Nonparametric adaptive estimation for pure jump Lévy processes. Fixed sample step data.

Fabienne Comte ${ }^{(1)}$

Joint work with V. Genon-Catalot ${ }^{(1)}$
(1) MAP5, UMR 8145, Université Paris Descartes.

Introduction:

Use of Lévy processes for modelling purposes:
very popular in many areas
especially in the field of finance

Eberlein and Keller (1995)
Barndorff-Nielsen and Shephard (2001)
Cont and Tankov (2004)
Bertoin (1996)
Sato (1999).

Distribution of a Lévy process: specified by its characteristic triple (drift, Gaussian component and Lévy measure.)

Rather than by the distribution of its independent increments (intractable) \Rightarrow
standard parametric approach by likelihood methods difficult. \Rightarrow nonparametric methods.

Lévy measure interesting to estimate because specifies the jumps behavior.

Nonparametric estimation of the Lévy measure

Recent contributions:
Basawa and Brockwell (1982): non decreasing Lévy processes and observations of jumps with size larger than some positive ε, or discrete observations with fixed sampling interval.

Nonparametric estimators of a distribution function linked with the Lévy measure.

Figueroa-López and Houdré (2006): a continuous-time observation of a general Lévy process and study penalized projection estimators of the Lévy density.

Neumann and Reiss (2009).

Our aim. Nonparametric estimation of the Lévy measure for real-valued Lévy processes of pure jump type, i.e. without drift and Gaussian component.

Assumption: the Lévy measure admits a density $n(x)$ on \mathbb{R}.
Notations: $\left(L_{t}\right)$ the Lévy process. Observed random variables (i.i.d.):

$$
\left(Z_{k}^{\Delta}=L_{k \Delta}-L_{(k-1) \Delta}, k=1, \ldots, n\right)
$$

Process discretely observed with sampling interval Δ.

Link between $n(x)$ and Z_{k}^{Δ} 's?

Characteristic function of $Z_{1}^{\Delta}=L_{\Delta}$:

$$
\begin{equation*}
\psi_{\Delta}(u)=\mathbb{E}\left(\exp i u Z_{1}^{\Delta}\right)=\exp \left(\Delta \int_{\mathbb{R}}\left(e^{i u x}-1\right) n(x) d x\right) \tag{1}
\end{equation*}
$$

By derivating:

$$
\psi_{\Delta}^{\prime}(u)=i \mathbb{E}\left(Z_{1}^{\Delta} \exp i u Z_{1}^{\Delta}\right)=\left(i \Delta \int_{\mathbb{R}} e^{i u x} x n(x) d x\right) \psi_{\Delta}(u) .
$$

Assume $\int_{\mathbb{R}}|x| n(x) d x<\infty$.
Denote $\mathbf{g}(\mathbf{x})=\mathbf{x n}(\mathbf{x})$:

$$
\begin{equation*}
\mathbf{g}^{*}(\mathbf{u})=\int \mathrm{e}^{\mathrm{i} \mathbf{u x}} \mathbf{g}(\mathbf{x}) \mathrm{dx}=-\mathbf{i} \frac{\psi_{\boldsymbol{\Delta}}^{\prime}(\mathbf{u})}{\Delta \psi_{\boldsymbol{\Delta}}(\mathbf{u})} \tag{2}
\end{equation*}
$$

Nonparametric estimation strategy using empirical estimators of the characteristic functions and Fourier inversion.

See also Watteel-Kulperger (2003) and Neumann-Reiss (2009).
\Rightarrow Estimate $g^{*}(u)$ by using empirical counterparts of $\psi_{\Delta}(u)$ and $\psi_{\Delta}^{\prime}(u)=i \mathbb{E}\left(Z_{1} e^{i u Z_{1}}\right)$ only.
\Rightarrow Problem of estimating $g=$ deconvolution-type problem.
i.e. estimation of the density of X with observations

$$
Z_{i}=X_{i}+\varepsilon_{i}
$$

with ε_{i} centered i.i.d. noise. with density f_{ε}. f_{Z} density of Z, g density of $X, u^{*}(x)=\int e^{i t x} u(t) d t$,

$$
f_{Z}^{*}=g^{*} f_{\varepsilon}^{*} \Rightarrow g^{*}=f_{Z}^{*} / f_{\varepsilon}^{*} .
$$

f_{Z}^{*} estimated, f_{ε}^{*} known.

