ψ̃∆(x)
.

Inverse Fourier transform with cutoff m:

ĝm(x) =
1

2π

∫ πm

−πm
e−ixu θ̂∆(u)

∆ψ̃∆(u)
du.

Because integrals on R may not be finite.

gm(x) =
1

2π

∫ πm

−πm
e−ixu

θ∆(u)

∆ψ∆(u)
du.



Risk bound for fixed m

‖g − ĝm‖2 = ‖g − gm‖2 + ‖gm − ĝm‖2 (Pythagoras)

≤ ‖g − gm‖2 + 2‖gm − E(ĝm)‖2 + 2‖E(ĝm) − ĝm‖2.

We define:

Φψ(m) =

∫ πm

−πm

dx

|ψ∆(x)|2 , (8)

(analogy with deconvolution setting)

Proposition 2 Under (H1)-(H2)(4)-(H3), for all m:

E(‖g − ĝm‖2) ≤ ‖g − gm‖2 + K
E

1/2[(Z∆
1 )4]Φψ(m)

n∆2
.

where K is a constant.



Discussion about the rates ‖g − gm‖2 =

∫

|x|≥πm
|g∗(x)|2dx.

Suppose that g belongs to the Sobolev class

S(a, L) = {f,
∫

|f∗(x)|2(x2 + 1)adx ≤ L}.

Then, the bias term satisfies

‖g − gm‖2 = O(m−2a).

Under (H4), the bound of the variance term satisfies
∫ πm
−πm dx/|ψ∆(x)|2

n∆
= O

(
m2β∆+1

n∆

)
.

The optimal choice for m is O((n∆)1/(2β∆+2a+1)) and the resulting

rate for the risk is

(n∆)−2a/(2β∆+2a+1).



Sampling interval ∆ explicitly appears in the exponent of the

rate.

⇒ for positive β, the rate is worse for large ∆ than for small ∆.

Thus we can state the following corollary of Proposition 2:

Corollary 1 Under assumptions (H1)-(H2(4))-(H3)-(H5), then

E(‖ĝm−g‖2) = O(n∆)−2a/(2β∆+2a+1) when m = O((n∆)1/(2β∆+2a+1)).



Projection formulation.

ϕ(x) =
sin(πx)

πx
and ϕm,j(x) =

√
mϕ(mx− j).

ϕ∗
m,j(x) =

eixj/m

√
m

1I[−πm,πm](x). (9)

Sm = Span{ϕ
m,j
, j ∈ Z} = {h ∈ L

2(R), supp(h∗) ⊂ [−mπ,mπ]}.

{ϕm,j}j∈Z orthonormal basis

(Sm)m∈Mn the collection of linear spaces,

Mn = {1, . . . ,mn}

and mn ≤ n is the maximal admissible value of m, subject to

constraints to be given later.



Consider gm orthogonal projection of g on Sm

gm =
∑

j∈Z

am,j(g)ϕm,j with am,j(g) =

∫

R

ϕm,j(x)g(x)dx = 〈ϕm,j , g〉.

and

〈ϕm,j,g〉 =
1

2π
〈ϕ∗

m,j,g
∗〉 =

1

2π
〈ϕ∗

m,j,
θ∆

∆ψ∆

〉.

The estimator can be defined by:

ĝm =
∑

j∈Z

âm,jϕm,j, with âm,j =
1

2πn∆

n∑

k=1

Z∆
k

∫
eixZ∆

k

ϕ∗
m,j(−x)

ψ̃∆(x)
dx,

or âm,j =
1

2π∆

∫
θ̂∆(x)

ϕ∗
m,j(−x)
ψ̃∆(x)

dx.



Let t ∈ Sm of the collection (Sm)m∈Mn , and define

γn(t) = ‖t‖2 − 1

π∆

1

n

n∑

k=1

Z∆
k

∫
eixZ

∆

k
t∗(−x)
ψ̃∆(x)

dx, (10)

= ‖t‖2 − 1

π∆

∫
t∗(x)

θ̂∆(x)

ψ̃∆(x)
dx.

Consider γn(t) as an approximation of the theoretical contrast

γthn (t) = ‖t‖2 − 1

π∆

∫
θ̂∆(x)

t∗(−x)
ψ∆(x)

dx,

E(γth
n (t)) = ‖t‖2 − 2〈g, t〉 = ‖t − g‖2 − ‖g‖2 minimal for t = g.