But: Problem of deconvolution from (4) is not standard
Both the numerator and the denominator are estimated
\Rightarrow Deconvolution in presence of unknown error density.

+ Have to be estimated from the same data.

Moreover estimator of $1 / \psi_{\Delta}(u)$ (like $1 / f_{\varepsilon}^{*}(x)$) is not a simple empirical counterpart.

Truncated version analogous to the one used in Neumann (1997) and Neumann and Reiss (2009).

Technical assumptions up to now:
(H1) $\quad \int_{\mathbb{R}}|x| n(x) d x<\infty$.
$(\mathrm{H} 2(p))$ For p integer, $\int_{\mathbb{R}}|x|^{p-1}|g(x)| d x<\infty$.
(H3) The function g belongs to $\mathbb{L}_{2}(\mathbb{R})$.
Our estimation procedure is based on the i.i.d. r.v.

$$
\begin{equation*}
\mathbf{Z}_{\mathrm{k}}^{\Delta}=\mathbf{L}_{\mathrm{k} \Delta}-\mathbf{L}_{(\mathbf{k}-1) \Delta}, \mathbf{k}=1, \ldots, \mathbf{n} \tag{3}
\end{equation*}
$$

with common characteristic function $\psi_{\Delta}(u)$.

Key formula

$$
\begin{equation*}
\mathbf{g}^{*}(\mathbf{u})=\int \mathrm{e}^{\mathrm{i} \mathbf{u x}} \mathbf{g}(\mathbf{x}) \mathrm{dx}=-\mathbf{i} \frac{\psi_{\boldsymbol{\Delta}}^{\prime}(\mathbf{u})}{\Delta \psi_{\boldsymbol{\Delta}}(\mathbf{u})} \tag{4}
\end{equation*}
$$

Moments of Z_{1}^{Δ} linked with g :
Proposition 1 Let $p \geq 1$ integer. Under (H2)(p), $\mathbb{E}\left(\left|Z_{1}^{\Delta}\right|^{p}\right)<\infty$. Moreover, setting, for $k=1, \ldots p, M_{k}=\int_{\mathbb{R}} x^{k-1} g(x) d x$, we have

$$
\mathbb{E}\left(Z_{1}^{\Delta}\right)=\Delta M_{1}, \quad \mathbb{E}\left[\left(Z_{1}^{\Delta}\right)^{2}\right]=\Delta M_{2}+\Delta^{2} M_{1}
$$

and more generally,

$$
\mathbb{E}\left[\left(\mathbf{Z}_{1}^{\boldsymbol{\Delta}}\right)^{\mathbf{l}}\right]=\boldsymbol{\Delta} \mathbf{M}_{\mathbf{l}}+\mathbf{o}(\boldsymbol{\Delta}) \text { for all } \mathbf{l}=\mathbf{1}, \ldots, \mathbf{p}
$$

Control of ψ_{Δ}.

$$
\begin{equation*}
\forall \mathrm{x} \in \mathbb{R}, \mathbf{c}_{\psi}\left(\mathbf{1}+\mathbf{x}^{\mathbf{2}}\right)^{-\Delta \beta / \mathbf{2}} \leq\left|\psi_{\Delta}(\mathbf{x})\right| \leq \mathbf{C}_{\psi}\left(\mathbf{1}+\mathbf{x}^{\mathbf{2}}\right)^{-\Delta \beta / \mathbf{2}} \tag{H4}
\end{equation*}
$$

for some given constants c_{ψ}, C_{ψ} and $\beta \geq 0$.
Also considered in Neumann and Reiss (2009).

For the adaptive version of our estimator, we need additional assumptions for g :
(H5) There exists some positive a such that

$$
\int\left|g^{*}(x)\right|^{2}\left(1+x^{2}\right)^{a} d x<+\infty
$$

and
(H6) $\quad \int x^{2} g^{2}(x) d x<+\infty$.
Independent assumptions for ψ_{Δ} and g : there may be no relation at all between these two functions.

Examples.

Compound Poisson processes.

$$
L_{t}=\sum_{i=1}^{N_{t}} Y_{i}, \quad Y_{i} \text { i.i.d. with density } f
$$

$\left(Y_{i}\right)$ independent of $N_{t}, N_{t} \sim \mathcal{P}$ oisson (c).
$\mathbb{P}\left(L_{\Delta}=0\right)=e^{-c \Delta}$

$$
\begin{gathered}
\mathbf{n}(\mathrm{x})=\mathbf{c f}(\mathrm{x}) . \\
\mathrm{e}^{-2 \mathrm{c} \boldsymbol{\Delta}} \leq\left|\psi_{\Delta}(\mathbf{u})\right| \leq 1
\end{gathered}
$$

The Lévy Gamma process.

$$
\begin{gathered}
L_{t} \sim \Gamma(\beta t, \alpha) \\
\mathbf{n}(\mathbf{x})=\beta \mathbf{x}^{-1} \mathbf{e}^{-\alpha \mathbf{x}} \mathbf{1}(\mathbf{x}>\mathbf{0}) \\
\psi_{\boldsymbol{\Delta}}(\mathbf{u})=\left(\frac{\alpha}{\alpha-\mathbf{i} \mathbf{u}}\right)^{\beta \boldsymbol{\Delta}}
\end{gathered}
$$

Bilateral Gamma process. Küchler and Tappe (2008).
$L_{t}=L_{t}^{(1)}-L_{t}^{(2)}, L_{t}^{(1)}$ and $L_{t}^{(2)}$ independent and Lévy-Gamma.
Parameters ($\beta^{\prime}, \alpha^{\prime} ; \beta, \alpha$).
Special case: $\beta^{\prime}=\beta$ and $\alpha^{\prime}=\alpha$.
Variance-Gamma (Madan and Seneta, 1990).

$$
L_{t}=W_{Z_{t}}, \quad(W) \text { Brownian motion independent of } Z
$$

and Z Lévy-Gamma.

- Bilateral Gamma. $n(x)=x^{-1} g(x)$

$$
\begin{gathered}
\mathrm{g}(\mathrm{x})=\beta^{\prime} \mathrm{e}^{-\alpha^{\prime} \mathrm{x}} \mathbf{1}(\mathrm{x}>\mathbf{0})-\beta \mathrm{e}^{-\alpha|\mathrm{x}|} \mathbf{1}(\mathrm{x}>\mathbf{0}) . \\
\psi_{\Delta}(\mathrm{u})=\left(\frac{\alpha}{\alpha-\mathrm{iu}}\right)^{\beta \boldsymbol{\Delta}}\left(\frac{\alpha^{\prime}}{\alpha^{\prime}+\mathrm{iu}}\right)^{\beta^{\prime} \Delta} .
\end{gathered}
$$

Notations

u^{*} the Fourier transform of the function $u: u^{*}(y)=\int e^{i y x} u(x) d x$,

$$
\begin{gathered}
\|u\|^{2}=\int|u(x)|^{2} d x \\
<u, v>=\int u(x) \bar{v}(x) d x \text { with } z \bar{z}=|z|^{2} .
\end{gathered}
$$

For any integrable and square-integrable functions u, u_{1}, u_{2},

$$
\begin{equation*}
\left(\mathbf{u}^{*}\right)^{*}(\mathbf{x})=\mathbf{2} \pi \mathbf{u}(-\mathbf{x}) \text { and }\left\langle\mathbf{u}_{1}, \mathbf{u}_{\mathbf{2}}\right\rangle=(\mathbf{2} \pi)^{-\mathbf{1}}\left\langle\mathbf{u}_{\mathbf{1}}^{*}, \mathbf{u}_{\mathbf{2}}^{*}\right\rangle . \tag{5}
\end{equation*}
$$