We have also

ĝm = Argmint∈Sm
γn(t). (11)



Study of the adaptive estimator

We have to select an adequate value of m.

pen(m) = κ(1 + E[(Z∆
1 )2]/∆)

Φψ(m)

n∆
. (12)

We set

m̂ = arg min
m∈Mn

{γn(ĝm) + pen(m)} ,

and study first the “risk” of ĝm̂.

And Mn = {1, . . . , n} with mn such that pen(mn) ≤ C, where

C is a given constant.



Result:

Theorem 1 Assume that assumptions (H1)-(H2)(8)-(H3)-(H6)

hold. Then

E(‖ĝm̂ − g‖2) ≤ C inf
m∈Mn

(
‖g − gm‖2 + pen(m)

)
+ K

ln2(n)

n∆
,

where K is a constant.

Automatic squared bias ‖g − gm‖2 / variance compromise as

pen(m) has the order of the variance.



Theoretical estimator because Φψ(m) unknown.

⇒ To get an estimator, we replace the theoretical penalty by:

p̂en(m) = κ′
(

1 +
1

n∆2

n∑

i=1

(Z∆
i )2

) ∫ πm
−πm dx/|ψ̃∆(x)|2

n
.

Assumption on the collection of models Mn = {1, . . . ,mn}, mn ≤ n:

(H7) ∃ε,0 < ε < 1, m2β∆
n ≤ Cn1−ε,

where C is a fixed constant and β is defined by (H4).



For instance, Assumption (H7) is fulfilled if:

1. pen(mn) ≤ C. In such a case, we have mn ≤ C(n∆)1/(2β∆+1).

2. ∆ is small enough to ensure 2β∆ < 1. Take Mn = {1, . . . , n}.

In the compound Poisson model, β = 0 and nothing is needed.

(H7) = problem because depends on the unknown β

But concrete implementation requires the knowledge of mn.

Analogous deconvolution with unknown error density.



In that case we can prove:

Theorem 2 Assume that assumptions (H1)-(H2)(8)-(H3)-(H7)

hold and let g̃ = ĝ ̂̂m be the estimator defined with
̂̂m = arg minm∈Mn(γn(ĝm) + p̂en(m)). Then

E(‖g̃ − g‖2) ≤ C inf
m∈Mn

(
‖g − gm‖2 + pen(m)

)
+ K′

∆

ln2(n)

n

where K′
∆ is a constant depending on ∆ (and on fixed quantities but

not on n).

If g belongs to the Sobolev ball S(a, L), and under (H4), the rate is

automatically of order O((n∆)−2a/(2β∆+2a+1)).



Proofs rely on control of empirical processes via Talagrand’s type

inequality and precise bounds on residual terms.

γn(t) − γn(s) = ‖t− g‖2 − ‖s− g‖2 − 2ν(1)
n (t− s) − 2ν(2)

n (t− s) − 2
4∑

i=1

R(i)
n (t− s),

ν(1)
n (t) =

1

2π∆

∫
t∗(−x) θ̂

(1)
∆ (x) − θ

(1)
∆ (x)

ψ∆(x)
dx,

ν(2)
n (t) =

1

2π∆

∫
t∗(−x) θ∆(x)

[ψ∆(x)]2
(ψ∆(x) − ψ̂∆(x))dx,

R(1)
n (t) =

1

2π∆

∫
t∗(−x)(θ̂∆(x) − θ∆(x))

(
1

ψ̃∆(x)
− 1

ψ∆(x)

)
dx

R(2)
n (t) =

1

2π∆

∫
t∗(−x) θ∆(x)

ψ∆(x)
(ψ∆(x) − ψ̂∆(x))

(
1

ψ̃∆(x)
− 1

ψ∆(x)

)
dx,

R(3)
n (t) =

1

2π∆

∫
t∗(−x) θ̂

(2)
∆ (x) − θ

(2)
∆ (x)

ψ∆(x)
dx,

R(4)
n (t) = − 1

2π∆

∫
t∗(−x) θ∆(x)

ψ∆(x)
1I|ψ̂∆(x)|≤κψ/

√
ndx.



Further works:

Deconvolution setting with unknown error density:

a solution with a random set Mn,

but two independent samples are available.

Maybe a way of generalisation.

But non pure jump processes : only for small sample step!