Definition of the estimator.

$$
\begin{equation*}
g^{*}(x)=-i \frac{\psi_{\Delta}^{\prime}(x)}{\Delta \psi_{\Delta}(x)}=\frac{\theta_{\Delta}(\mathbf{x})}{\boldsymbol{\Delta} \psi_{\Delta}(\mathbf{x})}, \tag{6}
\end{equation*}
$$

with

$$
\begin{gathered}
\psi_{\Delta}(x)=\mathbb{E}\left(e^{i x Z_{1}^{\Delta}}\right), \quad \theta_{\Delta}(x)=-i \psi_{\Delta}^{\prime}(x)=\mathbb{E}\left(Z_{1}^{\Delta} e^{i x Z_{1}^{\Delta}}\right) \\
\hat{\psi}_{\Delta}(\mathbf{x})=\frac{1}{\mathbf{n}} \sum_{\mathrm{k}=1}^{\mathrm{n}} \mathrm{e}^{\mathrm{i} \times \mathbf{Z}_{\mathrm{k}}^{\Delta}}, \quad \hat{\theta}_{\Delta}(\mathbf{x})=\frac{1}{\mathbf{n}} \sum_{\mathrm{k}=1}^{\mathrm{n}} \mathbf{Z}_{\mathrm{k}}^{\Delta} \mathrm{e}^{\mathrm{i} \times \mathbf{Z}_{\mathrm{k}}^{\Delta}}
\end{gathered}
$$

Although $\left|\psi_{\Delta}(x)\right|>0$ for all x, this is not true for $\hat{\psi}_{\Delta}$.
As Neumann (1997) and Neumann and Reiss (2007), truncate $1 / \hat{\psi}_{\Delta}$

$$
\begin{equation*}
\frac{1}{\tilde{\psi}_{\Delta}(x)}=\frac{\mathbf{1}}{\hat{\psi}_{\Delta}(\mathbf{x})} \mathbf{I}_{\hat{\psi}_{\boldsymbol{\Delta}}(\mathbf{x}) \mid>\kappa_{\psi} \mathbf{n}^{-1 / 2}} \tag{7}
\end{equation*}
$$

$$
\widehat{g^{*}}(x)=\frac{\hat{\theta}_{\Delta}(x)}{\Delta \tilde{\psi}_{\Delta}(x)}
$$

Inverse Fourier transform with cutoff m :

$$
\hat{\mathrm{g}}_{\mathrm{m}}(\mathbf{x})=\frac{1}{2 \pi} \int_{-\pi \mathrm{m}}^{\pi \mathrm{m}} \mathbf{e}^{-\mathrm{ixu}} \frac{\hat{\theta}_{\Delta}(\mathbf{u})}{\Delta \tilde{\psi}_{\Delta}(\mathbf{u})} \mathbf{d u}
$$

Because integrals on \mathbb{R} may not be finite.

$$
g_{m}(x)=\frac{1}{2 \pi} \int_{-\pi m}^{\pi m} e^{-i x u} \frac{\theta_{\Delta}(u)}{\Delta \psi_{\Delta}(u)} d u .
$$

Risk bound for fixed m

$$
\begin{aligned}
\left\|g-\hat{g}_{m}\right\|^{2} & =\left\|g-g_{m}\right\|^{2}+\left\|g_{m}-\hat{g}_{m}\right\|^{2} \text { (Pythagoras) } \\
& \leq\left\|g-g_{m}\right\|^{2}+2\left\|g_{m}-\mathbb{E}\left(\hat{g}_{m}\right)\right\|^{2}+2\left\|\mathbb{E}\left(\hat{g}_{m}\right)-\hat{g}_{m}\right\|^{2}
\end{aligned}
$$

We define:

$$
\begin{equation*}
\mathbf{\Phi}_{\psi}(\mathbf{m})=\int_{-\pi \mathbf{m}}^{\pi \mathbf{m}} \frac{\mathbf{d x}}{\left|\psi_{\Delta}(\mathbf{x})\right|^{2}} \tag{8}
\end{equation*}
$$

(analogy with deconvolution setting)

Proposition 2 Under (H1)-(H2)(4)-(H3), for all m:

$$
\mathbb{E}\left(\left\|\mathrm{g}-\hat{\mathrm{g}}_{\mathrm{m}}\right\|^{\mathbf{2}}\right) \leq\left\|\mathrm{g}-\mathrm{g}_{\mathrm{m}}\right\|^{2}+\mathbf{K} \frac{\mathbb{E}^{\mathbf{1 / 2}}\left[\left(\mathbf{Z}_{\mathbf{1}}^{\boldsymbol{\Delta}}\right)^{4}\right] \Phi_{\psi}(\mathbf{m})}{\mathbf{n} \Delta^{2}}
$$

where K is a constant.

Discussion about the rates $\left\|g-g_{m}\right\|^{2}=\int_{|x| \geq \pi m}\left|g^{*}(x)\right|^{2} d x$. Suppose that g belongs to the Sobolev class

$$
\mathcal{S}(a, L)=\left\{f, \int\left|f^{*}(x)\right|^{2}\left(x^{2}+1\right)^{a} d x \leq L\right\}
$$

Then, the bias term satisfies

$$
\left\|g-g_{m}\right\|^{2}=\mathbf{O}\left(\mathbf{m}^{-2 \mathbf{a}}\right)
$$

Under (H4), the bound of the variance term satisfies

$$
\frac{\int_{-\pi m}^{\pi m} d x /\left|\psi_{\Delta}(x)\right|^{2}}{n \Delta}=\mathbf{O}\left(\frac{\mathbf{m}^{2 \beta \Delta+1}}{\mathrm{n} \Delta}\right)
$$

The optimal choice for m is $O\left((n \Delta)^{1 /(2 \beta \Delta+2 a+1)}\right)$ and the resulting rate for the risk is

$$
(\mathbf{n} \Delta)^{-2 \mathrm{a} /(2 \beta \Delta+2 \mathrm{a}+1)}
$$

Sampling interval Δ explicitly appears in the exponent of the rate.
\Rightarrow for positive β, the rate is worse for large Δ than for small Δ.
Thus we can state the following corollary of Proposition 2:
Corollary 1 Under assumptions (H1)-(H2(4))-(H3)-(H5), then
$\left.\mathbb{E}\left(\left\|\hat{g}_{m}-g\right\|^{2}\right)=O(n \Delta)^{-2 a /(2 \beta \Delta+2 a+1}\right)$ when $m=O\left((n \Delta)^{1 /(2 \beta \Delta+2 a+1)}\right)$.

Projection formulation.

$$
\varphi(\mathbf{x})=\frac{\sin (\pi \mathbf{x})}{\pi \mathbf{x}} \text { and } \varphi_{\mathbf{m}, \mathbf{j}}(\mathbf{x})=\sqrt{\mathbf{m}} \varphi(\mathbf{m} \mathbf{x}-\mathbf{j})
$$

$$
\varphi_{\mathbf{m}, \mathbf{j}}^{*}(\mathbf{x})=\frac{\mathbf{e}^{\mathbf{i x j} / \mathbf{m}}}{\sqrt{\mathbf{m}}} \mathbb{I}_{[-\pi \mathbf{m}, \pi \mathbf{m}]}(\mathbf{x})
$$

$S_{m}=\operatorname{Span}\left\{\varphi_{\mathrm{m}, \mathbf{j}}, \mathbf{j} \in \mathbb{Z}\right\}=\left\{h \in \mathbb{L}^{2}(\mathbb{R}), \operatorname{supp}\left(h^{*}\right) \subset[-m \pi, m \pi]\right\}$.
$\left\{\varphi_{m, j}\right\}_{j \in \mathbb{Z}}$ orthonormal basis
$\left(S_{m}\right)_{m \in \mathcal{M}_{n}}$ the collection of linear spaces,

$$
\mathcal{M}_{\mathbf{n}}=\left\{\mathbf{1}, \ldots, \mathbf{m}_{\mathbf{n}}\right\}
$$

and $m_{n} \leq n$ is the maximal admissible value of m, subject to constraints to be given later.

Consider g_{m} orthogonal projection of g on S_{m}
$g_{m}=\sum_{j \in \mathbb{Z}} a_{m, j}(g) \varphi_{m, j}$ with $a_{m, j}(g)=\int_{\mathbb{R}} \varphi_{m, j}(x) g(x) d x=\left\langle\varphi_{m, j}, g\right\rangle$.
and

$$
\left\langle\varphi_{\mathrm{m}, \mathrm{j}}, \mathrm{~g}\right\rangle=\frac{1}{2 \pi}\left\langle\varphi_{\mathrm{m}, \mathrm{j}}^{*}, \mathrm{~g}^{*}\right\rangle=\frac{1}{2 \pi}\left\langle\varphi_{\mathbf{m}, \mathrm{j}}^{*}, \frac{\theta_{\Delta}}{\Delta \psi_{\Delta}}\right\rangle
$$

The estimator can be defined by:

$$
\begin{gathered}
\hat{\mathbf{g}}_{\mathbf{m}}=\sum_{\mathbf{j} \in \mathbb{Z}} \hat{\mathbf{a}}_{\mathbf{m}, \mathbf{j}} \varphi_{\mathbf{m}, \mathbf{j}}, \text { with } \hat{\mathbf{a}}_{\mathbf{m}, \mathbf{j}}=\frac{\mathbf{1}}{\mathbf{2 \pi n} \boldsymbol{\Delta}} \sum_{\mathbf{k}=\mathbf{1}}^{\mathbf{n}} \mathbf{Z}_{\mathbf{k}}^{\boldsymbol{\Delta}} \int \mathbf{e}^{\mathbf{i x} \mathbf{Z}_{\mathbf{k}}^{\Delta}} \frac{\varphi_{\mathbf{m}, \mathbf{j}}^{*}(-\mathbf{x})}{\tilde{\psi}_{\boldsymbol{\Delta}}(\mathbf{x})} \mathbf{d x}, \\
\text { or } \quad \hat{a}_{m, j}=\frac{1}{2 \pi \Delta} \int \hat{\theta}_{\Delta}(x) \frac{\varphi_{m, j}^{*}(-x)}{\tilde{\psi}_{\Delta}(x)} d x
\end{gathered}
$$

Let $t \in S_{m}$ of the collection $\left(S_{m}\right)_{m \in \mathcal{M}_{n}}$, and define

$$
\begin{align*}
\gamma_{\mathbf{n}}(\mathbf{t}) & =\|t\|^{2}-\frac{1}{\pi \Delta} \frac{1}{n} \sum_{k=1}^{n} Z_{k}^{\Delta} \int e^{i x Z_{k}^{\Delta}} \frac{t^{*}(-x)}{\tilde{\psi}_{\Delta}(x)} d x \tag{10}\\
& =\|\mathbf{t}\|^{2}-\frac{\mathbf{1}}{\pi \Delta} \int \mathbf{t}^{*}(\mathbf{x}) \frac{\hat{\theta}_{\Delta}(\mathbf{x})}{\tilde{\psi}_{\boldsymbol{\Delta}}(\mathbf{x})} \mathbf{d} \mathbf{x}
\end{align*}
$$

Consider $\gamma_{n}(t)$ as an approximation of the theoretical contrast

$$
\gamma_{n}^{t h}(t)=\|t\|^{2}-\frac{1}{\pi \Delta} \int \hat{\theta}_{\Delta}(x) \frac{t^{*}(-x)}{\psi_{\Delta}(x)} d x
$$

$\mathbb{E}\left(\gamma_{\mathbf{n}}^{\mathbf{t h}}(\mathbf{t})\right)=\|\mathbf{t}\|^{\mathbf{2}}-\mathbf{2}\langle\mathbf{g}, \mathbf{t}\rangle=\|\mathbf{t}-\mathbf{g}\|^{\mathbf{2}}-\|\mathbf{g}\|^{\mathbf{2}}$ minimal for $t=g$.
We have also

$$
\begin{equation*}
\hat{\mathrm{g}}_{\mathrm{m}}=\operatorname{Argmin}_{\mathbf{t} \in \mathbf{S}_{\mathbf{m}}} \gamma_{\mathbf{n}}(\mathbf{t}) \tag{11}
\end{equation*}
$$

Study of the adaptive estimator

We have to select an adequate value of m.

$$
\begin{equation*}
\operatorname{pen}(m)=\kappa\left(1+\mathbb{E}\left[\left(Z_{1}^{\Delta}\right)^{2}\right] / \Delta\right) \frac{\Phi_{\psi}(m)}{n \Delta} . \tag{12}
\end{equation*}
$$

We set

$$
\hat{\mathbf{m}}=\arg \min _{\mathbf{m} \in \mathcal{M}_{\mathbf{n}}}\left\{\gamma_{\mathbf{n}}\left(\hat{\mathrm{g}}_{\mathbf{m}}\right)+\operatorname{pen}(\mathbf{m})\right\}
$$

and study first the "risk" of $\hat{g}_{\hat{m}}$.

And $\mathcal{M}_{n}=\{1, \ldots, n\}$ with m_{n} such that $\operatorname{pen}\left(m_{n}\right) \leq C$, where C is a given constant.

Result:

Theorem 1 Assume that assumptions (H1)-(H2)(8)-(H3)-(H6) hold. Then

$$
\mathbb{E}\left(\left\|\hat{\mathbf{g}}_{\hat{\mathbf{m}}}-\mathbf{g}\right\|^{2}\right) \leq \mathbf{C} \inf _{\mathbf{m} \in \mathcal{M}_{\mathbf{n}}}\left(\left\|\mathbf{g}-\mathbf{g}_{\mathbf{m}}\right\|^{2}+\operatorname{pen}(\mathbf{m})\right)+\mathbf{K} \frac{\ln ^{2}(\mathbf{n})}{\mathbf{n} \boldsymbol{\Delta}}
$$

where K is a constant.

Automatic squared bias $\left\|g-g_{m}\right\|^{2} /$ variance compromise as pen (m) has the order of the variance.

Theoretical estimator because $\Phi_{\psi}(m)$ unknown.
\Rightarrow To get an estimator, we replace the theoretical penalty by:

$$
\widehat{\operatorname{pen}}(\mathbf{m})=\kappa^{\prime}\left(1+\frac{1}{\mathbf{n} \Delta^{2}} \sum_{\mathbf{i}=1}^{\mathbf{n}}\left(\mathbf{Z}_{\mathbf{i}}^{\Delta}\right)^{2}\right) \frac{\int_{-\pi \mathrm{m}}^{\pi \mathrm{m}} \mathrm{dx} /\left|\tilde{\psi}_{\Delta}(\mathbf{x})\right|^{2}}{\mathbf{n}}
$$

Assumption on the collection of models $\mathcal{M}_{n}=\left\{1, \ldots, m_{n}\right\}, m_{n} \leq n$:
(H7) $\quad \exists \varepsilon, \mathbf{0}<\varepsilon<\mathbf{1}, \mathbf{m}_{\mathbf{n}}^{\mathbf{2} \beta \boldsymbol{\Delta}} \leq \mathbf{C n}^{1-\varepsilon}$,
where C is a fixed constant and β is defined by (H4).

For instance, Assumption (H7) is fulfilled if:

1. $\operatorname{pen}\left(m_{n}\right) \leq C$. In such a case, we have $m_{n} \leq C(n \Delta)^{1 /(2 \beta \Delta+1)}$.
2. Δ is small enough to ensure $2 \beta \Delta<1$. Take $\mathcal{M}_{n}=\{1, \ldots, n\}$.

In the compound Poisson model, $\beta=0$ and nothing is needed.
$(\mathrm{H} 7)=$ problem because depends on the unknown β

But concrete implementation requires the knowledge of m_{n}. Analogous deconvolution with unknown error density.

In that case we can prove:

Theorem 2 Assume that assumptions (H1)-(H2)(8)-(H3)-(H7)
hold and let $\tilde{g}=\hat{g}_{\widehat{\hat{m}}}$ be the estimator defined with
$\widehat{\hat{m}}=\arg \min _{m \in \mathcal{M}_{n}}\left(\gamma_{n}\left(\hat{g}_{m}\right)+\widehat{\operatorname{pen}}(m)\right)$. Then

$$
\mathbb{E}\left(\|\tilde{g}-\mathbf{g}\|^{\mathbf{2}}\right) \leq \mathbf{C} \inf _{\mathbf{m} \in \mathcal{M}_{\mathbf{n}}}\left(\left\|\mathbf{g}-\mathbf{g}_{\mathbf{m}}\right\|^{\mathbf{2}}+\operatorname{pen}(\mathbf{m})\right)+\mathbf{K}_{\Delta}^{\prime} \frac{\ln ^{2}(\mathbf{n})}{\mathbf{n}}
$$

where K_{Δ}^{\prime} is a constant depending on Δ (and on fixed quantities but not on n).

If g belongs to the Sobolev ball $\mathcal{S}(a, L)$, and under (H4), the rate is automatically of order $O\left((n \Delta)^{-2 a /(2 \beta \Delta+2 a+1)}\right)$.

Proofs rely on control of empirical processes via Talagrand's type

$$
\begin{aligned}
& \text { inequality and precise bounds on residual terms. } \\
& \gamma_{n}(t)-\gamma_{n}(s)=\|t-g\|^{2}-\|s-g\|^{2}-2 \nu_{n}^{(1)}(t-s)-2 \nu_{n}^{(2)}(t-s)-2 \sum_{i=1}^{4} R_{n}^{(i)}(t-s), \\
& \nu_{n}^{(1)}(t)=\frac{1}{2 \pi \Delta} \int t^{*}(-x) \frac{\hat{\theta}_{\Delta}^{(1)}(x)-\theta_{\Delta}^{(1)}(x)}{\psi_{\Delta}(x)} d x \\
& \nu_{n}^{(2)}(t)=\frac{1}{2 \pi \Delta} \int t^{*}(-x) \frac{\theta_{\Delta}(x)}{\left[\psi_{\Delta}(x)\right]^{2}}\left(\psi_{\Delta}(x)-\hat{\psi}_{\Delta}(x)\right) d x \\
& R_{n}^{(1)}(t)=\frac{1}{2 \pi \Delta} \int t^{*}(-x)\left(\hat{\theta}_{\Delta}(x)-\theta_{\Delta}(x)\right)\left(\frac{1}{\tilde{\psi}_{\Delta}(x)}-\frac{1}{\psi_{\Delta}(x)}\right) d x \\
& R_{n}^{(2)}(t)=\frac{1}{2 \pi \Delta} \int t^{*}(-x) \frac{\theta_{\Delta}(x)}{\psi_{\Delta}(x)}\left(\psi_{\Delta}(x)-\hat{\psi}_{\Delta}(x)\right)\left(\frac{1}{\tilde{\psi}_{\Delta}(x)}-\frac{1}{\psi_{\Delta}(x)}\right) d x \\
& R_{n}^{(3)}(t)=\frac{1}{2 \pi \Delta} \int t^{*}(-x) \frac{\hat{\theta}_{\Delta}^{(2)}(x)-\theta_{\Delta}^{(2)}(x)}{\psi_{\Delta}(x)} d x \\
& R_{n}^{(4)}(t)=-\frac{1}{2 \pi \Delta} \int t^{*}(-x) \frac{\theta_{\Delta}(x)}{\psi_{\Delta}(x)} \mathbb{I}_{\left|\hat{\psi}_{\Delta}(x)\right| \leq \kappa_{\psi} / \sqrt{n}} d x .
\end{aligned}
$$

Further works:

Deconvolution setting with unknown error density:
a solution with a random set \mathcal{M}_{n}, but two independent samples are available.

Maybe a way of generalisation.

But non pure jump processes : only for small sample step!

